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Abstract: Voltage models of lithium-ion batteries (LIB) are used to estimate their future voltages,
based on the assumption of a specific current profile, in order to ensure that the LIB remains in
a safe operation mode. Data of measurable physical features—current, voltage and temperature—are
processed using both over- and undersampling methods, in order to obtain evenly distributed and,
therefore, appropriate data to train the model. The trained recurrent neural network (RNN) consists
of two long short-term memory (LSTM) layers and one dense layer. Validation measurements over
a wide power and temperature range are carried out on a test bench, resulting in a mean absolute error
(MAE) of 0.43 V and a mean squared error (MSE) of 0.40 V2. The raw data and modeling process can be
carried out without any prior knowledge of LIBs or the tested battery. Due to the challenges involved
in modeling the state-of-charge (SOC), measurements are used directly to model the behavior without
taking the SOC estimation as an input feature or calculating it in an intermediate step.

Keywords: lithium-ion battery (LIB); long short-term memories (LSTM); machine learning (ML);
modeling; recurrent neural net (RNN)

1. Introduction

The market share of mild hybrid vehicles has been increasing, as they provide an easy and effective
compromise between the challenging BEV technology and the drawbacks of ICE vehicles when it
comes to satisfying set ecological standards. The efficiency of a mild hybrid vehicle depends largely
on the battery-related hardware and software. Higher battery capacities and power capabilities are
directly connected to a lower fuel consumption, as well as higher weight and costs. Thus, more accurate
BMS software is the key to a viable cost-benefit ratio. An accurate prediction of battery voltage levels
after a certain current load is of great significance for vehicle energy and power management systems
(EPMSs). Using these values, the EPMS is able to adapt a strategy—either to reduce the load of the
consumer or increase the energy recovered from the electrical machine. This ensures that the battery is
capable of providing or storing energy for the drive train in more situations without exceeding legal
voltage limits. Therefore, the overall energy efficiency can be increased and the fuel consumption
decreased [1,2].

Conventional battery models use equivalent circuit models (ECM) to estimate the voltage
by modeling the electrochemical processes that take place in a battery during discharging or
charging. Such models are very accurate, but require significant modeling effort. Knowledge about

Appl. Sci. 2020, 10, 7880; doi:10.3390/app10217880 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/21/7880?type=check_update&version=1
http://dx.doi.org/10.3390/app10217880
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7880 20f15

internal battery processes and their impact on the voltage behavior is necessary to conduct
proper measurements and parameterize RC circuits appropriately. Measurement methods such as
electrochemical impedance spectroscopy have to be carried out with accurately calibrated and precisely
adjusted equipment. The experimental data then must be processed mathematically to obtain the
modeling parameters. An online prediction of the terminal voltage was presented by Ranjbar et al. [3].
Chiang et al. used ECM as an input for their SOC estimation [4]. Madani et al. showed the applicability
of ECM to LTO batteries [5].

Interest in modeling battery behavior using machine learning (ML) algorithms has recently been
increasing. This trend has been enabled by an increase in both CPU and GPU power, whereby research
activity is expected to increase dramatically in the field of ML. Most ML models in this area cover the
field of SOC prediction, through the use of fuzzy logic [6], neural networks (NNs) [7], deep NN [8],
LSTM cells [9,10] and gated recurrent units (GRUs) [11,12]. Huang et al. [13] presented an approach on
convolutional GRU. Vidal et al. [14] presented a comparison of SOC models based on FNN, RNN and
Kalman filter models. Their comparison showed that RNNs deliver better results than FNN and similar
results as models with Kalman filters. Extended Kalman filters [15] and cascaded Kalman filters [16]
indicate improvements for models with Kalman filters. The battery state of health (SOH) is highly
nonlinear and therefore ML is an appropriate approach. You et al. [17] modeled the SOH with an FNN,
Chaoui et al. implemented an RNN [18] and Zhang et al. [19] used an LSTM.

Some ML methods also use approaches to model the voltage behavior with acceptable accuracy.
These approaches face the same problems as conventional ECMs, as auxiliaries such as the SOC or
coulomb counters are a mandatory input [3,20]. The proposed method uses only measurable physical
parameters as input, in order to estimate the battery voltage. This has the advantage of easier adaption
to other cell chemistries, causing fewer errors due to upstream inaccuracies.

