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Abstract: Due to the large number of distribution transformers in the distribution grid, the status
of distribution transformers plays an important role in ensuring the safe and reliable operation of
the these grids. To evaluate the distribution transformer health, many assessment techniques have
been studied and developed. These tools will support the transformer operators in predicting the
status of the distribution transformer and responding effectively. This paper will review the literature
in the area, analyze the latest techniques as well as highlight the advantages and disadvantages of
current methodologies.
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1. Introduction

With the increase in peak demand and the need to improve grid infrastructure for the ease of
operation and management with high reliability, the distribution smart grid is one of the most important
elements to accelerate the modernization of the currently aging power system. The distribution grid is
also the area that is affected significantly by smart technologies [1]. Automating and controlling the
grid remotely will help reduce operating costs, increase information accuracy as well as quickly fix
faulty areas in the electricity power system [2].

The distribution transformer is the last component for voltage transformation in the power grid.
It is used to convert the medium voltage to the low voltage level that is used for households or
for commercial use. Distribution transformers are thus one of the most important components of
the distribution power system [3]. Moreover, for each HV/MV primary substation, there are tens
of secondary substations. As a result, in a medium-sized city with 40 HV/MV primary stations,
there is around one thousand distribution transformers. Many of them are damaged every year
due to various reasons. Accelerated degradation and failure of distribution transformers can occur
because of several conditions such as oil leakage, overloading, unbalanced loading and harmonics.
However, the majority of failures are caused by a combination of these electrical, mechanical and thermal
stresses acting upon the power transformer components over time [4]. Although the manufacturer
generally establishes design and operational limits, the impact on service life is non-binary and
multi-dimensional in nature. For example, exceeding a thermal limit to a moderate extent for a short
amount of time will not cause immediate failure, but more severe overloading for an extended period
will likely cause irreversible damage. If these impacts can be more fully characterized or impending
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issues can be detected in the field, it could help utilities reduce the rate of failures and degradation,
increase the reliability of electric service and reduce the cost of utility operations and maintenance.
Therefore, it is important to study and develop effective methods of monitoring the condition and
health of distribution transformers.

There are many papers available on these individual diagnostic techniques for distribution
transformers. However, a review of all these techniques is not available in recent times. In this paper,
a brief introduction of different monitoring methods for distribution transformers is outlined and the
different schemes based on different assessment methods is discussed. The main contributions of this
paper are described in the following:

- The paper provides a special review of modern monitoring distribution transformers methods.
A number of methodologies are presented, evaluated and discussed. The advantages and
disadvantages of using individual methods are presented.

- The paper investigates different thoughts regarding the appropriate parameters for different
online/real-time monitoring processes to evaluate the statement of distribution transformers.

- A number of failure modes are also discussed in this paper.

This paper has a practical value since it is a good reference work to help new transformer
operators to establish a strategy for transformers maintenance and replacement. The paper is
organized into the following sections: Section 2 covers distribution transformer failure modes and
investigates the components that are most critical to distribution transformer health. Section 3 reviews
the development of health assessment techniques. This section summarizes the advantages and
disadvantages of different evaluation methods including basic health index calculation methods,
fuzzy logic, machine learning algorithms and hybrid artificial intelligence approaches. Section 4
presents the advanced technologies for real-time transformer health assessment in smart distribution
grids and Section 5 presents our conclusions.

2. Distribution Transformer Failure Modes

Different investigations and test analyses have been conducted to identify the root causes and to
identify the preventive measures to avoid the breakdown of power transformers. In paper [4], the part
that is indicated as the most critical to power transformer health is insulation with an incident rate of
about 41%; then, components showing high failure rates are windings, 14%, bushings, 10%, and on-load
tap changers at about 10%. Other components such as the cooling system, core, and operational errors
do not have a significant impact. In papers [5–7], the statistical data of component failures are collected
from 350 power transformers to establish a three-level model of failure mechanism, failure linkages,
and failure modes. Even though power transformer and distribution transformer have the same main
working principles and key components such as insulation, windings, core, etc, these transformers differ
in complexity and size. In this Section, the author will reference failure modes that pertain to these
common working principles and components, investigate the reasons for distribution transformer failure
from literature to identify the components that are most critical to distribution transformer health.

Distribution transformers can be of two types: pole mounted and substation transformers. In each
of the two cases, according to the norm EN 60076, different construction features can be identified.
Some of these are more common for the first type, some for the second. In particular, insulation can
be either dry or oil-based. In the first case, insulation can be either oil-based, polymeric or air.
In the second, insulation is typically oil-based. The basic structure of a distribution transformer is
shown in Figure 1 [8–10].



Appl. Sci. 2020, 10, 8115 3 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 21 

 

Figure 1. Structure of a distribution transformer. 

From Figure 1, the main components of the distribution transformers are core, windings, tank, 

insulation and bushings. 

‐ Core: The transformer’s core is made of silicon steel. This core is used to transmit the power 

from the primary to the secondary coils of the transformer through electromagnetic induction. 

The core fails due to DC magnetization or displacement of the core steel during the construction 

of the transformer. The lamination of the core can also peel off and increase losses and heat due 

to eddy-current. 

‐ Windings: Windings are the conductors wrapped around the core limb. A transformer consists of 

a primary winding and one or more secondary windings connected via an electromagnetic field. 

