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Abstract: The article addresses an approximate solution to the multi-objective optimization problem
for a black-box function of a manufacturing system. We employ the surrogate of the discrete-event
simulation model of a batch production system in an analytical form. Integration of simulation,
Design of Experiments methods, and Weighted Sum and Weighted Product multi-objective methods
are used in an arrangement of a priori defined preferences to find a solution near the Pareto optimal
solution in a criterion space. We compare the results obtained through the analytical approach to the
outcomes of simulation-based optimization. The observed results indicate a possibility to apply the
suitable analytical model for quickly finding the acceptable approximate solution close to the Pareto
optimal front.

Keywords: multi-objective optimization; metamodel; surrogate model; manufacturing system;
simulation-based optimization

1. Introduction

Every day, we face moments of decision-making where we must take into account more aspects at
the same time. We need to consider more than one goal simultaneously, while some of them are often
contradictory. The result is finding a solution that has compromise. We can find similar situations
in many domains, such as engineering, business, or manufacturing. In production control, one can
typically find many frequently appearing optimization tasks for different levels of production control,
whether in scheduling operations [1,2], logistics [3–5], or optimizing production objectives [6]. Each
of these problems internally includes the necessity of considering different features of a system’s
performance. This type of problem is commonly referred to as a multi-objective or vector optimization
problem (MOOP) [7]. In contrast to a single objective optimization, to solve it is generally not trivial,
because there is no unique optimal solution but rather a set of compromise solutions [8]. Therefore,
it demands applying multi-objective optimization methods to find acceptable optimal solutions.

A direct analytical approach for finding MOOP solutions can fail in the optimization of real-world
systems due to difficulties caused by their performance complexity. In general, none or weakly
analytically expressed information exists concerning the system dynamics of a relationship between
a cause and a consequence. It means that we do not know the precise analytical relation between
system inputs and outputs in a form of inputs–outputs transformation. Thus, the effect of decisions or
applying specific design scenarios cannot be determined by direct calculation, but it must be studied
by applying other methods, such as simulation or simulation-based optimization [9,10].

Both methods are important in the determination of system outputs or objective functions values,
respectively. Computer simulation represents one of the most advanced and useful tools in the analysis
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of complex systems. It shows the true system behavior and offers a prediction of a future performance.
Consequences of decisions and applying design scenarios in relation to the performance evaluation can
be tested easily. Simulation-based optimization employs a simulation approach to evaluate unknown
values of objective function during an optimization process. The method is time-consuming when
exploring a large design space, mainly due to its high dimensionality.

Due to the complexity of manufacturing systems, and hand in hand with computational capabilities,
one of the approaches to find solutions of an MOOP in this environment can be based on dealing
with an explored system as a black box [11,12]. The black-box function represents mapping the
design space to the space of responses as system outputs. Its direct application in the optimization
via a method of simulation-based optimization is mostly computationally expensive [13]. Many
optimization strategies, including metaheuristics and simulation-based techniques, are mentioned in
survey by Liu et al. [14]. Despite the solutions that result from any of these methods most likely being
suboptimal, metaheuristics perform well in practice [8], even if they do not guarantee identifying a
Pareto optimal solution.

The increasing requests for an automation of the manufacturing processes control demands
solving an MOOP as fast as possible. To offer the suitable solution in a very short time is in contrast to
the time-consuming NP-hard problem (NP stands for Non-deterministic Polynomial) solving, which
constrained MOOP solving mostly represents with no doubt. The algorithmic complexity O(kn) of NP-
hard problems is given by both the small velocity of finding and verifying the solution. They belong to
the category of problems that cannot be generally solved in polynomial time but exponential time that
depends on input size n. As an alternative of metaheuristics, the way to deal with the MOOP can be
through finding the adequate surrogate model of a costly evaluated function, which allows solving
an MOOP with significant speed-up [13,15]. The challenge is to find a suitable compromise between
calculation acceleration and model precision [16].

As an example of an application of an idea of metamodeling-based optimization in manufacturing
control, Azadeh and Maghsoudi [17] employ a simulated Design of Experiments (DoE) and metaheuristic
method Tabu Search in a single objective optimization. They conclude that the procedure is suitable for
performance optimization in all types of discrete production systems. Conceptually inspired by this
case study, in our work, we try to overcome the problem of a long-lasting process of MOOP solving
connected to simulation-based optimization and to offer an alternative in which an approximate
analytical approach is implemented. The intention of this work was to verify the possibility of finding
approximate MOOP solutions that are close to Pareto optimal ones when applying a surrogate model
of a simulation model for a batch production system. After derivation of the surrogate model for
system input–output transformation in an analytical form and its employment in MOOP solving,
we expected a substantial reduction of calculation time from several hours to minutes compared to
simulation-based optimization with only an insignificant loss of solutions accuracy.

In this study, we adopted a scalarization technique with a priori defined preferences in the
connection with simulation-based and surrogate-based multi-objective optimization. We employed the
discrete-event simulation model of a batch production system to allow observing and predicting the
system behavior and its response with respect to the external input parameters changes. It was a data
source for acquiring the simulation outputs as further inputs to the DoE performance. It also served as
an optimization model after completing it by the multi-objective function and by required constraints
for simulation-based optimization. We used it for verification of the results of the surrogate-based
optimization experiments.