The theory of dense, dropout and LSTM layers are described in Section 2. Section 3 outlines the
methods for pre-processing the raw data to input data. Section 4 presents the model architecture and
the associated training process. Thereafter, Section 5 validates the resulting model with separate data.
Our conclusion is drawn in Section 6.

2. Theory of RNN Utilization in Battery Models

The voltage of a battery largely depends on previous loads and, thus, it is advisable to use
a recurrent neural network (RNN) to model the behavior of a battery.

2.1. Dense Layer

Dense layers are fully connected feed-forward neural network (FFNN) layers, which are often
used to fit linear problems. They are also able to fit non-linear behavior through the use of non-linear
activation functions (e.g., sigmoid). These characteristics enable them to be attached to RNNs such as
GRUs or LSTMs, in order to further process the abstract outputs resulting from the previous RNNSs.
Experiments have demonstrated the increase of performance when using one to three dense layers
after an RNN [21,22].

2.2. Dropout Layer

Dropout layers can be added to an NN to prevent overfitting and for better generalization.
Srivastava et al. [23] initially introduced dropout layers as a regularization technique. The aim is
to drop neurons randomly during every weight update process when training. These neurons are
ignored during weight tuning and backpropagation. As a consequence, the net becomes less sensitive
to the specific weights of neurons. The dropout rate defines the fraction of dropped neurons.

2.3. RNN

Unlike FFNNs, RNNs are capable of processing time-series data due to their structure (as shown in
Figure 1a). In an FENN, every neuron of a layer is connected only to the next layer, whereas the output
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of a neuron in an RNN can also be connected to neurons of the same or even past layers. This structure
provides a time-dependent memory, but can encounters difficulties involving long-term dependencies.
This is the reasoning behind the vanishing and exploding gradient problems, which arise when each
of the neural network’s weights receives an update proportional to the partial derivative of the loss
function with respect to the current weight. In some cases, the gradient can become infinitesimally
small, such that the weight is prevented from changing its value [22]. Figure 1 shows an exemplary
network architecture for an RNN. The output y; of the neurons can be calculated using the activation
function o, the hidden layer vector &, the corresponding matrices W and U and the bias vector b:

vt = o(Wyhy, +c) (1)
hi = o(Wyxt + Uyhy—1 +b) ()

h,, | \ {z, hyey / & " \h’I

tanh
‘ 7 %; h

Xy

(a) (b)

(c)
Figure 1. Recurrent neural network architecture structures: (a) RNN; (b) GRU; and (c) LSTM.

2.4. GRU

GRUs were first introduced by Cho et al. [24]. This structure, as seen in Figure 1b, is based
on the LSTM structure, but has one fewer output gates. The matrix calculations during fitting and
backpropagation can be computed faster, as there are fewer parameters in the system. GRUs are
potentially quicker to train, but less accurate than LSTMs. The hidden state vector, h;, is highly
dependent on the update gate z;, the previous hidden state vector /;_; and the candidate hidden
state vector ht The candidate for the hidden state vector ht is activated using a tanh function and
additionally calculated with the reset gate vector ;. The reset gate vector r; and the update gate vector
zt are calculated with the previous hidden state h;_; and the input vector x;. W and U describe the
corresponding matrices, b is the bias vector and ¢ is the activation functions:
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zt = Osig(Wexy + Uzhy 1 + bz) (3)
1t = Osig(Wrxy + Urhy—1 + by) (4)
It = Oy (Wixe + Uy (rely—1) + by) )
he = (1—z)h_1 + zihy. (6)

2.5. LSTM

Hochreiter et al. [25] proposed the long short-term memory (LSTM) cells in their thesis.
These neurons can prevent the vanishing gradient problem from occurring in an RNN. This approach
adds an additional status to each neuron. Figure 1c shows the structure of an LSTM network, compared
to an RNN and a GRU. The hidden state vector, k;, is highly dependent on the cell state C;. The cell
state enables the network to store information over a longer period of time without encountering
the vanishing gradient problem. The forget gate f;, the input gate i; and the previous cell state C;_;
have direct effects on the cell state C;. The forget gate is calculated with the previous hidden state,
the input vector and an activation function. The candidate for the updating gate C; has the same
inputs, but is activated with a tanh function. The input gate i; and the output gate o; are calculated
similarly to the forget gate. W and U describe the corresponding matrices, b is the bias vector and ¢ is
the activation function:

ft = Osig(Wexe + Ughy 1 + by) (7)
it = 0sig(Wixe + Uihy 1 + b;) ®)
0t = Osig(Woxs + Uohy_1 + by) 9
Ct = Opann(Wexy + Uchy_1 + be) (10)
¢t = fiep_1 +irC (11)
ht = 040 tann (ct). (12)