Windings generate magnetomotive force that is carried by the core to other windings for 

changing voltages. The most frequent fail in windings is due to short-circuits or transient 

over-voltages. 

‐ Tank: The tank is the physical protection for the transformer core and windings as well as is an 

oil container for cooling the transformer. The failure of the transformer tank can occur 

anywhere due to oil leakage, insulation material loses insulation function, dents… Oil leakage 

leads to flashover and transformer breakdown. 

‐ Insulation: The insulation between windings in transformers is usually provided by transformer 

oil. Oil contamination due to the oxidation processes and increasing size of the colloidal 

particles can generate conducting particles, raise the temperature inside the transformer and 

finally damage the oil insulation. 

‐ Bushings: are used to provide insulation while routing the winding terminals through the tank 

for connection with the power system. The main failure mode of the bushing is short-circuit. It 

may be due to material faults in the insulation or due to damage. The damage can occur due to 

sabotage, during shipping or airborne parts from other failed equipment. Damages, cracks in 

the porcelain and bad gaskets provide ingress of water inside the insulation of the bushing 

leading to its failure. 

‐ Tap changer: is used to regulate the output voltage of a transformer by changing the number of 

turns in one winding. For distribution transformers, tap-changer cannot be changed while the 

transformer is energized, it can only be changed after isolating the transformer from the circuit 

[11]. Therefore, the damage caused by a tap-changer fault rarely happens. 

Based on the parameters used to evaluate the distribution transformer statement in the 

literature [12–21], the standard for overhead type distribution transformers [22] and investigation 

Figure 1. Structure of a distribution transformer.

From Figure 1, the main components of the distribution transformers are core, windings, tank,
insulation and bushings.

- Core: The transformer’s core is made of silicon steel. This core is used to transmit the power
from the primary to the secondary coils of the transformer through electromagnetic induction.
The core fails due to DC magnetization or displacement of the core steel during the construction
of the transformer. The lamination of the core can also peel off and increase losses and heat due
to eddy-current.

- Windings: Windings are the conductors wrapped around the core limb. A transformer
consists of a primary winding and one or more secondary windings connected via an
electromagnetic field. Windings generate magnetomotive force that is carried by the core
to other windings for changing voltages. The most frequent fail in windings is due to short-circuits
or transient over-voltages.

- Tank: The tank is the physical protection for the transformer core and windings as well as is an oil
container for cooling the transformer. The failure of the transformer tank can occur anywhere
due to oil leakage, insulation material loses insulation function, dents . . . Oil leakage leads to
flashover and transformer breakdown.

- Insulation: The insulation between windings in transformers is usually provided by transformer oil.
Oil contamination due to the oxidation processes and increasing size of the colloidal particles can
generate conducting particles, raise the temperature inside the transformer and finally damage
the oil insulation.

- Bushings: are used to provide insulation while routing the winding terminals through the tank
for connection with the power system. The main failure mode of the bushing is short-circuit.
It may be due to material faults in the insulation or due to damage. The damage can occur due
to sabotage, during shipping or airborne parts from other failed equipment. Damages, cracks in
the porcelain and bad gaskets provide ingress of water inside the insulation of the bushing leading
to its failure.

- Tap changer: is used to regulate the output voltage of a transformer by changing the number
of turns in one winding. For distribution transformers, tap-changer cannot be changed while
the transformer is energized, it can only be changed after isolating the transformer from the
circuit [11]. Therefore, the damage caused by a tap-changer fault rarely happens.
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Based on the parameters used to evaluate the distribution transformer statement in the
literature [12–21], the standard for overhead type distribution transformers [22] and investigation
data from distribution transformers supervisors in utilities, authors have broadly categorized the
component failures of service transformers, transformer failure rate and operation impact level as
in Table 1.

Table 1. Overhead distribution transformer failure modes.

Component Failure Category Failure Mode Frequency of
Occurence

Operation
Impact Level

1 Insulation

Chemical/Mechanical Water accumulation in the oil/paper

High HighChemical/Thermal Aging of oil/paper

Thermal Thermal degradation of oil/paper

2 Winding

Electrical/Mechanical

Short circuit between turns/strands

Medium High

Short-circuit to ground

Open circuit

Magnetic/Mechanical

Conductor tilting, conductor bending,
clamping system failure, axial instability,

and lead deformation

Winding bulk movement

Buckling

3 Bushing

Electrical/Mechanical Short circuit within capacitance graded
layers

Medium HighMechanical/Thermal Bushing thermal expansion

Mechanical Bushing failure due to porcelain damage

4 Tank Mechanical/Thermal Internal rupture
Low Low

Leakage

5 Core
Electrical/Mechanical

Multiple grounding

Low Low
Ungrounded core

Short circuit core laminations

Mechanical/Thermal Core deformation

6 Other Unknown causes Operational errors, lack of maintenance,
and protection system trips/failures Low N/A

All of the above measurement techniques must comply with the specified standards. The standards
and limits of various measurement techniques are given in Table 2. All these limits are derived from
IEEE and IEC standards [23–25].

Table 2. Measurement techniques and limit levels as per standards.