The reminder of the paper is structured as follows. In Section 2, a definition of the multi-objective
optimization problem, modeling of surrogates, and applications related to an integration of both
approaches are presented. Section 3 introduces the steps of the proposed procedure for approximate
solving of the MOOP when employing surrogate models in simultaneous optimizing production
objectives. In Sections 4 and 5, we present the obtained results and discuss the limitations. Section 6
summarizes the work results and indicates a future research direction.
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2. Background of Multi-Objective Optimization Based on a Surrogate Model

2.1. Multi-Objective Optimization Problem (MOOP)

In general, finding the solution of an MOOP can be presented as a procedure of simultaneous
optimization of a set of k individual objective functions under the constraints set. It can be defined in
form given in Equation (1) referring to Marler and Arora [7]:

Minimizex ∈ D F(x) = [F1(x), F2(x), . . . , Fk(x)]
T ; k ≥ 2

subject to gs(x) ≤ 0, s = 1, 2, . . . , m; m ≥ 0,hl(x) = 0, l = 1, 2, . . . , r; r ≥ 0.
(1)

The vector x∈ D, where the set D is the feasible region in the design space, is constrained by its
lower and upper limits xL ≤ x≤ xU. The vector F(x) ∈ Ek is the vector of objective functions Fi(x): En→ E1
in feasible objective space Z, Z ⊂ Ek. Thus, Z is the forward image of D under the mapping F[8].
The value m defines the number of inequalities, and r defines the number of equalities for the constrained
problem. If the objectives of Fi are contradictory, there does not exist only one single optimal solution as
a MOOP-solving result. This process leads to the set of tradeoffs that are completely equivalent in a
mathematical sense.

Due to the obvious nonexistence of absolute ordering solutions in the space of objective
functions [18], an expert in the role of decision-maker is important as a support for the determination of
the most appropriate solution [7]. In general, multi-objective methods can be principally characterized
with the respect to the involving decision-maker (DM) preferences, which play a significant role in the
selection of an appropriate solution. The a priori defined preferences approach provides one single
optimal solution dependent on the parameters specified by the DM. On the contrary, a posteriori
defined preferences methods or interactive methods allow generating a set of many optimal solutions
that are offered to the DM to select the most suitable one or influence the future direction of the
optimization process, respectively [7].

One of the broadly accepted concepts of identifying the optimal solution of an MOOP is an idea
of Pareto optimality based on an idea of dominance in the sense of establishing the partial order of
solutions. Yoshimura [19] characterizes the Pareto optimum solutions set as a set of such feasible
solutions in the objective (criterion) space, where no other feasible solutions for each of them exist that
will yield an improvement in one objective without causing worsening in at least one other objective.
All solutions in the objective space, which have the property of Pareto optimality mentioned above,
are called nondominated solutions, and other solutions in objective space are dominated by them.
For precise definitions of properties of dominance and Pareto optimality, we refer to [15].

All Pareto optimal solutions form a so-called Pareto front in an objective space [15,16]. From the
geometric point of view, the Pareto front represents a hypersurface in a k-dimensional space of objective
functions where all nondominated solutions are located. In case of a high-dimensional design space,
the hypersurface can have a very complicated structure [8]. Referring to Ehrgott [20], the pre-images
of the nondominated outcomes are called efficient solutions located in design space.

The concept of Pareto optimality implemented in a method called Pareto ranking is often combined
in some modifications with evolutionary algorithms [15] to increase the effectiveness of the computation
of the entire set of Pareto optimal solutions.

An alternative for defining a partial order in objective space can be found in decomposition
methods [8]. It is a different but very natural and therefore a widely spread approach to handle with the
MOOP solving by its decomposition to a set of single-objective optimization problems. This strategy
transforms a complex multi-objective problem in a set of simple subproblems.

Decomposition methods utilize a scalarizing parametric function to aggregate all the objectives
into a single scalar objective function [8]. Different setting weight vectors and other parameters relating
to the individual functions lead to yielding different optimal points belonging to a Pareto front. For the
simple scalarization through the Weighted Sum Method (WSM) under an assumption of the convex
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constraints, it is proved that the solution is Pareto optimal if the value of the corresponding scalar
multi-objective function is minimal [7]. The known disadvantage of this method can be easily explained
by the geometry point of view. A scalar multi-objective function is expressed as a linear combination of
individual objective functions; therefore, it offers the capability of reaching the Pareto optimal solutions
only in the convex part of the Pareto front.

2.2. Modeling of Surrogates and Their Application in a Multi-Objective Optimization

Metamodeling or surrogate modeling (through the following text) is a technique for the
construction of “a model of the model” or “surrogates” to cover the essential features of the input–output
system behavior [16]. It approximates the black-box function analytically or generates a new model
with better properties for further computation.

We can find plenty of works related to this field, focusing on optimization via metamodeling.
Peitz and Dellnitz [16] give an extensive survey of different types of surrogate models used for
implementation in the objective function. Geometric models such as Response Surface Models
generated by Response Surface Methodology (RSM) within the Design of Experiments technique,
Radial Basis Function (RBF) models, statistical models such as Kriging or Gauss regression, and
models based on Machine Learning methods—Artificial Neural Networks (ANN) or Support Vector
Machines (SVM)—are among the most widespread. The authors also provide an overview of works
when multi-objective optimization (MOO) and metamodeling are combined. Ky et al. [11] discuss
the most popular surrogate models being used in engineering designs suitable also for black-box
optimization and the difficulties related to their application. They mention that polynomial models
that are well-studied and employed in trust-region methods to provide approximation of the true
function in local areas are unsuitable as global models for highly nonlinear multidimensional functions.
The authors introduce models that are better performed in that sense, such as RBF and Kriging.

