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Abstract: Whether it is important components of a machine tool itself or various important components
processed by the machine tool, many vital quality characteristics mostly belong to the smaller-the-better
type. When the process quality levels of these quality characteristics do not attain to the criteria,
friction loss may increase during the machine operation, affecting not only the process precision
and accuracy but also the lifetime of the product. Therefore, this study applied a smaller-the-better
six-sigma quality index simultaneously demonstrating process quality level and process yield. Besides,
in coping with statistical process control data, a one-tail confidence-interval-based fuzzy testing
method was developed to evaluate process quality. Because this approach is built on the basis of
confidence intervals, it can reduce the possibility of misjudgment resulting from sampling errors as
well as integrate past experience to enhance the accuracy and precision of the assessment, and then it
can grasp the timeliness of improvement.

Keywords: fuzzy process quality evaluation model; smaller-the-better; six-sigma; process yield;
process quality

1. Introduction

Many studies on process technology and management have indicated that machine tools are
assembled from a large number of components mainly used to process a variety of machinery equipment.
Machine tools play a critical role in the entire machinery manufacturing industry, so that they are
called the “Mother of Machinery” [1,2]. Whether it is important components of a machine tool itself or
various important components processed by the machine tool, many important quality characteristics,
including roundness, concentricity and squareness of the shaft and the bearing, are mostly of the
smaller-the-better (STB) type. When the process quality levels of these quality characteristics are not
good enough, friction loss may increase during the machine operation, which will affect the precision
and accuracy of processing as well as the lifetime of the product.

Many statisticians and quality engineers have pointed out that Process Capability Indices (PCIs)
are used as a very common process quality evaluation and analysis tool in the manufacturing industry.
PCIs are not only a tool for selecting outsourcers but also a convenient and effective communication
tool for internal process engineers and quality control engineers, which can assist with handling
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various problems concerning process technology or quality arising in the production process of
products [3–8]. Furthermore, the scheme of six-sigma quality improvement initiated by Motorola
can assist corporations with their quality improvement as well as reduce the defect rate for their
products [9–12]. Therefore, the six-sigma quality improvement process contains significant implications
for industry and is widely applied to manufacturing, aiming to enhance product quality levels as well
as lower production defect rates [13–16].

Obviously, both Process Capability Indices and six-sigma quality levels are two significant tools in
industry. Many scholars have explored the correlation between process capability indices and six-sigma
quality levels [17–20]. Attempting to directly define quality level on the basis of an index value,
Chang et al. [21] proposed the STB six-sigma quality index to evaluate the process quality of badminton
racket handles. This STB six-sigma quality index can fully display the process quality level and the
process yield. Therefore, it aims to appraise the process quality levels for the abovementioned STB
quality characteristics, including roundness, concentricity and squareness of the shaft and the bearing.

Let random variable X represent the process distribution for the STB quality characteristics.
Assume that X is distributed as a normal distribution using mean µ and standard deviation σ, i.e.,
X~N

(
µ, σ2

)
. Therefore, the STB six-sigma quality index can be denoted as follows:

QISS =
USL− µ

σ
(1)

where USL stands for the upper specification limit. Obviously, the relationship between process yield
(yield%) and the value of quality index QISS is one-to-one, illustrated as follows:

yield% = p{X ≤ USL}
= p

{
Z ≤ USL−µ

σ

}
=

QISS∫
−∞

1
√

2π
× exp

{
−

z
2

}
dz

= Φ(QISS)

(2)

where Φ(·) refers to the cumulative function of standard normal distributions. According to Chang et al. [21],
when µ+ kσ=USL, it means the process quality level for the STB quality characteristic attains to the
quality level of k− sigma, that is

QISS =
USL− µ

σ
=

USL− (µ+ kσ)
σ

= k. (3)

Obviously, when the value of QISS equals k, the quality level is k− sigma, and the process yield is
Φ(k). For example, when QISS =3, the quality level is 3− sigma, and it is guaranteed that the process
yield will be 99.865%.