Measurement
Technique Standard

Limit Level for Distribution Voltage Class

Normal Suspect Poor

Hot spot temperature
(insulation class 150)

IEEE C57.91-1995, IEC
60076-7 <95 ◦C 95–105 ◦C >105 ◦C

Power factor IEC 60422 ≤0.1% 0.1–0.5% >0.5%

Voltage harmonic
distortion IEEE 519-2014 THD(Uf) ≤ 5% 5% >5%

Noise level (for
transformer of power 50

kVA)

IEC 60076-10 (2001),
IEEE C57.12.90 (2006) 39–42 dB 42–45 dB >45 dB

Humidity (saturation
percentage) IEEE 62-1995 0–20% 21–30% >30%

Turns ratio IEC 60076-3 2000,
IEEE C57.12.90 ≤0.1% ≥0.2% to ≤0.5% ≥0.5%

Winding resistance IEC 60076-3 2000 <1% ≥ 1% to ≤4% ≥5%

Core resistance IEC 60076-3 2000 ≥1000 MΩ ≥100 MΩ ≤10 MΩ

Short circuit impedance IEC 60076-5 2000 ≤1% 1% ≤ 2% ≥5%

Dissolved gas analysis IEEE C57-104-2008 0–1920 1920–4630 ≥4360

CO2/CO ratio test IEC 60599 1999 ≥3–10 ≤3 ≥10 and above

Dielectric Strength IEC 60422-2005 ≥50 kV/mm ≤50–40 kV/mm ≤40 kV/mm

Interfacial tension IEC 60422 ≥28 dyne/cm 28–22 dyne/cm ≤22 dyne/cm

Frequency domain
spectroscopy IEC 60422 2005 ≤2.2% (Dry) ≥2.2 and ≤4.8%

(Moderately wet) ≥4.8% Extremely wet
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From Table 1, it can be seen that various electrical, mechanical, chemical, and thermal modes of
failure may occur. These failure modes will generally produce symptoms that are electrical, mechanical,
chemical, or thermal.

3. Transformer Health Assessment Techniques

In order to provide information about the transformer’s state of health and detect incipient faults,
the monitoring system must perform physical measurements and analyze the results in the context of
given environmental conditions. Health Indices methods are practical tools to aggregate the results of
multiple operating observations, field inspections, and site and laboratory testing into a single objective
index that quantifies overall health [26,27]. They are important for asset management because they
help to identify, prioritize, and schedule required investments into capital and maintenance programs.
Effective methods of monitoring the condition and health of distribution transformers could help
utilities to proactively mitigate failures and degradation. The objectives of the monitoring process
are to:

- Determine the most appropriate measurement techniques to employ for low cost, accurate,
and in-situ health monitoring of distribution service transformers

- Synthesize or create methods of determining transformer health from these measurements as
well as contextual or environmental data as appropriate

- Implement the system for field validation. Algorithms will be implemented locally and/or
centrally (on a server) to measure and analyze the operational characteristics of distribution
service transformers and provide an overall health index encompassing the pertinent failure and
degradation modes

Significant deviations or rapid changes in this index or its factors could be used to predict
the need for maintenance, reconfiguration, upgrade, or replacement. Ultimately, this will improve
reliability and reduce the cost of electric service. It is particularly important with the advent of higher
penetrations of distributed PV, electric vehicles, and other energy resources that are rapidly changing
the operation of the grid and have the potential to introduce added stress to service transformers.
Several studies proposed various methods of establishing health indices for power transformers
from the available measurement techniques [28–31]. Many of these methods can be applied to
distribution transformers because the underlying working principles and key components are the same.
However, the prioritization and acceptable operation range of these measurements or conditions must
be carefully reassessed.

3.1. Health Index Calculation

Health index (HI) calculation is a useful technique, it is the most basic method that was used to
create maintenance strategies for transformers [32]. This method uses the representative indexes of
the transformer’s operation and statement to convert them into a quantitative index and evaluate the
general condition of the transformer. The structure of the health index calculation method is shown
in Figure 2.

In [32,33], a health index calculation method is applied to assess the distribution transformer
conditions comprehensively. The statement of the transformer is classified in a range from “perfect health”
to “very poor condition”. The overall health index is presented in the following equation:

HI =

n∑
ci=1

(S Pi.WPi)

Smax
n∑

ci=1
(W Pi)

(1)

where:
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• HI is the health index metric;
• SPi is the score of each assessment condition that is identified based on the measured data
• Smax is the maximum score of assessment condition
• WPi is the weight of each assessment condition;
• n is the number of the assessment condition.
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The method was tested on a 3-phase 15 kVA distribution transformer. The monitored components
are dissolved gases, oil, and furan. The results showed that this method could only diagnose the
general conditions of transformers. It cannot indicate exactly the type of possible faults. To identify
the failure components, additional analysis is required.

In [34], the data collection criterion was improved to estimate the transformer’s health. This paper
pointed out that the conventional health index calculation usually requires many investigation
parameters that could raise the testing and operating costs. The paper proposed an improved health
index table that requires only 15 testing parameters instead of 24 testing parameters in the conventional
health index calculation. The new health index table was carried out on thirteen testing transformers.
The achieved results were compared with the conventional health index calculation and only have
7% different. This will help the transformer evaluation process to be implemented faster and easier
to apply in practical works. The drawback of the health index calculation method is that it requires
many parameters to evaluate the transformer’s conditions, therefore, the monitoring may be costly.
The diagnostic system only reflects the preferences of the human-expert in interpreting results because
the set of rules derives from heuristic experience. In this way, it is difficult to translate them into
mathematical formulas.