Knowles and Nakayama [21] and Voutchkov and Keane [22] particularly focus on metamodeling
in multi-objective optimization. Zakerifar et al. [23] pay attention to Kriging metamodeling in
multi-objective simulation optimization. In a survey of Tabatabaei and Hakanen [12], the authors
introduce non-nature inspired methods for handling computationally expensive multi-objective
optimization problems using surrogates. As for polynomial modeling, Barton et al. [24] analyze the
quality of fits in case of applying first- and second-order polynomials and other classes of metamodels
in metamodel-based simulation optimization from the local and global fit point of view.

Regarding utilizing the surrogate-based optimization methods in engineering applications of
real-world problems, one can find them mainly in the field of design of systems or product properties.
Pillai et al. [25] suggest a multi-objective optimization framework for offshore renewable energy
mooring systems applying a random forest-based surrogate model coupled to a genetic algorithm.
Park et al. [26] compare the predictive cyclone models generated by response surface methodology,
back propagation neural network, and group method of data-handling networks and apply them
in multi-objective optimization of the cyclone separation performance via genetic algorithm, too.
Chugh et al. [27] compare the multi-objective optimization of an air intake ventilation system utilizing
an evolutionary algorithm with and without a surrogate.

In particular, in the domain of designing manufacturing processes, the multi-objective optimization
via metamodels coupled to simulation for machining and turning processes, respectively, is applied
e.g., in Amouzgar et al. [28] or Amouzgar et al. [29]. For the optimization of a friction-drilling process,
Bustillo et al. [30] describe a novel strategy for real industrial conditions based on Adaboost ensembles.
Regarding the results, this prediction model provided the highest accuracy and was more easily
optimized than models that resulted from other machine learning techniques.

In relation to the manufacturing systems control, when the optimization of production objectives
had been solved, we can observe a predominance of applying heuristic approaches, mainly evolutionary
algorithms in the recent works. Um et al. [31] presented the optimization problem of three production
criteria: congestion, vehicle utilization, and the throughput via multi-objective nonlinear programming
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and simulation-based optimization using an Evolution Strategy for a flexible manufacturing system with
an automated guided vehicle system. Azadeh and Maghsoudi [17] suggested a robust procedure for
the optimization of discrete production systems employing an integration of computer simulation, DoE,
and Tabu search, and applied it in the case study for a large steelmaking workshop. Lughofer et al. [32]
propose an approach for the automated optimization of process parameters in manufacturing systems
to automatically compensate possible downtrends in product quality using static predictive mappings
and dynamic forecast models as surrogates within the evolutionary optimization process. As for RSM
techniques, Durieux and Pierreval [33] deal with regression metamodels applied in the design of an
automated manufacturing system. For getting a wide overview of applications in the manufacturing
system operations area, please see Liu et al. [14].

2.3. Response Surface Models

Design of experiments within its techniques offers the possibility to generate and optimize
regression models through many experimental designs. Particularly, one very known and widely used
RSM methodology concerns mostly fitting and optimizing quadratic models. They are constructed
as the approximation given by Equation (2) for the second-order model, referring e.g., to Khuri and
Cornell [34], where β0, βi (i = 1, 2, . . . , k) and βii , βi j (i = 1, 2, . . . , k; j = 1, 2, . . . , k) are unknown
regression coefficients, xi, xj are input variables that influence the response y, and ε denotes a random
error (or a noise) observed in y.

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +

k−1∑
i=1

k∑
j=2

βi jxix j + ε, i < j (2)

Box–Behnken Design (BBD) is used to build a quadratic model based on such an experimental
structure in which we observe the responses at the midpoints of the edges of the experimental space [35].
It does not ensure runs at the extreme combinations of all the factors. This disadvantage is compensated
by having better prediction precision in the center of the experimental space. It requires at least three
factors, and the effect of each of them is tested on three levels.

Face-Centered Design (FCD) represents a special case of a variety of Central Composite Designs
(CCDs). CCDs are based on a two-level screening factorial design, which is augmented with center and
axial points to fit quadratic models [35]. Regular CCDs have five levels for each factor. The adaptation
by choosing an axial distance α = ± 1 produces a Face-Centered, Central Composite Design with three
levels per factor. The added axial points lay at the center of each face of the factorial space. FCD design
is cuboidal rather than rotatable, which is the supposition for better prediction ability in the corners of
the selected experimental space. We applied BBD and FCD designs for the construction of metamodel
of a vector function of production goals within this study.

3. The Proposed Multi-Optimization Procedure Based on a Surrogate Model Implemented in
Production Control

The designed procedure of surrogate-based MOOP solving is introduced in this section.
We illustrate its application in a production environment. Firstly, the method of derivation of
the surrogate models for the selected production goals of the batch manufacturing system via the
integration of the simulation and DoE method is described. Secondly, we show how the best derived
analytical models are applied in objective functions of MOOP solving to find such effective input
system parameters that ensure the desired values of production objectives.

3.1. Procedure of Surrogate-Based MOOP Solving

The scheme in Figure 1 illustrates the procedure of a metamodel implementation to the MOOP

solving in a production environment. Vector
→

X represents system inputs that will be transformed
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to outputs
→

Y. The model structure and its configuration affect the system performance. Thus,
mapping input parameters (production system loading) to outputs–production objectives, such as
costs, flow time, or product quantities can be observed. Due to the fact that the direct analytical
expression of this mapping is unknown, we consider the simulation model of a production system as a
black box and the mapping of inputs to outputs as a black-box transformation. All the information
about it can be gained from the simulation. The simulation model of a production system (production
system black-box in Figure 1) serves as a data source for building the surrogate model instead of a
black-box function of the underlying simulation model. Simulation experiments need to consider the
design of the experimental layout originated from DoE when evaluating the production objectives as
outputs of the simulation runs. Once the production objectives have been evaluated, DoE adopts the

observed production goals as responses
→

Y according to the suggested design of the planned experiment.
The derived regression models (production system metamodel in Figure 1) estimate the values of

production goals
→

Ŷ. These regression models by means of individual objective functions represent

metamodels as analytically expressed transformations of inputs
→

X →
→

Y for the selected simulation
model of a production system.
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problem (MOOP) solving.