According to many studies, the statistical hypothesis test of process capability can be performed as
long as it is under statistical process control [22–25]. In an attempt to combine the verification of process
capability with the accumulated professional knowledge of a team, the confidence-interval-based fuzzy
testing method can be applied to evaluate the quality level during the manufacturing process [7,17,18,26].
Therefore, the upper confidence limit of quality index QISS is determined in Section 2. In Section 3,
a one-tail confidence-interval-based fuzzy testing method is proposed to evaluate whether the process
quality can meet the requirements of quality level. According to Chang et al. [21], since this approach
is built based on confidence intervals, it can reduce the risk of misjudgment resulting from sampling
errors. An empirical case is displayed in Section 4, aiming to show the applicability of the proposed
method. Finally, conclusions are made in Section 5.
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2. Upper Confidence Limit

In reality, process mean µ and process standard deviation σ are usually undetected. Therefore,
they must be estimated from subsamples taken when the process is thought to be in control [11].
As noted by Montgomery [23], when n > 10 or 12, a process mean and process standard deviation(
X − S

)
control chart is often used and effectively reduces the standard deviation as well as the error of

estimation. The estimation should usually be based on m subsamples, where m = 20 or 25. Firstly,
each subsample has n observations of the STB quality characteristic; also, m subsamples are available.
As a result, let Xh and S2

h respectively denote the subsample mean and subsample variance of the ith
subsample below:

Xh =
1
n

n∑
j=1

Xhj (4)

and

S2
h =

1
n− 1

n∑
j=1

(
Xhj −Xh

)2
. (5)

Let N (N = m× n) denote the total number of observations. We can use the overall sample mean
and the pooled sample variance, which are the unbiased estimators, as follows:

=
X =

1
m

m∑
h=1

Xh (6)

and

S2 =
1

m(n− 1)

m∑
h=1

(n− 1)S2
h =

1
m

m∑
h=1

S2
h. (7)

Therefore, the estimator of QISS can be shown as follows:

Q̂ISS =
USL−

=
X

S
. (8)

Under the assumption of normality, let

K =
m(n− 1)S2

σ2 =
m∑

h=1

(n− 1)S2
h

σ2 =
m∑

h=1

Kh (9)

where Kh represents the chi-square distribution with n− 1 degrees of freedom, and the characteristic
function of Kh is φKh(t)=(1− 2it)−(n−1)/2. Therefore, the characteristic function of K is

φK(t) = E
[
eitK

]
= E

[
eit

∑m
h Kh

]
= E

[∏m
h=1 eitKh

]
=

∏m
h=1 φkh

(t) =
∏m

h=1(1− 2it)−(n−1)/2

= (1− 2it)−m(n−1)/2
(10)

and the distribution of K is the chi-square distribution with m(n− 1) degrees of freedom (i.e., χ2
m(n−1)

).

Furthermore, the probability of K smaller than χ2
1−α/2,m(n−1)

is 1−α/2 and equivalent to

P

S
σ
≤

√√
χ2

1−α/2,m(n−1)

m(n− 1)

 = 1−
α
2

(11)
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where χ2
1−α/2,m(n−1)

is the lower 1−α/2 quantile of the chi-square distribution with m(n− 1) degrees of
freedom. Next, to obtain the upper confidence limit from quality index QISS, we let

Z =
√

mn×
[
QISS − Q̂ISS

(S
σ

)]
=
√

mn×


=
X − µ
σ

 (12)

then Z is distributed as a standardized normal distribution (i.e., Z~N(0, 1)). Therefore,

p
(√

N
(
QISS − Q̂ISS ×

S
σ

)
≤ Zα/2

)
= 1−

α
2

. (13)

Equivalently,

P
(
QISS ≤ Q̂ISS ×

S
σ
+

Zα/2
√

mn

)
= 1−

α
2

(14)

where Zα/2 is the upper α/2 quantile of the standardized distribution. Both event A and event B are
defined as follows:

A =

S
σ
≤

√√
χ2

1−α/2,m(n−1)

m(n− 1)