3.2. Fuzzy Logic

To overcome the limitations of the health index calculation method, fuzzy logic has been proposed
as a suitable approach. Fuzzy logic is supposed to be used for representing vague concepts and
uncertain information, especially in cases in which conventional logic techniques couldn’t be applied
effectively [35,36]. The structure of a complete fuzzy control system includes three steps: fuzzification,
inference and defuzzification. At the first step, fuzzification calculates fuzzy values from exact values
at the input. The fuzzy inference applies all applicable fuzzy rules to calculate the fuzzy value for
the output. The defuzzification determines the exact output value from the fuzzy result obtained in
the fuzzy inference step [37]. The basic structure of fuzzy control system is shown in Figure 3.
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Figure 3. The basic structure of the fuzzy control system.

In recent years, the advantages of fuzzy logic and its related applications such as optimization,
decision making and diagnosis have been put into evidence. In diagnostic applications, fuzzy systems
are typically used. In [38], Fuzzy logic is applied to evaluate the possible effects of the health condition
on the oil-immersed transformer. The five considered health indices are dissolved gas analysis (DGA),
furans, load history, aging and humidity. The transformer’s statement is assessed based on three cascade
connection fuzzy subsystems including risk, maintenance and decision. This cascade model helps to
evaluate the probabilities of an error occurring and its corresponding consequences. The maintenance
subsystem model helps to estimate the level of the maintenance recommendations based on the output
of the risk model, health index and failure rate. The overall decision model outputs the level of required
maintenance actions. The proposed method is deployed on a 35 years-old transformer. The results show
the estimation of the date in which the transformer may need a maintenance action, and the required
actions to extend the transformer lifetime. Paper [39] uses a fuzzy knowledge-based expert system
to assess the transformer’s health. All the parameters can be analyzed individually. Because of the
variation in operational and the effect of many factors controlling the transformer variables, the policies
applied to manage transformers may differ even with the transformers that have the same rating and
calendar age. Due to the inexact information and the complexity of the asset management model.
The article pointed out that Fuzzy logic is an effective tool that can give a highly reliable assessment for
solving this kind of problem.

Fuzzy logic is also applied for analyzing transformer data in paper [40] to diagnose the transformer
faults. This method uses a multi-band infrared imager sensor and a discharge circuit detection sensor to
set up the eight sensors detection platform. The fault diagnosis model is given based on the consistency
of sensors and sensor’s trust degree. The fuzzy model with a multi-sensors system can help to get
accurate results and enhance the system operation. Through experiment and analysis, this fault
diagnosis model can improve the fusion precision and diagnostic accuracy more effectively than the
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general fusion algorithm and arithmetic mean value algorithm and can scientifically diagnose the
transformer equipment of power grid from multi-angles. Thereby, the feasibility and effectiveness of the
method are verified. In [41], fuzzy logic was applied to predict the health index values. In this article,
oil quality, furan and dissolved gas were used as assessment parameters. However, it is obvious
that this assessment method has some limitations, the scoring and ranking values still depend on the
opinion of operators in the utilities. The values of the health index will be inconsistent even if they use
the same equation because of using different weighting factors and scoring methods.

3.3. Machine Learning Algorithms

Normally, the transformer HI can be computed from a parameter by the creation of a relationship
rule and equation. To improve the accuracy and reliability, the HI needs to be determined from many
parameters that might be not related to each other and hard to calculate. Several papers presented the
method for predicting transformer health using artificial intelligence tools, such as machine learning
(ML) [42–44]. ML is the algorithm that improves automatically through experience. ML can teach
oneself and adapt non-linear mappings between input and output. Advanced ML techniques is used
to build surrogate models that can be put in an application as low computational-cost approximations
of more expensive calculations. All the ML-based HI methods need the database to learn the wanted
correlations and make predictions or decisions without being explicitly programmed to implement
the task. Transformer condition assessment programs using artificial intelligence algorithms may have
the potential to apply to inexpensive sensor systems which helps to keep the overall system cost and
complexity low. The basic structure of the machine learning method is shown in Figure 4.
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The most common algorithm of ML used for transformer diagnosis is Artificial Neural
Network (ANN). In [45], a four-layer ANN is utilized to evaluate the distribution transformer’s
health status. The ANN includes one input layer, one output layer, and two hidden layers. The data of
84 different patterns of distribution transformers was collected to train an artificial neural network.
The experimental test results of the proposed ANN are 97.62% matched to the results provided by
the utility. In [46], an ANN approach has been made to classify the condition of the transformer based
on the predicted HI value. The model was a feed-forward ANN with two hidden layers (four and
two neurons respectively) that was trained on real measurements of 59 working transformers. Based
on the testing outcomes, 97% of the testing samples were correctly classified based on a three-class
condition problem. It can be observed that ANN can provide a reliable result but this method requires
lots of data, especially for architectures with many layers. The same approach was also applied in
other related works [47,48].