The optimization of production means to find the effective configuration of input parameters
for the black-box function to ensure the desired production performance. Therefore, metamodels
for production objectives are incorporated into the scalar multi-objective function in the next step.
It is subsequently minimized under specified constraints with respect to a priori defined preferences
required by the selected MOO methods.

3.2. Simulation Model of Production System

The modeled production system was adapted from the work of Vazan et al. [36]. It represented
a job shop-type batch production system producing two different products, P1 and P2, with eight
workstations using automated parallel working machines. Three of them demanded operators to
set up for processing both products. Each of these products was finishing independently at the final
phase of manufacturing. We considered all internal model parameters, such as the operation times
for machines, setup times and costs for operators, machine setups, and storage as fixed; therefore,
the simulation model was fully deterministic. It was built in a simulator Witness Horizon version 22
by Lanner Group Limited, Houston, TX, USA. We used it to obtain values of production objectives and
validate the results of numerical calculation.

3.3. Simulation Experiments

For all experiments performed on the simulation model in the Witness Horizon simulator (Lanner
Group Limited, Houston, TX, USA), the inputs of the black-box function of the production system
were four external input parameters—a lot size and an input arrival time for both manufacturing
products. They represented loading the system. The design space was constrained by the lower and
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upper bounds between values 2 and 10 pcs for the lot size, and between 5 and 50 min for the supply
arrival time for both products. The system outputs were four selected production objectives—a total
number of products, an average flow time, an average machine utilization, and the average costs per
part unit. The simulation experiments lasted 1440 min with a 100 min warm-up period. Each of the
experimental designs for the BBD and FCD-type demanded the simulation of 25 scenarios according to
the experimental schemes in Figures 2 and 3, respectively.
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3.4. DoE—Proposed Experimental Designs

To construct the metamodel of the production objectives, we were interested in two different
experimental designs—the Box–Behnken Design (BBD) and Face-Centered Design (FCD). They were
selected to explore and compare the suitability of both main types of spherical vs. cuboidal designs for
the derivation of a metamodel of a simulation model. After screening experiments, we considered
four factors on three levels (–1, 0, 1) in both types of experimental design and four responses F1–F4,
representing the selected production goals (Table 1). The factorial space was a four-dimensional
domain, with lower and upper bounds between values 2 and 10 pcs for the lot size and between
5 and 50 min for the product arrival time of both products. As responses, four selected production
performance indicators were considered: the total number of products, average flow time, average
machine utilization, and average costs per part unit. Both designs required 25 simulation runs each.
The values of responses in each of the experimental points were found by simulation in Witness
Horizon by Lanner Group Limited, Houston, TX, USA (see Figures 2 and 3, respectively). The BBD
design layout for the actual values of the settings factors with the added responses that resulted from
the simulation are shown in Figure 2. Similarly, Figure 3 depicts the experimental scheme with an
added four responses for FCD.

Table 1. Factors and responses for design layouts.

Factor Response

A—LotSizeP1 F1—Average flow time
B—LotSizeP2 F2—Average costs per part unit

C—IATP1 F3—Average machine utilization
D—IATP2 F4—Total number of products

3.5. The Particular MOOP Definition and Applied Scalar MOO Methods

The particular MOOP represents a task to design a set of four input parameters: the lot size
and the input intervals for arriving supplies P1 and P2 within the specified ranges and production
limitations while optimizing the production performance. Optimization involves minimizing the
average costs per part unit and the average flow time and maximizing the total number of products
and average machine utilization simultaneously.

To solve that, we applied two methods belonging to the class of scalarization methods with a
priori defined preferences, referring to Marler and Arora [7].

Firstly, we constructed the scalar multi-objective U function in Equation (3) expressed through
the Weighted Sum Method (WSM) as the linear combination of the normalized individual objectives
Ftrans f orm

i using the weight vector w. All components wi have the same value 0.25 to not prefer any
production goal.

U =
k∑

i=1

wiF
trans f orm
i , wi > 0 ∀i,

k∑
i=1

wi = 1 (3)

Secondly, we applied the Weighted Product Method (WPM) with the same settings of weights
defined by Equation (4). In both cases, minimizing the scalar U function leads to the single Pareto
optimal solution finding.

U =
k∏

i=1

(
Ftrans f orm

i

)wi
, wi > 0 ∀i,

k∑
i=1

wi = 1 (4)
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There exist many possible transformations described e.g., by Marler and Arora [37] to ensure
dimensionless objectives Fi entering the scalar multi-objective function. We employed a robust
transformation given by Equation (5).

Ftrans f orm
i =

Fi − FU
i

FN
i − FU

i

(5)

That relates to a component of a utopia point vector and a nadir point vector, which represent
the unreachable solutions for individual production goals as the best one (utopia) and as the worst
one (nadir). The utopia point vector FU can be taken as the optimum of the single-criterion function
according to the optimization goal regardless of other objectives. FN is the vector created by the
worst values of the production goals. It can be determined by expert preferences or obtained from
single-optimization experiments, too. Table 2 shows the applied values of these reference points. Value
Fi in Equation (5) is a component of the production goals (individual objectives) vector that resulted
from experiments on a discrete-event driven simulation model.