2.6. Classification of Battery Models

Battery voltage behavior models can be divided into the following categories:

¢ Analytical models

e Electrochemical models

e  Equivalent circuit models
e  Data-based models

Mathematical models describe the electric behavior of a battery cell in an analytical way.
Three main equations—the Sheperd, Nernst and Peukert equations—are applied in this approach.
These models are parameterized with test data, including input values for the SOC, voltage and current.
Consequently, a previous SOC estimation is obligatory and a temperature dependency is not included.
Physical-based models can achieve a high accuracy by modeling the dynamic behavior with equations
derived from physical and electrochemical laws. Therefore, it is necessary to solve a large number
of partial differential equations in real-time and, thus, they are typically excluded from industrial
applications. Common approaches use the Butler—Volmer equation [26] and can achieve high accuracy.

In the literature, ECM are widely discussed using RC circuits [27], in comparison to math models
[28] and various ECM [29]. Farmann et al. [30] showed the applicability of ECM for LTO application.
ECMs model the macroscopic effects of the electrochemical processes that occur in a battery cell during
charging and discharging. Voltage polarization arising from non-linear effects caused by diffusion,
charge transfer, and the electrochemical double layer is modeled using one or more RC circuits. A valid
SOC model is elementary for building an ECM. Furthermore, precise measurements have to be carried
out and the parameters must be fitted.
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Data-based models have emerged over the past few years as a promising approach for
modeling batteries, due to advancements in computational power and machine learning algorithms.
Fitting models to training data is computationally intensive, whereas predicting profiles with a trained
model is less so and, thus, capable of operating in real time. Training with large datasets allows us to
model effects that current battery knowledge cannot explain and to fit highly non-linear correlations
such as aging [31]. Furthermore, no expert battery knowledge is necessary to model the behavior.

This paper investigates the use of ML algorithms to detect the battery behavior. Therefore,
only physically measured parameters are used for fitting and, hence, no state variables, such as
SOC or state-of-power (SOP), are needed. This ensures the ease of implementation of the training
algorithm, as well as high accuracy. Additional data often improve the accuracy but overfitting can be
effectively applied in some parameter areas, if the amount of data is lacking. Hence, every dataset
can be processed into a valid training dataset without a need for specifying the measured current or
voltage profiles.

3. Methodology for Data Pre-Processing

3.1. Complexity and Amount of Data

The data used to train the proposed model were obtained from measurements of testing
vehicles. These vehicles drive under customer-oriented conditions with regard to vehicle speed,
ambient temperature, driving characteristics and usage behavior. The logged data contain, inter alia,
the internally measured battery parameters of current, terminal voltage and temperature.

The battery is part of a 48 V mild-hybrid power supply system, which is subject to power profiles
resulting from the electrical machine, the DC/DC converter and the consumer. These batteries consist
of 20 lithium titanate (LTO) cells connected in series. Each cell has a nominal capacity of 10 Ah and
anominal voltage of 2.2 V. The battery current is limited to 350 A in the charge and discharge directions,
due to the application specifications. With a capacity of 10 Ah, the battery is deployed with C-rates up
to 35 °C. The operating temperature range is between —18 and 60 °C. The battery management system
(BMS) measures cell voltages, currents and temperatures, in order to provide data to the CAN bus of
the vehicle. The CAN bus signals recorded during real operations in test vehicles were used to train
and validate the model.

A raw data volume of over 200 million data points was the result of these measurements. To train
a model with machine learning algorithms, the raw data had to be pre-processed by the following
methods, in order to obtain a smaller dataframe with a better reproduction of the battery behavior.
Under- and oversampling were used to reduce the raw dataframe for training to 1,028,918 sequences.
The validation test set had a further 175,394 sequences, where the data were partly manually selected
and partly randomly chosen, in order to obtain a diverse validation set. The test procedure described
in Section 3.2 was carried out using a test set of 71,901 sequences, unlike the validation and training
sets, which were created from test bench measurements. In contrast to the data from the vehicle
measurements, the test measurements on the test bench were not randomly initialized and aimed
to cover a wide range of SOC, temperature and power, in order to demonstrate the performance of
the model.