The other powerful ML algorithms are random forest (RF) and support vector machine (SVM). RF
is an ensemble learning method for classification and regression. In the training time, RF constructs a
multitude of decision trees and then exports the class prediction [49]. The class prediction with the
higher number of votes is the model’s prediction of the individual trees. In [50], RF is used for fault
diagnosis applied to transformers because of its strong model generalization ability. RF can produce a
proximity matrix based on the similarity among patterns without preprocessing data. The model of the
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transformer’s fault diagnosis was compared with some experiments on real transformers. The results
show that the RF model has high accuracy and results are more stable than the other methods.
Meanwhile, SVM is a supervised learning model with associated learning algorithms. It is more
suitable for nonlinear problems with a small sampling. The SVM model represents the samples as
points in space, the samples of the separate groups are divided by a wide clear gap. The new samples
are mapped in the same space and its category will be predicted depending on the side of the gap
where they fall. For example, in a set of training samples, each sample is marked as belonging to one
or the other of two categories, the SVM model then assigns new samples to one category, making it a
non-probabilistic binary linear classifier [51].

The ML algorithms have huge potential in practical applications with many outstanding advantages.
There are still some remaining problems that need to be investigated such as how to deal with new
datasets to avoid overfitting problems or how to increase the accuracy for learning algorithms. One of the
weaknesses of the ANN approach is the tendency to find only a local minimum in its training due to
improper initial value. In this case, the optimization algorithms can be deployed to optimize the initial
value and thus increase the accuracy of the neural network training. More detail of this approach is
presented in Section 3.4.

3.4. Hybrid Artificial Intelligence Approaches

In recent years, the searching algorithms have been interested in by researchers to find the
best subset of features in the feature selection problems [32]. As mentioned above, the hybrid
artificial intelligence approaches that use optimization algorithms to support leaning algorithms can
overcome the weakness of single learning algorithms. Because the selection parameters of learning
algorithms has a significant impact on its own usefulness and classification performance. Therefore, it is
necessary to find the optimal value of these parameters to improve the accuracy of the prediction.
The optimization algorithm can support the health index computation methods and fuzzy logic as well
to optimize weighted parameters so the results for transformer health assessment will be more accurate.
Figure 5 presented a general structure of hybrid artificial intelligence model.
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The genetic algorithm (GA) is a good computational tool in seeking optimum and supporting for
multi-objective functions. It was the most advanced algorithm of artificial intelligence techniques and
was widely used to solve optimization problems. In [32], a hybrid algorithm of transformer health
index computation and GA is proposed. The health index of the transformer was identified based
on weighted parameters. The genetic algorithm was used to support the conventional health index
computation. It optimized these weighted parameters and then provided a better weight approach.
A smart system is utilized to online supervise distribution transformers. The system integrates
intelligent electronic devices to collect data from sensors that are installed on transformers. With the
inclusion of a communication network, the results of transformer health assessment is transferred to
the control room and cell phone of the transformer operator. In articles [52,53], the combination of
genetic algorithm (GA) and support vector machine (SVM) was also presented.

Particle swarm optimization (PSO) is another optimization algorithm which is commonly applied
in coordination with an artificial neural network. PSO can be utilized to problems which GA can
be utilized to. The combination of PSO and SVM is presented in article [42]. In order to obtain the
best classification model, the PSO was used to provide optimizing parameters for the SVM module.
The transformer statement was classified by groups: excellent, good, normal, attention and fault,
the fault statement was divided into five levels based on the temperature failure of overheating.
The results proved that the proposed method can improve the accuracy of transformer health evaluation.
The results showed the proposed method had the highest accuracy. Similar approaches can be found
in the articles [54,55].

A comparison between transformer health assessment methodologies based on the dependency
on the transformer monitoring parameters, number of samples, the accuracy, the complexity,
implement cost and computation effort is presented in Table 3.

Table 3. Transformer health assessment methodologies comparison.

Methods
Dependency

on the
Datasets

Dependency
on the

Weighted
Parameters

Number of
Samples
Required

Accuracy Complexity Implement
Cost

Computation
Effort

Health index
calculation

[33,34,56–60]

√
Small Low Low High High

Fuzzy logic
[38–41,61–63]

√
Small Low Low High Low

Artificial neural
networks effort

[45,46,64,65]

√
Large Good Low Low Low

Machine learning
algorithms using
Random Forest

[66,67]

√
Large Good Low Low Low

GA based health
index

determination [32]

√
Small Good High High High

Combination of
GA and support
vector machine

[52,53]

√
Large High High Low High

PSO and Support
Vector Machine

SVM [68]

√
Large High High Low High

Table 4 summarizes the above analysis highlighting the advantages and disadvantages of the
well-known approaches present in literature.
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Table 4. Advantages and disadvantages of transformer’s health assessment methodologies.

Method Advantages Disadvantages

1 Health index calculation
[33,34,56–60]

- Reliable
- Can work with small number of samples
- The weights can be regulated depending on the

assets under investigation

- The accuracy depends heavily on
weighted parameters

- The condition monitoring may costly and the
results only reflect the preferences of
the human-expert

- Low accuracy for the systems and devices are
controlled linguistically, or have a
contradictory condition

2 Fuzzy logic
[38–41,61–63]

- Reliable
- Easy to apply.
- Provides a more effective solution to

complex issues
- Easily be modified to improve or alter

system performance.
- Inexpensive sensors can be used which helps

you to keep the overall system cost and
complexity low.