Table 2. Utopia and nadir point values in the transformation of objectives Fi.

Production Objective Utopia Point FU
i Nadir Point FN

i

Avg. flow time (min.) 296.309 550
Avg. costs per part unit (€) 10.209 16

Avg. machine utilization (%) 84.035 60
Total number of products (pcs) 289 230

For a numerical computation of the MOOP solution, we use the Evolutionary algorithm in MS
Excel module Solver (by Microsoft, Redmond, WA, USA) to perform discrete global optimization.

The objective function employing WSM defined by Equation (3) and transformation in Equation
(5) with the utopia and nadir points given by Table 2 was expressed via regression models of production
goals based on FCD in the following analytical form, and it was minimized:

U = 0.25 * (11.47091 + 6.53901 * LotSizeP1 + 7.91294 * LotSizeP2 − 1.42610 * IATP1
−1.40960 * IATP2 − 0.150095 * LotSizeP1 * IATP1 − 0.176751 * LotSizeP2 * IATP2 +

0.030254 * IATP12 + 0.031313 * IATP22
− 10.209)/(16 − 10.209) + 0.25 * (91.78175 +

0.626283 * LotSizeP1 + 0.301304 * LotSizeP2 − 0.923591 * IATP1 − 0.854483 * IATP2 +

0.048977 * LotSizeP1 * IATP1 + 0.049608 * LotSizeP2 * IATP2 − 84.035)/(60 − 84.035) +

0.25 * (250.66819 + 15.89178 * LotSizeP1 + 14.81886 * LotSizeP2 − 2.28272 * IATP1 −
2.24722 * IATP2 + 0.238889 * LotSizeP1 * IATP1 + 0.237500 * LotSizeP2 * IATP2 −

1.47246 * LotSizeP12
− 1.34746 * LotSizeP22

− 289)/(230 − 289) + 0.25 * (585.01423 +

26.38960 * LotSizeP1 + 24.42893 * LotSizeP2 − 2.45189 * IATP1 − 11.04025 * IATP2 +

0.119557 * IATP12 + 0.097507 * IATP22
− 296.309)/(550 − 296.309).

(6)
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Analogically, the minimized objective function designed on the base WPM with regression models
that resulted from the FCD was expressed in the following form:

U = (ABS(((11.47091 + 6.53901 * LotSizeP1 + 7.91294 * LotSizeP2 − 1.42610 * IATP1 −
1.40960 * IATP2 − 0.150095 * LotSizeP1 * IATP1 − 0.176751 * LotSizeP2 * IATP2 +

0.030254 * IATP12 + 0.031313 * IATP22
− 10.209)/(16 − 10.209)) * ((91.78175 + 0.626283

* LotSizeP1 + 0.301304 * LotSizeP2 − 0.923591 * IATP1 − 0.854483 * IATP2 + 0.048977
* LotSizeP1 * IATP1 + 0.049608 * LotSizeP2 * IATP2 − 84.035)/(60 −84.035)) *

((250.66819 + 15.89178 * LotSizeP1 + 14.81886 * LotSizeP2 − 2.28272 * IATP1 − 2.24722
* IATP2 + 0.238889 * LotSizeP1 * IATP1 + 0.237500 * LotSizeP2 * IATP2 − 1.47246
* LotSizeP12

− 1.34746 * LotSizeP22
− 289)/(230 − 289)) * ((585.01423 + 26.38960

* LotSizeP1 + 24.42893 * LotSizeP2 − 12.45189 * IATP1 − 11.04025 * IATP2 + 0.119557 *
IATP12 + 0.097507 * IATP22

− 296.309)/(550 − 296.309)))) ˆ 0.25.

(7)

Both optimization models based on WSM and WPM multi-objective methods defined by Equations
(6) and (7) included the constraints for the production goals listed in Table 3. The objective functions
domain was constrained by preliminary simulation experiments. The design space was constrained by
lower and upper bounds in a range from 2 to 10 pcs for both supplies’ lot size, and 5 to 50 min for the
time between the supplies’ arrivals.

Table 3. Constraints for the vector of production objectives.

Production Objective Constraint

Average flow time (min.) F1 ≤ 550
Average costs per part unit (€) F2 ≤ 16

Average machine utilization (%) F3 ≥ 60
Total number of products (pcs) F4 ≥ 230

3.6. Numerical Optimization via Maximizing Desirability Function

The second numerical approach is multi-response optimization based on the Desirability function
maximization in software Design-Expert® version 12 (by Stat-Ease, Minneapolis, MN, USA) where
surrogate models for individual objective functions were built. Montgomery [35] describes a multiple
response method that employs an objective function D, which is called the Desirability function.
It reflects the desirable ranges for each individual response di simultaneously. Equation (8) defines the
value di if the target T for the response y is a maximum value, and Equation (9) defines the value di if
the target T is a minimum value, respectively.

di =


0 y < L( y−L

T−L

)r
L ≤ y ≤ T

1 y > T

(8)

di =


1 y < T( U−y

U−T

)r
T ≤ y ≤ U

0 y > U

(9)

Exponent r determines how strictly the target value is desired. For r = 1, the desirability function
increases linearly toward T; otherwise, the value r causes a convex or concave function property. For k
transformed responses, the simultaneous objective function D is a geometric mean (10) of all di:

D =

 k∏
i=1

di


1/k

. (10)
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Numerical optimization via the D function demands a range of factors, responses, and optimization
goals in the settings. The applied settings of these parameters are listed in Table 4. The limits of
functions in the form of ramps for individual responses di are depicted in Figure 4. It shows the graphs
of di functions in Equations (8) and (9) for specified limit values on individual intervals. Two of the
notches on each ramp represent the minimum and maximum values of all response values within the
experimental space, and two others are lower and upper limits for the given response. They correspond
to L and U values in Equations (8) and (9), respectively (the lower and upper limit in Table 4). At the
same time, they correspond to the utopia and nadir points as reference points in other types of applied
scalar multi-objective functions.