Table 1 provides an overview of the mean, RMS and peak power, as well as the C-rates of the three
profiles for training, validation and testing. To obtain a model that is able to predict both the critical
areas and smoother sections, the profiles included high power and current phases up to 17 kW, as well
as battery regeneration phases. The battery temperature and power range was the same range the
battery would experience in a vehicle. This facilitates the usability of the model for vehicle applications.
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Table 1. Power, C-rate and temperature values for the three created datasets: training set, validation
set and test set.

Training Set  Validation Set  Test Set

Mean Power [W] —234.7 30.7 —64.4
RMS Power [W] 3.795 2.998 1.847
Peak Power [kW] 17.136 15.905 10.567
Mean C-Rate [1/h] —0.499 0.084 —0.100
RMS C-Rate [1/h] 8.410 6.679 4.073
Peak C-Rate [1/h] 38.440 35.740 23.068
Temp max [°C] 65 62 57
Temp min [°C] —-21 0 —-25

3.2. Preprocessing

3.2.1. Undersampling

There are two main issues with large datasets. First, the training time for one epoch becomes very
time-consuming. Second, the model may not learn adequately, due to an unequal data distribution
over the features. Considering this, the reduction of the amount of data and, thus, the training time
prompted us to use the method of undersampling input data for ML models. Balancing features were
selected to reduce over-represented data. The best predictions were made after balancing with these
balancing features:

U Ujpean: mean voltage in sequence

. Iinean: mean current in sequence

®  Tiean: mean temperature in sequence

e AU: difference between U(t) and U(t — 1)
e AI difference between I(¢) and I(t — 1)

The maximum value range of each feature n was detected and divided into m equal-sized value
ranges. The m x n bins were filled with data (i.e., to the bin limit) and excess data were cut off.
The bias elimination of over-represented feature subranges is an effect of undersampling as well
as oversampling.

3.2.2. Oversampling

After the undersampling process, the data were still not perfectly distributed over all feature
ranges due to a lack of data in some edge areas. Undersampling deeper than necessary would lead
to a lack of information to train the model. The oversampling algorithm employed for the proposed
model used underrepresented data points, added artificial noise to the features and appended the
result to the original dataset. The noise was chosen such that it had no noticeable influence on the
target value. This flexibility was due to the errors in the measured variables, which are present in the
data anyway, as well as due to the inertia of the features. A temperature change by a few Celsius has
little influence on the result but, in contrast to a simple duplication, it prevents over-representation of
the experimental data.

The noise range was set from —2 to 2 °C in 1 °C steps, such that every under-represented data
point was quintupled. The final data distribution can be seen in Figure 2. The current was almost
equally distributed, except in two areas. Very low and very high currents were still under-represented,
due to the fact that the system rarely operates in these areas. The range around zero current was
over-represented, which was due to some rest periods. Undersampling this area would lead to
an inability to perceive the open-circuit voltage (OCV). Due to warming in the battery during operation,
there were many more data for higher temperatures than for lower.
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Figure 2. Training data distribution of (a) temperature and (b) current after over- and undersampling.

3.2.3. Normalizing

The different ranges of the input features need to be normalized, in order to improve numerical
stability and to accelerate the training process. To avoid an oscillating or exploding loss with
non-normalized data, a very small learning rate needs to be applied. This is caused by a non-symmetric
cost function.

The feature with the largest range determines the learning rate. If the features are normalized,
each feature is in the same range, leading to a higher learning rate. This speeds up the training process.
A min-max scaler, as shown in Equation (13), was implemented for the proposed model, as it was
considered the most effective scaling method.

N X[:, i) — min(X[:, 1))

X[l = max(X[:,i]) — min(X[:,i])’ -

3.2.4. Sequentializing

Recurrent neural networks, such as GRUs or LSTMs, are built using sequence data as input.
The sequence length is the same length as the section on which the model can fit the behavior.
The lengths of sequences have a direct effect on the memory and speed necessary for computation.
Considering that battery effects are highly time-dependent, a long sequence length is desirable.
The internal effects of diffusion, charge transfer, electrochemical double layer and conductance have
different time dependencies. Time constants for modeling these effects range from milliseconds to
hours and are dependent on the SOC and temperature.