- The accuracy depends heavily on
selected parameters.

- Validation and Verification of a fuzzy
knowledge-based system need extensive
testing with hardware.

- Need advanced power electronic control units

3
Artificial neural
networks effort

[45,46,64,65]

- Reliable
- Ability to work with incomplete knowledge
- Less computational effort
- Fast

- Need lots of data, especially for architectures
with many layers

- When the difference between the training
samples and the fault samples is very large,
the reasoning used by ANN to conclude
is questionable, additional training data
were needed

- Results depend on training data
- Can not be applied to small sample data

4
Machine learning
algorithms using

Random Forest [66,67]

- Reliable
- Less computational effort
- Inexpensive sensors can be used which helps to

keep the overall system cost and
complexity low.

- Can estimate missing data and maintains
accuracy when large proportions of the data
are missing.

- Cannot be applied to small sample data
- When the difference between the training

samples and the fault samples is very large,
additional training data were needed.

- The accuracy depends on selected parameters
of learning algorithms and training data.

- Need advanced power electronic control units

5
Genetic algorithm (GA)

based health index
determination [32]

- Reliable
- Support for multi-objective functions.
- It is a powerful computational tool in seeking

optimum and also considered the most
up-to-date product of artificial
intelligence techniques.

- It can get the best result by continuously
replacing the current population with the
new population.

- It always takes a long time-period.
- Not applicable to problems with too

many variables
- It might not find the most optimal solution to

the defined problem in all cases.

6

Combination of genetic
algorithm (GA) and

support vector machine
(SVM) [52,53]

- Very useful for many diverse searching and
optimization fields and achieved
good progress.

- Has a better global view of searching space and
scalability and can avoid local optimal
solutions due to effective exploitation and
exploration searching.

- Excellent performance on small samples,
high dimension and nonlinear problems.

- It can classify and predict unseen samples with
the desired accuracy.

- High-diagnostic accuracy

- Not suitable for large and unclear data set.
- It is very difficult to select appropriate SVM

parameters. Because the selection of SVM
parameters has an important influence on the
classification accuracy of SVM.

- Over-fitting or under-fitting can occur during
the SVM process.

7

Particle swarm
optimization (PSO) and
Support Vector Machine

SVM [68]

- It has a better solution of the small sample,
nonlinear, high dimension case of classification,
and has strong generalization ability.

- Can be able to find the optimal value of the
global and can be improved to the global
optimal value faster.

- Requires fewer parameters, and has the
advantages of rapid convergence.

- The parameters selection has a significant
impact on its own usefulness,
and classification performance.

- The method is vulnerable to the shortcomings
of a local minimum.

- Cannot work with scattering problems.

It is necessary to consider the dependency of the studied methods on the load condition,
temperature and the effect of transformer aging over time. It is investigated that the root causes of these
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failures on distribution transformers are mainly due to the overloading and unbalanced loading [69,70].
The transformer loading effects directly on the current in the winding and hence, raise the temperature in
the winding and the oil of the transformer which results in accelerating the transformer aging, reduce the
service life of the distribution transformers [71,72]. This represents the relationship bound tightly
between transformer loading parameters, transformer’s temperature and aging to the distribution
transformer health. To the best of our knowledge, there is no limit to include the parameters into the
studied model. However, in the studies that were implemented to assess distribution transformer health,
transformer loading and transformer temperature (winding temperature, top oil temperature, etc.)
are usually selected as the most important parameters determining the transformer health [73].
The transformer aging index is also an important parameter, but this parameter can only be calculated
through other parameters [74]. The estimation of transformer aging parameters is complex and
non-deterministic because the heat transfer process is distributed over different surfaces in the winding
and insulation structures and there may be measurement errors. It requires a high-quality sensor to
provide high accuracy data. Transformer aging is normally included in the evaluation models that
use Health index calculation or Fuzzy logic [38] methodologies. Artificial intelligence approaches are
often applied based on actual measurement parameters to enhance accuracy. Further research will be
investigated in the future to evaluate the importance of the indicators on the distribution transformer,
thereby improving the accuracy and reliability of the assessment models.

4. Advanced Technologies for Real-Time Monitoring Transformer Condition in a Smart
Distribution Grid

Due to some economic aspects, the online condition monitoring system has not been directly
implemented in distribution transformers in past times [75,76]. However, with the new generation
of the smart distribution grid, the internet of things (IoT), cloud computing, and advanced metering
infrastructure are often combined in the electric power systems. This complex system can gather huge data
and information, assisted by an array of new approaches, technologies and applications. The real-time
data collection, transmission, data access, and rapid analysis of huge amounts of multivariate data
are becoming the basis for sustaining the reliable operation of power systems. The development of
these advanced technologies aims to optimize the operation of the distribution network, simplify the
distribution transformer monitoring process but still ensure high accuracy. While the Internet of Things
can help to track, monitor and manage electric equipment through connecting with the internet for
information exchange, improve the communication platform of the smart grid. Cloud computing
provides a solution to store huge amounts of data and process heavy computational work for transformer
monitoring activities of the distribution grid. Many research studies have been implemented to take
advantage of this smart management system.

