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Abstract: Research on wall rock alteration is of great importance to the understanding and exploration
of ore deposits. The microscopic changes of the same mineral in different alteration zones can provide
information about the migration and enrichment of ore-forming elements. In this paper, a typical
profile of a high-grade iron ore body in Gongchangling iron deposit was investigated and sampled.
The samples were checked by polarized microscopy, and alterations zonation were delineated
according to the hydrothermal mineral assemblages and paragenesis. Moreover, hyperspectral images
of wall rocks from each alteration zone were obtained by Norsk Elektro Optikk (NEO) HySpex-320 m
imaging system. A customer Interactive Data Language (IDL) software package was used to process
the images, and spectral features were extracted from the selected samples. The results indicate that
spectral characteristics manifest obviously regular variations; i.e., from proximal to distal for the
high-grade iron ore body, the wavelengths at ca. 1200 nm of chlorite and garnet, which accounts for
most of the hydrothermal alteration minerals, become longer, and the absorption depths gradually
smaller. The spectral features at 1200 nm of chlorite and garnet are always caused by the crystal
field effect of Fe2+; therefore, the wavelength variations indicate the increase of Fe2+ and a reduced
environment, which can provide more detailed information about the metallogeny and water–rock
interaction. Since the hyperspectral features of the altered rocks can disclose unique mineralogical
and structural information, the conventional classification of alteration zonation should be combined
with the spectral feature, i.e., spectral alteration zonation, which is of great help to the understanding
of the forming conditions of wall rock alteration and also the high-grade iron ore bodies.

Keywords: hyperspectral; close range HySpex-320 m; spectral alteration zonation; wall rock alteration;
Gongchangling Iron Deposit

1. Introduction

Hydrothermal alteration is a common phenomenon in mineral deposits, which is of great
significance to the metallogenic stage analysis and mineral exploration [1]. The wall rock alterations
have zoning characteristics, where the mineral assemblage can be used to recognize the mineralization
characteristics and element migration rules [2]. In general, the scope of the alteration far exceeds the
size of the deposit, which reduces the scale of the exploration effectively [3]. Based on the observations
in the field, the different alteration mineral assemblages and the ACF-AKF (A = Al2O3 + Fe2O3 −

(Na2O + K2O), C = CaO, F = FeO + MgO + MnO, K = K2O) diagram, a limited number of alterations
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occurring in nature can be seen [4], which can be used to infer the physicochemical conditions of the
alteration reactions.

The traditional methods for identifying wall rock alterations include using a magnifying glass,
using a polarizing microscope, X-ray diffraction (XRD), electron probe microanalysis (EPMA),
whole rock geochemistry, etc. However, the composition always changes regularly in the same
mineral, which contains vital indications at the micro scale for the processes of alteration and
mineralization. In recent years, with the rapid development of analysis methods, some methods,
such as inductively coupled plasma mass spectrometry (ICP-MS), produce an energy spectrum that
can provide greatly accurate information about mineralogical composition, texture and polytype
information but they are known as expensive and time-consuming. Hyperspectral technology is
widely used in the geology field due to its advantages in indication at the micro scale for processes
of alteration and mineralization and for being non-destructive [5–9]. The wavelength positions of
spectral absorption features characterizes the differences of specific chemical bonds or special elements
in the altered minerals [10–12]. Karim Lenhard et al. performed calibration of instrument and
equipment errors in 2015 [13]. Magali Mathieu et al. applied HySpex SWIR-320 m to uranium ore
prospecting and exploration in 2017, which reduced working time and improved working accuracy
due to its high resolution [6]. Greenberger et al. obtained the hydrothermal mineralization model
and analyzed volcano and lakes on Mars, based on the HySpex image and continuous composition
data [14]. Graham et al. observed that clinochlore is related to white mica with a longer wavelength at
the scale of hand specimens and in the field, which is concerned with the mineralization of porphyry
copper [15]. If mineral species are determined [16], the spectral absorption depth is usually positively
related to mineral content [17–20]. Murphy et al. predicted the relative abundance of clay minerals by
absorption depth [21]. Dalm et al. calculated the degree of crystallization of alteration minerals in
hand specimens, used to identify the grade of minerals [22]. This method is also widely used to obtain
the alteration information in porphyry Cu–Au deposits, skarn-type deposits and non-metallic deposits
due to its characteristics of high resolution and effectivity [23–26].

The Gongchangling iron deposit—Algoma-type banded iron formations (BIFs)—has the most
high-grade iron ore in Anshan-Benxi area [27]. Previous studies have focused on the origins of
high-grade iron ore, and the major opinion accepted by most scholars is that the magnetite quartzite
is modified to form high-grade iron ore by a hydrothermal solution, accompanied by chlorite,
garnet and other altered minerals [28–31]. At present, the source of hydrothermal fluid is argued
as either hydrothermal from magma [32,33], or the metamorphic hydrothermal fluid in the regional
metamorphism process [34–37]. Anyway, there are hydrothermal (gas) altered rocks around the
high-grade iron ore. The altered rocks are vein or layer-like, and several meters to dozens of meters
thick [38], indicating that they are closely related to the genesis of high-grade iron ore [39,40]. In this
paper, the altered rocks near the high-grade iron ore in Gongchangling iron deposit were carefully
sampled according to their mineral compositions and field occurrence. The NEO HySpex-320 m
spectrometer was used to collect the hyperspectral images of the alteration rocks, and the spectral
information of minerals in each alteration zone were extracted. Finally, the concept of spectral
alteration zonation was proposed and discussed due to the unique information extracted from the
hyperspectral images.