Table 4. Optimization goals and ranges for factors in the maximization D function approach.

Optimization Goal Lower Limit Upper Limit

A is in range 2 10
B is in range 2 10
C is in range 5 50
D is in range 5 50

F1—minimize 296.309 550
F2—minimize 10.209 16
F3—maximize 60 84.035
F4—maximize 230 289
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3.7. Validation of Proposed MOOP Solving Strategy

To validate the solutions calculated via proposed optimization models, we consequently performed
simulation-based optimization of both U functions applying metaheuristic (Adaptive Thermostatistical
Simulated Annealing). In addition, the brute force algorithm All Combinations in the Witness module
Experimenter (Lanner Group Limited, Houston, TX, USA) was performed in Advanced Mode under
the same conditions, as previous numerical experiments were conducted. The design space was the
same four-dimensional domain, with lower and upper bounds between values 2 and 10 pcs for the lot
size and between 5 and 50 min for the supply arrival time for both products. The objective functions
domain was constrained by the values listed in Table 3. For all optimization experiments, the length of
simulation was 1440 min with a 100 min warm-up period.

The WSM-derived scalar objective function employed Equation (3) and the transformation expressed
by Equation (5). Utopia and nadir points are given in Table 2. It was defined in an optimization model
in the form shown in Box 1.

Box 1. Definition of Weighted Sum Method (WSM)-based objective function in a simulator.

IF Number_of_products >= 230 AND Costs_per_part_unit <= 16 AND Flow_Time <= 550 AND
Machine_Utilization >= 60

RETURN 0.25 * (Costs_per_part_unit − 10.209)/(16 − 10.209) + 0.25 * (Machine_Utilization −
84.035)/(60 − 84.035) + 0.25 * (Number_of_products − 289)/(230 − 289) + 0.25 * (Flow_Time − 296.309)/(550 −
296.309)

ELSE
RETURN 0.25 * (Costs_per_part_unit − 10.209)/(16 − 10.209) + 0.25 * (Machine_Utilization − 84.035)/(60 −

84.035) + 0.25 * (Number_of_products − 289)/(230 − 289) + 0.25 * (Flow_Time − 296.309)/(550 − 296.309) + 100
ENDIF

In the case of the WPM method, we used the definition of objective function body formulated in
Box 2.

Box 2. Definition of WPM-based objective function in the simulator.

IF Number_of_products >= 230 AND Costs_per_part_unit <= 16 AND Flow_Time <= 550 AND
Machine_Utilization >= 60

RETURN ((Number_of_products − 289)/(230 − 289)) ** 0.25 * ((Costs_per_part_unit − 10.209)/(16 – 10.209)) **
0.25 * ((Flow_Time − 296.309)/(550 − 296.309)) ** 0.25 * ((Machine_Utilization − 84.035)/(60 − 84.035)) ** 0.25

ELSE
RETURN ((Number_of_products − 289)/(230 − 289)) ** 0.25 * ((Costs_per_part_unit − 10.209)/(16 − 10.209))

**0.25 * ((Flow_Time − 296.309)/(550 − 296.309)) ** 0.25 * ((Machine_Utilization − 84.035)/(60 − 84.035)) ** 0.25
+ 100

ENDIF

Due to minimization, when the conditions for the production goals’ constraints were not fulfilled,
the value of the objective function was increased by 100.

4. Results

4.1. Derivation of Surrogate Models of Production Objectives

To fit the response surface, we performed DoE with two types of response surface designs,
Face-Centered Design (FCD) and Box–Behnken Design (BBD) for four factors in Design-Expert®

software by Stat-Ease (Minneapolis, MN, USA). It provided the polynomial regression models for four
selected production objectives as models of the input–output behavior of the underlying simulation
model. Based on the ANOVA analysis by F-test of the overall statistical significance of the model and
t-tests of the statistical significance of individual regression coefficients, Equations (11)–(18) in terms of
actual factors represent obtained response surface models for both types of design. The Lack of Fit test
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could not be performed due to no variance in the central point, because the applied simulation model
has been deterministic.

As for BBD, the fitting model was linear for the average flow time and machine utilization
responses according to Equations (11) and (13); others were reduced quadratic models for costs per
part unit and number of products regarding to Equations (12) and (14).

Flow time = 435.07580 + 125.17042 * LotSizeP1 + 120.09642 * LotSizeP2 − 138.29592
* IATP1 − 133.84925 * IATP2

(11)

Costs per part unit = 12.51314 + 5.7129 * LotSizeP1 + 5.60725 * LotSizeP2 −
18.85525 * IATP1 − 19.27592 * IATP2 − 11.10425 * LotSizeP1 * IATP1 − 12.24525 *

LotSizeP2 * IATP2 + 16.61164 * IATP12 + 17.40139 * IATP22
(12)

Machine utilization = 64.56492 + 12.97700 * LotSizeP1 + 11.51400 * LotSizeP2 −
14.87858 * IATP1 − 13.25308 * IATP2

(13)

Number of products = 274.30769 + 18.33333 * LotSizeP1 + 19.41667 * LotSizeP2 −
7.16667 * IATP1 − 6.75000 * IATP2 + 21.50000 * LotSizeP1 * IATP1 + 21.75000 *

LotSizeP2 * IATP2 − 15.80769 * LotSizeP12
(14)

The final equations in terms of the actual Equations (15)–(18) represent models with statistically
significant coefficients based on FCD. Almost all the FCD-based models are reduced quadratic models,
besides the model for machine utilization, which is linear with interactions.