Because distribution transformers are critical assets and the load of a distribution transformer is
governed by the end-user, which therefore makes it an uncontrollable load [58,65], further uncertainty
comes from PV integration at the distribution level as well as EV recharging facilities. Thus extensive
and continuous monitoring is required. Most conventional diagnosis methods for distribution
transformers were traditionally carried out off-line when the transformer was taken out of service.
With the development of the information technology and smart sensors devices, the reliability of the
transformer status assessment system can be carried out on line. The monitoring process is carried
out online, in real-time, and thus the accuracy of the condition analysis for the transformer can be
greatly improved. Real-time monitoring of transformers can help to find out the potential risks of
failure for distribution transformers. For this reason, further analysis can be implemented to identify
the development trend of the risks easily and help giving necessary decisions in time in order to avoid
unexpected and catastrophic equipment shut-downs. Monitoring data is also stored on the cloud
system and analyzed to assist in making decisions on the replacement and maintenance of distribution
transformers in the future.
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In [77], an online transformer health monitoring system is proposed by using the global
mobile service (GSM). A mobile-embedded system including a single-chip microcontroller and
sensors is designed to monitor load currents, over-voltage, transformer oil level and oil temperature.
If there is any abnormality in the system, the GSM module will send short message service (SMS)
messages to designated mobile telephones containing information about the abnormality. After the
fault clearing, the total system again starts to monitor the condition of the transformer. As it is a
wireless communicating system, there is no need for high-cost large cables. In paper [78], GSM is
also used to monitor distribution transformers’ parameters such as current, temperature, oil level,
vibration and humidity in every fifteen seconds. The monitoring process is implemented pretty the
same with the described system in [79]. The microcontroller is the core of RTU that collects data from
sensors nearby the transformer and sends data to monitoring nodes via GSM/GPRS module. GPRS has
high efficiency, convenience and low cost and provides a good solution to meet the need of distribution
transformer monitoring systems. Figure 6 presents the general flowchart of the monitoring systems.

The investment cost of a distribution transformer is much lower than that of a power transformer.
In order to get quality evaluation results, high-quality sensors are required. This means that the
monitoring system will be very expensive, not consistent with the actual ability of the utilities.
Therefore, the corresponding monitoring system for distribution transformers should be designed to
be acceptable. To save installation costs, the monitoring parameters are usually voltage, current or
ambient temperature that can get easily from electrical measurement systems. These parameters also
contribute significantly in identifying the potential risks of transformers in operation, thereby making
initial assessments of transformer status before making more thorough inspection decisions. Real-time
monitoring transformers using advanced metering infrastructure (AMI) is an effective low-cost solution
for managing smart transformers as well as smart grids. In [80], an AMI system is proposed to
supervise transformer operation under fire hazards. The main parts of the detection system are sensors,
valve systems and the control box. The control box will receive measured data from sensors and send
commands to control the system. This smart monitoring system not only provides fast fault detection
but also improves the overall health of transformers as well as the distribution system. In [81], the AMI
systems are used to collect data in real-time including transformer loading, transformer aging, estimated
ambient temperature, computed the hottest temperature from oil-immersed distribution transformers.
The gathering information can be used indirectly to determine the priority candidate transformer
for replacement before failure. The meter measurements can be utilized to develop temporally
high-resolution views of transformer loading indirectly to determine each operational transformer’s
aging acceleration. In [49,82], the papers provided a methodology that was used to predict the outage
and congestion for distribution transformers. This paper uses the hourly usage data collected from
Ameren Illinois’ AMI meters to determine distribution transformer outage, failure, and overload.
The proposed methodology not only detects and visualizes outage and congested areas in near real-time
but also detects transformers and distribution areas with a long history of outage and congestion.

More recently, portable systems allow diagnosing the dielectric part of many electrical apparatus
including oil-insulated transformers [82–84]. The portable system uses a sensor which is a special
wideband antenna. It allows to detect both partial discharges pulses and the signal of AC supply
voltage remotely from the tested component; in this way, the need for direct connection or component
turn-off is avoided.

Table 5 compares the considered monitoring parameters, the advantages and disadvantages of
real-time monitoring techniques in the literature.

It can be seen that the advanced techniques are good solutions and have the potential to provide a
low-cost health assessment system based on existing sensors, energy monitoring meters and the existing
communication networks. These solutions can support utilities to monitor distribution transformers
continuously and set up suitable transformer management strategies. However, low-cost does
not directly translate into a short lifetime or lack of robustness. A good design practice may
achieve higher quality and lifetime from lower-cost components (e.g., design for manufacturability,
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good weatherization, good thermal design, etc.). Point out the distinction between number and cost of
power and distribution transformers: power transformers more expensive but fewer of them.
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Table 5. Literature comparison.