As a trade-off between computational cost and model accuracy, the sequence length was chosen
as 128 data points. Data were logged with a sampling rate of 10 Hz, which means that each sequence
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represents the last 12.8 s of recording. Sequentializing was performed with a shift of one-step, such that
no information was lost.

4. Battery Modeling and Rnn Hyperparameter Tuning

Selecting a smart input feature enables simple utilization in vehicle applications. The model
accuracy is highly dependent on the chosen hyperparameters and model architectures.

4.1. Feature Selection

Input feature selection has a significant influence on the convergence of ML models.
Battery voltage prediction models are often trained with the terminal current, battery temperature,
actual voltage and an indicator of the remaining capacity, such as the SOC or a similar charge counter.
Due to the computational cost and inaccuracy of SOC modeling, the proposed model was trained
without SOC as an input feature. To bypass the issue of modeling the SOC, some current integration
methods have been applied in the literature. The side effect of this is that either the initial SOC or some
extra information about the battery state must be known, such as whether the battery is fully charged
or fully discharged. This extra information and current integration over time provides a kind of SOC
to the net.

The operation strategy of a 48 V system in automotive applications pre-defines a volatile battery
operating area. With rarely stationary states, an adaptable model has to be designed. Therefore,
the input features of the model were selected as:

U Terminal current I;,

U Temperature T;,

. Terminal voltage U}, and
*  Voltage trend Uyepg.

Table 2 shows an exemplary sequence (with a sequence length of 10) for the target value Uy,
and the corresponding input features. The calculation of Uy, ; contains no new information, but,
as an input, it ensures faster and more precise convergence when training the model. The average
voltage over the last few steps provides information about which voltage level the battery is actually
operating at. Furthermore, when combined with the previous current and voltage, it can provide the
trend of overvoltage polarization. The current and temperature determine the overvoltage polarization
in the next step. When predicting more than one step at once, the Uy,,,,4 is recalculated every minute
by using the last sequence of predicted voltages. Use of the period of 60 s ensures that small errors
in voltage prediction are not fed directly to the next step as input. Updating Uy, in every iteration
could result in a drift of voltage and, therefore, an increasing error.

Table 2. Prediction scheme with sequence length of ten.

Step T I Ugena u
0 To Io  Umean(Up:Ug) Uy
1 T1 Il llmean(uozllg) ll1
2 Ty I Upean(Up:Ug) Uz
3 T3 Iz Umean(Uo:Ug) Us
4 Ty Iy Upean(Ug:Ug) Uy
5 Ts Is  Upean(Up:Ug) Us
6 Te Is  Umean(Up:Ug) Us
7 T; I Upean(Up:Ug) Uy
8 Ts I Upmean(Up:Ug) Usg
9 Tg I 9 ume,m (UO . Us) Upmd

The input feature set used provides all of the information needed for learning, whereby the
future voltages of a battery can be predicted. This approach has two advantages: First, explicit battery
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modeling knowledge from experts is not necessary to model the behavior. Feature selection and
hyperparameter tuning are implemented and can be adapted to any lithium-ion battery by simple data
preparation and model adjustments. Second, an online algorithm is provided which is applicable in
every condition during operation, with a short initializing time for the sequence length.

4.2. Training Progress

The input data obtained from the pre-processing steps were divided into batches, in order to
reduce the memory size required for each training iteration. An epoch is considered complete when
every batch has been processed once in an iteration. Figure 3a shows the loss and Figure 3b shows the
validation loss over the trained epochs. As the loss decreases steadily, the model keeps on learning the
input data inter-relations. Overfitting is indicated by an increasing validation loss beyond Epoch 60.
The loss metrics of the test set had their lowest point in Epoch 35.

Loss

0.006

0.004 4

loss

0.002

0.000 -

T T
0 20 40 60 80 100
Number of Epochs

@)

Validation loss

0.0020

0.0015 A

0.0010 A

val loss

0.0005

0.0000 A

T T
0 20 40 60 80 100
Number of Epochs

(b)

Figure 3. Training progress over training (a) and validation (b) sets.