Flow time = 585.01423 + 26.38960 * LotSizeP1 + 24.42893 * LotSizeP2 − 12.45189 *
IATP1 − 11.04025 * IATP2 + 0.119557 * IATP12 + 0.097507 * IATP22 (15)

Costs per part unit = 11.47091 + 6.53901 * LotSizeP1 + 7.91294 * LotSizeP2 −
1.42610 * IATP1 − 1.40960 * IATP2 − 0.150095 * LotSizeP1 * IATP1 − 0.176751 *

LotSizeP2 * IATP2 + 0.030254 * IATP12 + 0.031313 * IATP22
(16)

Machine utilization = 91.78175 + 0.626283 * LotSizeP1 + 0.301304 * LotSizeP2 −
0.923591 * IATP1 − 0.854483 * IATP2 + 0.048977 * LotSizeP1 * IATP1 + 0.049608 *

LotSizeP2 * IATP2
(17)

Number of products = 250.66819 + 15.89178 * LotSizeP1 + 14.81886 * LotSizeP2 −
2.28272 * IATP1 − 2.24722 * IATP2 + 0.238889 * LotSizeP1 * IATP1 + 0.237500 *

LotSizeP2 * IATP2 − 1.47246 * LotSizeP12
− 1.34746 * LotSizeP22

(18)

The selected characteristics of analytical models for four production objectives, created via BBD
and FCD designs, are shown in Tables 5 and 6. With respect to the results of modeling, we apply only
the better, FCD-based metamodel of a black-box function in the further surrogate-based optimization.

Table 5. Characteristic of regression models resulted from BBD.

Response R2 Adj. R2 Pred. R2 Std. Dev.

Flow time 0.887 0.864 0.821 71.67
Costs per part unit 0.931 0.896 0.766 7.82

Number of
products 0.768 0.672 0.368 16.35

Machine utilization 0.901 0.881 0.842 6.80
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Table 6. Characteristic of regression models resulted from Face-Centered Design (FCD).

Response R2 Adj. R2 Pred. R2 Std. Dev.

Flow time 0.991 0.988 0.985 22.75
Costs per part unit 0.945 0.918 0.858 9.37

Number of
products 0.968 0.952 0.942 10.19

Machine utilization 0.943 0.924 0.906 5.48

4.2. Results of Numerical Optimizations

The numerical optimization of scalar MOO functions involved two different approaches.
We performed the global discrete minimization using the Evolutionary algorithm in the module
Solver in MS Excel (by Microsoft, Redmond, WA, USA) for selected scalar MOO methods under the
constraints specified in Table 4. We implemented the FCD models defined by Equations (15)–(18) into
U functions only due to the better prediction ability of these models. Next, we found the solution
via the Desirability function maximization for FCD models in the numerical optimization module of
Design-Expert® by Stat-Ease (Minneapolis, MN, USA). The results are presented in Tables 7–9.

Table 7. Experiment results using the WSM multi-objective optimization method.

Applied
Model

Algorithm
Factors/Input Parameters in

Design Space
Responses/Production Objectives in

Objective Space

A B C D Flow
Time

Costs Per
Part Unit

Number of
Products

Machine
Utilization

FCD model
Evolutionary alg.

Module Solver (Excel 1)
U = 0.333

6 7 29 34 391.15 10.21 286.21 62.14

Simulation
model

Simulation- optimization
All Combinations

Module Experimenter
(Witness 2)
U = 0.269

3 3 10 30 305.13 10.58 288 60.99

Verification Simulation (Witness 2) 6 7 29 34 446.98 10.77 288 60.31
1 by Microsoft, Redmond, WA, USA; 2 by Lanner Group Limited, Houston, TX, USA.

Table 8. Experiment results using the WPM multi-objective optimization method.

Applied
Model

Algorithm
Factors/Input Parameters in

Design Space
Responses/Production Objectives in

Objective Space

A B C D Flow
Time

Costs Per
Part Unit

Number of
Products

Machine
Utilization

FCD model
Evolutionary alg.

Solver module (Excel 1)
U = 0.0271

8 7 42 31 406.5 10.22 287.50 60.84

Simulation
model

Simulation–Optimization
All Combinations

Module Experimenter
(Witness 2)
U = 0.051

2 5 7 46 335.59 10. 216 287 60. 093

Verification Simulation (Witness 2) 8 7 42 31 459.16 10.93 286 60.22
1 by Microsoft, Redmond, WA, USA; 2 by Lanner Group Limited, Houston, TX, USA.
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Table 9. Experiment results using the Desirability function multi-objective optimization method.

Applied
Model

Algorithm
Factors/Input Parameters in

Design Space
Responses/Production Objectives in

Criterion Space

A B C D Flow
Time

Costs Per
Part Unit

Number of
Products

Machine
Utilization

FCD model

Numerical optimization
Multi-response method

(Design-Expert®1)
D = 0.631

6 2 26 11 433.20 10.21 274.49 70.98

Verification Simulation (Witness) 6 2 26 11 428.55 10.87 287 60.84
1 by Stat-Ease, Minneapolis, MN, USA.