2. Geological Settings and Sampling

2.1. Regional Geology

The Anshan-Benxi area is located in the northeastern margin of the North China Craton (NCC,
Figure 1) and is mainly composed of the Archean Anshan Group and the subordinate Paleoproterozoic
Liao-he Group, together with Paleozoic and Cenozoic strata, among which Anshan Group is the host
bed of Anshan-type iron mine [27,37]. The faults in this area are quite developed, and the north
northeast (NNE) Tanlu fault, and northeast (NE) Hanling fault have great influence on the geological



Appl. Sci. 2020, 10, 8369 3 of 16

structure in this area. Archean granite occurs widely in this region, accompanied by small plutons
of Mesozoic Yanshanian granites and diabases. Lots of large-scale iron deposits, such as Xianshan,
Donganshan, Yanqianshan, Yingtaoyuan, Hujiamiaozi, Gongchangling, Nanfen, Waitoushan and
Huanxiling, and many other medium-sized iron deposits, are scattered in the area [41–43]. All the
ore deposits are dominated by lean ore, while some of them contain high-grade iron ore bodies of
different sizes. The Gongchangling high-grade iron ore bodies, with great economic interest, are the
largest and the most typical ones in Anshan-Benxi area. The Gongchangling iron deposit lies in the
Archaean greenstone belt in Anshan-Benxi area and is tectonically located in the Anshan uplift [40,44].
Distributed from northwest to south east, the Gongchangling is comprised of number 1, number 2,
number 3 and the Dumu mining district (Figure 1) [29]; 138 high-grade iron ore bodies have been
proven in the mining area, among which the three largest in the number 2 mining area account for
0.4% of the total reserves.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 16 

Group is the host bed of Anshan-type iron mine [27,37]. The faults in this area are quite developed, 
and the north northeast (NNE) Tanlu fault, and northeast (NE) Hanling fault have great influence on 
the geological structure in this area. Archean granite occurs widely in this region, accompanied by 
small plutons of Mesozoic Yanshanian granites and diabases. Lots of large-scale iron deposits, such 
as Xianshan, Donganshan, Yanqianshan, Yingtaoyuan, Hujiamiaozi, Gongchangling, Nanfen, 
Waitoushan and Huanxiling, and many other medium-sized iron deposits, are scattered in the area 
[41–43]. All the ore deposits are dominated by lean ore, while some of them contain high-grade iron 
ore bodies of different sizes. The Gongchangling high-grade iron ore bodies, with great economic 
interest, are the largest and the most typical ones in Anshan-Benxi area. The Gongchangling iron 
deposit lies in the Archaean greenstone belt in Anshan-Benxi area and is tectonically located in the 
Anshan uplift [40,44]. Distributed from northwest to south east, the Gongchangling is comprised of 
number 1, number 2, number 3 and the Dumu mining district (Figure 1) [29]; 138 high-grade iron ore 
bodies have been proven in the mining area, among which the three largest in the number 2 mining 
area account for 0.4% of the total reserves. 

 
Figure 1. Geological map of the Anshan–Benxi area, Liaoning Province. Modified after [27,45]. 

2.2. Ore Deposit and Sampling 

The largest high-grade iron ore body RI in Gongchangling iron deposit (Figure 2): located in the 
sixth layer of iron ore, occurring in the strike fault, it accounts for 58.5% of total reserves of high-
grade iron ore. The length of the ore body is 2840 m along the strike, with elevation generally below 
−500 m. The occurrence of the ore body is roughly consistent with that of the lean ore. The samples 
used in this paper were taken near this high-grade iron ore body. 
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2.2. Ore Deposit and Sampling

The largest high-grade iron ore body RI in Gongchangling iron deposit (Figure 2): located in the
sixth layer of iron ore, occurring in the strike fault, it accounts for 58.5% of total reserves of high-grade
iron ore. The length of the ore body is 2840 m along the strike, with elevation generally below −500 m.
The occurrence of the ore body is roughly consistent with that of the lean ore. The samples used in this
paper were taken near this high-grade iron ore body.