4.3. Proposed Model Architecture

The input and output layers of the neural net were determined by the feature selection and
sequence length, as shown in Figure 4. This approach used four features with a sequence length of 128
and, thus, the input of the first layer was a 128 x 4 matrix for each time step. The output was simply
the predicted voltage for the next step.

Figure 5 demonstrates that the LSTM cells had better validation results, compared to those of the
RNN and GRU. From Epoch 30 onwards, the LSTM had lower MSE and performed slightly better
than the RNN, with regard to the mean max error. In addition, the training time per epoch was three
times faster when using the LSTM, compared to the RNN, and similar to that of the GRU. The hidden
layers were determined empirically as two LSTM layers with 128 neurons each and one attached
dense layer with 128 neurons. An additional dropout layer with a dropout rate of 0.2 was also used,
in order to deal with overfitting issues. The model hyperparameters shown in Table 3 were determined
empirically for the proposed models using a grid search algorithm.
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The model was trained on an NVIDIA RTX 2080 Ti GPU with 1350 MHz clock speed and 11 GB
RAM using the TensorFlow backend. Every model architecture was trained for at least 100 epochs,
where one epoch lasted about 60 s, depending on the number of layers and neurons. Full test validation

would be very time intensive and, thus, test validation was only performed after every fifth epoch
with the test set.

Table 3. Network hyperparameters.

Hyperparameter Value
Number of LSTM layers 2
Number of dense layers 1
Units per layer 128
Dropout rate 0.2
Learning rate 0.0002
Number of epochs 100
Batch size 1024
Optimizer Adam
Loss function MSE
Sequence length 128
Current Temperature Voltage Voltage Trend

LSTM Layer

() [ LSTM Layer

..
Output Layer
Voltage

Figure 4. Proposed model architecture.
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Figure 5. Training progress indicated by the MSE (a) and Mean Max Error (b) of GRU, LSTM and RNN
architectures, based on validation of the test set.

5. Validation Using Test Bench Measurements

A comparison between the model prediction and test bench measurements was carried out,
in order to validate the proposed model. The error was quantified by calculating the MAE and MSE,
as described in Equations (15) and (16), respectively. The error at each step, err(t), was calculated
using the ground truth gt(f) and the predicted values from the model pred, 4. (t). n describes the
number of steps.

err(t) = gt(t) - pmdmodel(t) (14)

waE - B ko] -
n 2

MsE = izl E |er(1)| . (16)

Unlike the training and validation datasets, the test set was measured on a test bench, where the
temperature and current were adjustable. This ensured that a wide range of power, SOC and
temperature could be tested. To achieve this, a current profile was recorded during a vehicle test
drive and adapted to the adjusted temperature and SOC to obtain the voltage boundaries of the
battery. Batteries display non-linear behavior in the SOC and voltage limit values, due to the
steepening OCV and rising internal resistances. Adapting the current profiles allows access to these
hard-to-predict areas, thus ensuring more exact validation. The test bench offers a measurement
setup with a climate chamber to condition the battery temperature, a power supply and electric load
to apply the current profiles and a computer to control the BMS and plot the data. Before starting
measurement, the batteries were first conditioned electrically to the requested state of charge by
completely discharging a fully charged battery. Thermal conditioning was then carried out for at least
12 h to ensure a fully tempered battery. Concatenated current profiles for the four temperature regions
are shown in Figure 6. The current is selected to meet the requirements of the test-bench and voltage
limits in consideration of temperature dependent overvoltages.
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Figure 6. Currents in test set at a temperatures of: —25 °C (a); 0 °C (b); 25 °C (c); and 50 °C (d).

Figure 7 presents a validation of the current profile applied at an average temperature of —23 °C
in low SOC regions. The validation had difficulties predicting these operation points. As Figure 7a
shows, the model was nevertheless capable of predicting the qualitative progression of the voltage
with an MSE of 1.18 V2. The prediction differed from the ground truth at high rates due to the gradient
of inner resistances in the battery cell increasing at lower temperatures. Figure 7b shows the maximum
error (of 3.9 V) occurring during a high current peak.