4.3. Validation of Approximate MOOP Solving Strategies

The comparison of results achieved by different numeric and simulation-based optimization
methods for WSM and WPM is presented in Tables 7–9. In addition, the table also includes the
verification of results obtained via surrogate-based optimization by simulation.

5. Discussion

Having been inspired by [17], we applied the DoE technique for the derivation of a surrogate
model of a simulation model for a batch production system, namely Face-Centered Design (FCD)
and Box–Behnken Design (BBD). Referring to Montgomery [35], the designs chosen were two very
frequently used ones with different properties regarding prediction ability.

With respect to the selected type of the response design, the results indicate that the FCD generated
a very good regression model with better prediction precision for all four responses comparing to BBD.
Therefore, only the analytical model derived on the base of FCD was applied in the objective functions
when performing numerical multi-objective optimization.

As for FCD applied in optimization, in spite of its good characteristics, the analysis of results
presented in Tables 7–9 does not show a full consonance in the solutions found through different methods.
The solutions, which resulted from simulation-based optimization via a brute force algorithm, have a
very short Flow time component and they differ from surrogate-based solutions in this component
significantly for both WSM and WPM methods. It implies that the Flow time function is very sensitive
to the change of system loading, and the approximation of real values of this component by the FCD
response surface model leads to results that are unacceptable for settings in a control process.

Despite this, if we look at the results in more detail, the match confirmed by the simulation is
visible for three other components of the MOO solution vector in an objective space. The deviations
for these three production objectives (the average costs per part unit, the total number of products, and
the average machine utilization) are in an acceptable range (maximally 3.1%) other than the values that
resulted directly from the maximization of Desirability function. The solutions that resulted from using
this method are strongly influenced by the setting of method parameters. All substantial differences can
be partially explained by an approximation error effect, parameters methods settings, and by the lack
of guarantee to find a global solution using the heuristic method in case of an Evolutionary algorithm.

We also compare all numerically obtained MOOP solutions related to using metamodels to the
values originated from simulation. All these solutions have offered such design variables that the
corresponding production goals resulted from the simulation output are mostly dominated by solutions
obtained by the All Combinations algorithm using simulation-based optimization. We can conclude that
for a real practice, fast obtained solutions that originate from numerical optimization based on FCD are
not so good in the sense of Pareto optimality. On the other hand, they can represent approximate values
that are rather close enough to effective solutions in a design space for control purposes considering
only production goals, which are not too sensitive to the change of input parameters. Regardless
of the different locations of the points in design space, all applied surrogate-based multi-objective
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optimization methods provide similar solutions in terms of the components of the production objectives
vector within the specific transformation and weight vector. When comparing this, all solutions verified
by simulation are very close to each other in objective space.

The literature concerning metamodel-based solving MOOP [11,16] indicates that the utilization of
valid metamodels can shorten the computational time needed for optimization processes, namely in
the optimization of expensive black-box functions. We observed a significant shortness of calculation
time when applying both numerical approaches in contrast to simulation-based optimization, but the
time for searching for MOOP solutions strongly depended on the parameters of the applied methods.
According to the authors’ best knowledge, there is no similar work that can be used for comparison
conclusions due to the specifics of the underlying discrete-event driven simulation model.

To discuss the limitations of the presented MOOP solving procedure based on surrogates, the three
main following limitations should be mentioned:

1. We assume that an adaptable simulation model of the production system must be built.
2. We assume that the controlled production system does not involve too fast inner parameters

and structural changes. The inner parameters and structure can be flexible, but they need to be
changed in hours, not in minutes. Even if the simulation model could reflect changes almost
immediately, the steps of the designed MOOP procedure take some time to derive the surrogate
model and consequently find the solutions.

3. We must consider that some of the production goals are too sensitive to the change of input
parameters; therefore, the approximate solution is not satisfactory.

6. Conclusions and Future Work

In this paper, we presented the procedure for approximate MOOP solving via the surrogate
model of a simulation model for the studied batch production system. The MOOP was focused on
the simultaneous optimization of four selected production goals. We derived the surrogate model
by applying an integration of simulation and DoE technique using Face-Centered Design (FCD) and
Box–Behnken Design (BBD). The prediction ability of the model derived from the FCD was observed
better than that from the BBD. Thus, only the model that originated from FCD was consequently
applied for generating objective functions in the numerical solving of the MOOP.

We can conclude that for a real practice, the solutions that originated from the numerical
optimization based on FCD can represent approximate values that are rather close enough to effective
solutions in the design space for control purposes when we consider only production goals, which are
not too sensitive to the change of input parameters. The advantage is that they are available much
faster (in minutes) than solutions that resulted from the long-lasting simulation-based optimization
process (in hours or days).

On the basis of the study results, we suppose that the obtained result of optimization is acceptable
for control purposes for the studied production system. Of course, this conclusion cannot be generalized
based on solutions corresponding to one specific simulation model. The potential wider applicability
of the designed procedure in manufacturing control is limited by the results of another research
study. When comparing the findings gathered within this study on other production systems, clearer
conclusions can be pronounced for all systems that fulfill the assumptions outlined above.

From this point of view, the future interest can be focused on testing other types of surrogate
models that could be able to increase the precision of numerical solving MOOP regarding the sense of
closeness to Pareto optimal solutions. Additionally, the possibility of applying other multi-objective
methods to find solutions in a nonconvex part of a Pareto front also can be investigated. After that,
analogic experiments using stochastic models of production systems could be performed.
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