 (15)

and

B =

{
QISS ≤ Q̂ISS ×

S
σ
+

Zα/2
√

mn

}
. (16)

Obviously, the probability for both event A and event B is equal to 1−α/2. Let the complement of
event A and the complement of event B be displayed, respectively, as follows:

AC =

S
σ
>

√√
χ2

1−α/2,m(n−1)

m(n− 1)

 (17)

and

BC =

{
QISS > Q̂ISS ×

S
σ
+

Zα/2
√

mn

}
. (18)

Similarly, the probability for both event AC and event BC is equal to α/2. Based on Boole’s
inequality and DeMorgan’s theorem, we learn that P(A∩ B) ≥ 1−p

(
AC

)
−p

(
BC

)
and

P

QISS ≤ Q̂ISS ×
S
σ
+

Zα/2
√

mn
,

S
σ
≤

√√
χ2

1−α/2,m(n−1)

m(n− 1)

 ≥ 1− α. (19)

Obviously, when S/σ=
√
χ2

1−α/2,N−m/m(n− 1),

P

QISS ≤ Q̂ISS ×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn

 ≥ 1− α. (20)

Thus, the (1− α) × 100% upper confidence limit on quality index QISS is

UQISS = Q̂ISS×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn
. (21)
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3. Fuzzy Testing Method

The advantage of the confidence-interval-based fuzzy evaluation method is that the original
measurement method is used to collect data, which can improve the timeliness of data collection [27,28].
Next, the fuzzy number is constructed by means of the confidence interval, and then fuzzy evaluation
rules are proposed according to the fuzzy number to increase the accuracy of evaluation. On the basis
of this concept, this study directly used the measurement data of the control chart as the evaluation
data. First, let (xh,1, . . . ,xh, j, . . . ,xh,n) represent the observed values of (Xh,1, . . . ,Xh, j, . . . ,Xh,n) for h = 1,
. . . , m, and then observed values of Xh and Sh can be shown, respectively, as follows:

xh =
n∑

j=1

xhj (22)

and

sh =

√√√
1
n

n∑
j=1

(
xhj − xh

)2
. (23)

Therefore, the observed values of
=
X and S are

=
x =

1
m

m∑
h=1

xh (24)

and

s2 =
1
m

m∑
h=1

s2
h. (25)

Obviously, the observed value of UQISS can be denoted as follows:

UQISS0 = Q̂ISS0 ×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn
(26)

where Q̂ISS0 is the observed value of Q̂ISS as follows:

Q̂ISS0 =
USL− x

s
. (27)

Many studies have pointed out that a process capability evaluation is made based on the upper
confidence limit of the index. Then, the null hypothesis H0 is QISS ≥ k, and alternative hypothesis Ha is
QISS<k. The statistical testing rules can be expressed as follows [26,29]:

(1) If Q̂ISS0 ≥ k, then H0 is not rejected, and QISS ≥ k is concluded.
(2) If Q̂ISS0 < k, then H0 is rejected, and QISS < k is concluded.

According to the above two statistical testing rules and the method introduced by Chen [29],
a fuzzy testing method was developed on the basis of the upper confidence limit of the quality index.
As suggested by Chen [29], the α−cuts of the triangular fuzzy number QISS can be acquired below:

∼

Q̂ISS0[α] =


[
Q̂ISS0(1), Q̂ISS0(α)

]
, for 0.01 ≤ α ≤ 1[

Q̂ISS0(1), Q̂ISS0(0.01)
]
, for 0 ≤ α ≤ 0.01

(28)

UQISS0 = Q̂ISS0 ×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn
(29)
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where

Q̂ISS0(1) = Q̂ISS0 ×

√√
χ2

0.5,m(n−1)

m(n− 1)

Q̂ISS0(α) = Q̂ISS0 ×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn
.