Monitoring Techniques Monitoring Parameters Advantage Disadvantage

1
Health condition monitoring

using IoT (GSM/GPRS)
[78,79]

1. Current
2. Voltage
3. Oil level
4. Oil temperature

Reliable
Low cost
Time resolution: 1 min

Need to add sensors on
transformers: Oil level indicator

2
Online condition monitoring

system for substation and
service transformer [85]

1.Age
2. Loading history
3. Inspection and maintenance
4. Type of transformer
5. Location
6. Unbalanced voltage
7. Harmonic load current and
power factor
8. Efficiency deviation due to
internal fault
9. Winding temperature
10. Top oil temperature
11. Oil level

High accuracy
Low cost: 2% of transformer
cost (15 kVA three-phase)
Time resolution: 30 min

Need to add sensors:
Oil level indicator
Energy meter

3

Studies to Utilize Loading
Guides and ANN for

Oil-Immersed Distribution
Transformer Condition

Monitoring [65]

1. Three-phase loading values
(current);
2. Ambient temperature;
3. Calculated top
oil temperature
4. Calculated hot
spot temperature

Reliable
Low cost, only use Energy meter
Time resolution (1 h)
No need to add sensors

Further studies needed to
improve the precision

4

A real time study on
condition monitoring of
distribution transformer

using thermal imager [86]

1. Thermal imager High accuracy
Time resolution (1 h) High initial cost

5
Remote Condition

Monitoring System using
public network [87]

1. Temperature
2. Oil level
3. Loading
4. Humming noise

Saving cost
Easy to extend to the other
monitoring parameters

The accuracy will have
significant changes when some
imbalance occurs in the
mechanical forces
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Table 5. Cont.

Monitoring Techniques Monitoring Parameters Advantage Disadvantage

6

Online distribution service
transformer health

assessment using real-time
grid energy monitor [88]

1. Top oil temperature
2. Vibration
3. Transformer loading
4. Power factor

Reliable
Low cost, only use Energy meter
High time resolution (1 s)
No need to add sensors

Further studies needed to
improve the precision

7
Multi-source information

analysis (statistical data, text
mining) [89]

1. Voltage deviation
2. Load rate
3. Unbalance factor
4. Harmonic voltage distortion

Higher accuracy
Low cost, only use Energy meter
Good time resolution (15 min)
No need to add sensors

Need conventional test data
(Unbalance and Harmonic
distortion)

8
Transformer Fault Diagnosis

based on Multi-source
Information Fusion [90]

1. DGA
2. SCADA real-time data
3. Special sensor real-time data
4. Related electrical test data
5. Operation and repair records

Very high accuracy
Can predicting the location,
type and property of
transformer faults.

Need to use many parameters
for information fusion methods
that they match to each other for
high accuracy and they need to
use many types of historical
transformer fault data.

9
Leveraging advanced

metering infrastructure
(AMI) [91]

1. Transformer loading
2. Transformer Aging
3. Estimated Ambient
temperature
4. Computed hottest
temperature

Comfortable for utility to
monitor and set up suitable
asset management plans.
Time resolution (1 h)

Need to install many of smart
meters that be installed at
customer locations for each of
distribution transformers

10 Advanced Metering
Infrastructure (AMI) [49]

1. Customer Information System
2. Transformer loading
3. Weather data

Can collect the loading data of
all areas.

Need to install many of smart
meters at customer side
Need to collect many
information from customer side

11

Smart Transformer
using Advanced

MeteringInfrastructure
(AMI) and Advance
SensorInfrastructure

(ASI) [80]

1. DGA
2. Temperature
3. ambient temperature
4. Real-time loading
5. Electrical parameters

Comfortable for utility to
monitor and set up suitable
asset management plans.

Need to install many of smart
meters that be installed at
customer locations for each of
distribution transformers

12 Wireless Partial Discharges
diagnosis [84] 1. Voltage pulses

Wireless
Small physical dimension
Portable
High accuracy
No sensors needed

Devoted to dielectric health only
Further studies needed to
improve the precision
concerning noise

The low-cost health assessment system is also relative to the cost of the considered transformer.
The US market for distribution transformers is currently standing at about 650,000–750,000 units
per year. The price of a distribution transformer ranges from $700 to $12,000, depending on order
quantity and kVA ratings [1]. Therefore, health assessment solutions for distribution transformers
must be lower cost but sophisticated and precise solutions may not be as important. Because the
number of distribution transformers in the electric power system is huge, any reasonably reliable health
assessment solution for distribution transformers may be helpful to reduce the cost of maintenance,
replacement, and outages—better than “nothing”.

5. Conclusions

The paper presented a study to determine the most significant influencing indicators on distribution
transformer operation and service life. The health assessment techniques were reviewed based on
up-to-date literature. This is to provide more information to transformer operators about the
important parameters of distribution transformers that need to be considered. This also gives the other
researchers an overview of the development process of transformer condition assessment technologies,
thereby continuing to develop new effective evaluation techniques.

Real-time monitoring has become a very important technology in the field of distribution
transformer maintenance and has attracted more and more attention worldwide, especially with high
penetration of PV systems in the distribution power grid. The potential functions of failure prediction,
defection identification, and life estimation bring a series of advantages for utility companies:
reducing maintenance cost, lengthening the transformer’s life, enhancing the safety of operators,
minimizing accidents and the severity of destruction, as well as improving power quality. Due to
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these benefits and the pressure utilizing the existing assets under a competitive environment,
real-time monitoring is now a hot topic to power system managers and engineers as well as researchers.

Research in recent years clearly shows that advanced signal processing techniques and
artificial intelligence techniques are indispensable in developing novel real-time monitoring systems.
Benefiting from the development of computer techniques and communication techniques, signal processing
and AI have become the most powerful tools to make next-generation real-time monitoring equipped
with high levels of sensitivity, reliability, intelligence, and cheapness.
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