Voltages Error

—— prediction
50 { —— ground truth

48

46

voltage [V]
voltage [V]

42 1

T T T T T T T
0 100 200 300 400 500 600

(‘l 160 260 Umzﬂ'[[:] 460 560 660 time [s]
(a) (b)
Figure 7. Voltage (a) and error (b) validation result for a current profile at —23 °C and a SOC range
from 30% to 47%.

The better voltage prediction closer to room temperature is shown in Figure 8a. The maximum
error was less than 1.1 V with an MSE of 0.19 V? within this profile, as shown in Figure 8b.
Better predictions resulted from a less volatile voltage course and more resilient data availability.
This temperature-dependent error is similar to that occurring in common ECMs.

Three different current profiles were performed at different charge states for every temperature
region. The maximum and minimum current were restricted at —25 °C, such that the lower and upper
voltage barriers of 38 and 53 V were not exceeded. There was no current restriction at 25 °C, on account
of the lower inner resistance. The measured profiles were used as the input for the prediction, in order
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to obtain an equivalent input profile for validation. The model predicted current and temperature,
where the first 128 voltage values were used to calculate the initial Uyeg. Upreng was then updated
every 60 s and was calculated in consideration of the last 128 predicted voltage values.

Each adapted profile was evaluated individually, in order to determine the deficiencies of the
model. As regards the voltage level of 48 V, the overall maximum relative error is below 1% at all
conditions. The error metrics are summarized in Table 4.

Voltages Error
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Figure 8. Voltage (a) and error (b) validation result for a current profile at 27 °C and a SOC range from
84% to 89%.

Table 4. Validation errors of the test set profiles.

Profile MAE([V] MaxError[V] MSE[V?] Mean Temp [°C] Mean Voltage [V]

1 0.734785 2.963551 0.818735 —2.578630 44.894085
2 0.345099 1.590984 0.291348 —17.880545 45.090210
3 0.221103 1.251659 0.108364 —17.000000 47.619461
4 0.430389 2.482880 0.343608 —0.494065 43.953995
5 0.611864 2.738808 0.712661 1.473041 43.313877
6 0.308964 1.174629 0.162599 53.152065 43.104599
7 0.402310 1.196079 0.249962 56.111210 44.732620
8 0.339628 1.021107 0.187283 27.318338 47.641869
9 0.321065 1.027824 0.169096 29.902288 44.442562
10 0.498891 1.313484 0.403387 31.953856 42.876999
11 0.365947 1.216549 0.223687 48.910248 46.265839
12 0.678125 3.916935 1.175681 —23.398380 44.776375
Mean 0.438181 1.82454 0.403868 15.6225 44.8927

6. Conclusions

A novel battery modeling approach using an LSTM is proposed for a lithium-ion battery in
vehicle applications. The calculated Uy,,,; and the balanced input dataset give the possibility to
train a model without using the SOC and the included difficulties. Two steps were carried out to
achieve a valid model: First, the raw experimental data were pre-processed to obtain a useful input
vector. With under- and oversampling, redundant data were reduced and under-represented areas
were reproduced, respectively. Sequentializing and normalizing permitted adequate training. Second,
hyperparameter tuning was carried out during training, in order to find the optimal model architecture.
Validation showed that the model accuracy was within an appropriate range. The maximum error in
the validation set was below 1% (or 3.9 V) with an MSE of 0.40 V2 over a Temperature range from —23
to 56 °C and power up to 11 kW.

The proposed battery model can be used in real-time applications, as the model inputs are
physically measurable parameters. This ensures the possibility of simple and accurate implementation
in a BMS. Its accuracy and transferability to other battery types mean that the developed modeling
method can be used in a variety of mild-hybrid vehicles.

Future work may involve battery SOP estimation based on the proposed voltage prediction.
A more robust voltage prediction in the peripheral SOC areas must, thus, be trained.
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Abbreviations

The following abbreviations are used in this manuscript:

BMS Battery management system
ECM  Equivalent circuit models
EPMS Energy and power management system
FNN  Feedforward neural network
GRU  Gated recurrent unit

LIB Lithium-ion batteries

LSTM  Long short-term memory
LTO Lithium titanate

MAE  Mean absolute error

ML Machine learning

MSE Mean square error

NN Neural networks

OCV  Open-circuit voltage

RNN  Recurrent neural network
SOC State of charge

SOH State of health

sor State of power
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