Therefore, the half-triangular fuzzy number of QISS is
∼

Q̂ISS0 = (QIM, QIR), where

QIM = Q̂ISS0 ×

√√
χ2

0.5,m(n−1)

m(n− 1)
(30)

QIR = Q̂ISS0 ×

√√
χ2

0.995,m(n−1)

m(n− 1)
+

Z0.005
√

mn
. (31)

Therefore, the membership function of the fuzzy number Q is

η(x) =


0 i f x < QIM

1 i f x = QIM

α i f QIM < x < QIR

0 i f x ≥ QIR

(32)

where α is determined by

x = Q̂ISS0 ×

√√
χ2

1−α/2,m(n−1)

m(n− 1)
+

Zα/2
√

mn
.

In other words, when α = a, the corresponding value of x is x0, that is η(x0) = a. Therefore,

x0 = Q̂ISS0 ×

√√
χ2

1−a/2,m(n−1)

m(n− 1)
+

Za/2
√

mn
.

Figure 1 presents a schematic diagram of membership function η(x) with vertical line x = k.

Figure 1. Schematic diagram of Membership function η(x) with vertical line x = k.
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Let set AT be the area of the membership function η(x), then

AT =
{
(x,α)

∣∣∣QIM ≤ x ≤ QIR(α), 0 ≤ α ≤ 1
}
. (33)

As noted by Chen [29], we can calculate the double area of set AT as follows:

aT = 2×

QIR∫
QIM

η(x) dx. (34)

Let set AR be the area of the membership function η(x) on the right side of x = k, then

AR =
{
(x,α)

∣∣∣k ≤ x ≤ QIR(α), 0 ≤ α ≤ a
}

(35)

where η(k) = a, and we can calculate the double area of set AR as follows:

aR =

QIR∫
k

η(x) dx. (36)

Regarding the aR as the numerator and the aT as the denominator, Buckley [30] used aR/aT to
perform fuzzy tests. Chen et al. [17] and Chen [29] simplified Buckley’s method [30], replacing aR/aT

with dR/dT to perform fuzzy tests, where dR = QIR−k and dT = 2 × (QIR −QIM) can be expressed
as follows:

dR = Q̂ISS0 ×

√√
χ2

0.995,m(n−1)

m(n− 1)
+

Z0.005
√

mn
− k (37)

dT = 2× Q̂ISS0 ×


√√
χ2

0.995,m(n−1)

m(n− 1)
−

√√
χ2

0.5,m(n−1)

m(n− 1)

+ 2×
Z0.005
√

mn
. (38)

Obviously, when k < QIM, then dR/dT = 0.5. Besides, when k > QIR, then dR/dT = 0. The fuzzy
testing results in these two cases are consistent with statistical testing. When dR/dT ∈ (0, 0.5),
then it is necessary to apply the fuzzy method proposed by this study to the evaluation. First, let
0 < φ1 < φ2 < 0.5, where φ1 and φ2 can be determined by applying a previous data analysis or experts’
accumulated experience. Many researchers believe that this model is more reasonable in practice
than statistical testing [27–29]. Also, based on Chen et al. [17], the decision rules of fuzzy tests are
listed below:

(1) If dR/dT ≤ φ1, then reject H0, and conclude QISS < k.
(2) If φ1 ≤ dR/dT ≤ φ2, then do not make a decision on reject/not reject.
(3) If φ2 ≤ dR/dT ≤ 0.5, then do not reject H0, and conclude QISS ≥ k.

4. Case Study

In this section, this study takes the gear grinding process conducted by a mechanical processing
factory in central Taiwan as an example. Roundness is one of the important quality characteristics
of the gear grinding process; the requirement for process quality of USL = 0.01 µm must reach the
five-sigma (k = 5) quality level. Subsequently, this study used the fuzzy testing rules proposed in
Section 3 to appraise whether the process quality met the requirements of the five-sigma quality level.
Based on Section 3, the assumptions for performing fuzzy testing can be denoted as follows:

Null Hypothesis H0:QISS ≥ 5.
Alternative Hypothesis Ha:QISS < 5.
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Because the subsample size of the gear grinding process X − S control chart is n = 11, 20 sets
of subsample data (m = 20) were taken to perform fuzzy testing under the control of the statistical

process. Then, the observed values of
=
X and S were calculated separately below:

=
x =

1
20

20∑
h=1

xh = 0.0082

s =

√√√
1
20

20∑
h=1

s2
h = 0.00041.

Furthermore, the observed values of Q̂ISS and UQISS were calculated as follows:

Q̂ISS0 = USL−
=
x

s = 0.01−0.0082
0.00041 = 4.39

UQISS0 = Q̂ISS0 ×

√
χ2

0.995,200
200 + Z0.005

√
220

= 4.39×
√

255.26
200 + 2.576

√
220

= 5.13.

Based on Equations (30) and (31), we derived the observed values of QIM and QIR from the
following equations:

QIM = Q̂ISS0 ×

√
χ2

0.5,200
200 = 4.39×

√
199.33

200 = 4.38

QIR = Q̂ISS0 ×

√
χ2

0.995,200
200 +Z0.005

√
200

= 4.39×
√

255.26
200 + 2.576

√
220

= 5.13.

Consequently, the half-triangular fuzzy number of QISS was ˜̂QISS0=(4.38, 5.13), and the

membership function of the fuzzy number ˜̂QISS0 was

η(x) =


0 i f x < 4.38
1 i f x = 4.38
α i f 4.38 < x < 5.13
0 i f x ≥ 5.13

.

Figure 2 presents a diagram of Membership function η(x) with vertical line x = 5.

Figure 2. Membership function η(x) with vertical line x = 5.
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Obviously, according to the above statistical test rule (1), when the observed value UQISS0 = 5.13
≥5 (the required quality level is five-sigma), then H0 was not rejected, and QISS ≥5 was concluded.
In fact, Q̂ISS0 = 4.39 was much smaller than the five-sigma quality level. Next, based on Equations (37)
and (38), we calculated the value of dR and dT as follows:

dR = 4.39×

√
χ2

0.995,200

200
+

Z0.005
√

220
− 5 = 0.13

dT = 2× Q̂ISS0 ×


√

χ2
0.995,200

200 −

√
χ2

0.5,200
200

+ 2× Z0.005
√

220

= 2× 4.39×
(√

255.26
200 −

√
199.33

200

)
+ 2× 2.576

√
220

= 2× 4.39× 0.1314 + 2× 0.1736
= 1.50.

Therefore, dR/dT = 0.087. Take φ1 = 0.2 and φ2 = 0.4. Based on the decision rule (1) of fuzzy
testing, when dR/dT = 0.087<φ1, then reject H0 and conclude that QISS < 5. According to Chen et al. [17]
and Chen [29], the fuzzy testing method suggested by this study seems to be more reasonable than
statistical inference.

5. Conclusions

The STB quality characteristics are significant quality characteristics for many machined products.
Enhancing the process quality level of these quality characteristics will reduce friction loss during
machine operation in order to improve the precision, accuracy and product life of the processed
products. This study employed STB six-sigma quality indices and combined them with statistical
process control data, developing a one-tail confidence-interval-based fuzzy testing approach to appraise
process quality. Not only can the six-sigma quality indices simultaneously mirror the process quality
level but can also reveal the process yield. In addition, the fuzzy testing model offered by this study
was built on the basis of confidence intervals, so the model can reduce the possibility of misjudgment
due to sampling errors and enhance the accuracy and precision of the assessment according to the
accumulated data and past experience. This approach can help industry accurately grasp the timeliness
of improvement. Finally, an empirical case was adopted to demonstrate the application of the method
suggested by this study. From the case study, it was clearly seen that the fuzzy testing model presented
by this study seemed to be more reasonable than statistical inference.

Plenty of process quality evaluations are carried out using statistical process control data. For the
sake of timeliness, some are evaluated via simple random sampling. The method adopted by this study
belongs to the approach using statistical process control data. It is recommended that the proposed
corresponding fuzzy testing rules based on simple random sampling rules be used in the future.
In addition, the method suggested by this study can also be extended to process quality evaluations
and analyses of bilateral specifications.
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