In consideration of the influence of surface weathering, the mineral assemblage, the spatial
distribution pattern and the contact relationship between the high-grade iron ore and altered rocks,
a total of 9 samples were taken for further investigation (Figure 3). The cross-section of the sample was
cut into chips for HySpex imaging hyperspectral measurement, and the opposite side was used for
thin sections.
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Figure 3. Schematic diagram of profile sampling.
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3. Methods

3.1. Data Acquisition

The microscope used for thin sections was Leica DM4P polarizing microscope, Leica Biosystems
Nussloch GmbH in Heidelberger, Germany, mounted by a Leica DMC4500 digital camera. The main
tech specifications of the Leica DM4P are that it is a transmission polarized light+ reflected polarized
light+ fluorescence system microscope—5×, 10×, 20×, 50×, 63×—with a normal temperature polarized
light objective—10×, 25× eyepieces. It is equipped with Leica original DMC4500 (5 million physical
pixels) color digital CCD camera, and Leica Application Suite (LAS) measurement software.

The spectrometer used to obtain hyperspectral imaging data was HySpex, a Norwegian company
of NEO, in the Planetary Mineralogy and Spectroscopy Laboratory at the University of Hong Kong.
The system has a very high acquisition rate, and is mainly composed of a sensor, a central computer,
a measurement platform and a short-wave infrared (SWIR) sensor. It can simultaneously obtain imaging
hyperspectral data of 1000–2500 nm. The main technical parameters of the sensor are shown in Table 1.
Furthermore, the parameters to evaluate the performance of the spectrometer are spectral sample and
S/N. The spectral sampling interval of HySpex can reach 0–5 nm and the spatial resolution is as high as
0.3 × 0.3 mm [46], allowing obtaining the information for pure mineral per pixel. However, there was
still a distance of 0.5 m between the sample and the lens during testing, leading to the occurrence
of a little noise in the resulting data, which can be removed during spectral preprocessing [6,13,46].
A standard grey plate was imaged simultaneously in order to correct the digital number (DN) value
to reflectivity.

Table 1. Main technical parameters of HySpex imaging spectrometer.

Technical Specification SWIR-320m-e

spectral region 1000–2500 nm
Pixel space 620
Spectral channels 300
spectral resolution 6.5 nm
Spectral sampling bandwidth 6.25 nm
Number of wavelengths 256
Instantaneous field of view 20◦

3.2. The HySpex Data Processing

Since the data were taken from the laboratory, the distance between the camera lens and the target
object was very short, so the influence of the atmosphere could be ignored. However, chaotic noise
due to environmental interference and equipment defects still exists, resulting in a certain deviation.
Therefore, the collected spectral data had to be specially processed (Figure 4).

(1) Preprocessing: In order to minimize the influence of noise during imaging: Firstly, the hyperspectral
images were calibrated to reflectance through the following steps: (a) dark current subtraction, (b) flat
field correction, (c) correction for the absolute reflectance properties of Spectralon. Step a removed
instrument spatial and spectral non-uniformities, while steps b and c corrected for reflectance data. Then,
the Savizky–Golay filtering (SG) method [47,48] was selected to fit the data to improve the signal-to-noise
ratio (S/N) [49].

(2) Image processing: The SWIR hyperspectral images were processed using ENVI 4.7 processing
software. The mineral represented by each reference spectrum was determined by comparing
the spectrum with the SWIR spectral United States Geological Survey (USGS) spectral library [50].
A customer library was established for mineral identification.

(3) Mineral recognition: To address the dimensionality and separate the noise from the data
problem of hyperspectral data, a forward maximum noise fraction (MNF) transform was performed on
the image. The pixel purity index (PPI) of HySpex data was calculated, based on the data transformed
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by MNF, using PPI tools, to obtain the purest pixel of spectrum. We combined the n-D Visualizer
tool with results after MNF and PPI, used to localize, recognize and collect the purest pixel of data,
to obtain pure end member spectrum. Next came matching pixel and reference spectra in n-D angle,
using spectrum angle mapping (SAM), and judging the similarity of end member and reference spectra
by calculating the angle between them—the smaller the angle is, the higher the degree of matching
and similarity (Figure 4).

(4) Spectral parameter extraction: The feature minerals of chlorite and garnet in the alteration
map were masked to obtain the single thematic layer. The mineral map of hySpex data was
extracted from mineral spectral parameters (the absorption wavelength position and depth of samples)
by continuum-removal.
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An initial set of reference spectra by manually selecting some to represent the observed variability
in the measured SWIR hyperspectral images. As shown in Figure 5b, chlorite SMR-13 standard
spectrum in USGS spectrum library refers to when G 05 is a filter and spectral angle matching is
carried out. Among them, the most sensitive wavelength is located near 2250 nm. Figure 5a shows the
quartz spectral characteristics in the high-grade iron ore, which is slightly more weakly absorbing than
quartz HS32 in the standard spectrum, and the overall waveform is consistent. Namely, it is mainly
composed of water absorption characteristics of 1400 and 1900, and absorption characteristics of Fe
and Mg around 2250–2350 nm. Figure 5c refers to an arbitrary garnet short-wave infrared spectrum.
This mineral is different from chlorite and quartz, and the overall spectrum is relatively gentle. Note the
obvious absorption feature near 1200 nm, which probably resulted from the Fe2+ crystal field effect
of garnet.
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4. Results

4.1. Microscopic Mineral Identification and Alteration Zonation

The main minerals in this sampling cross-section were magnetite, chlorite and garnet, with a small
amount of quartz. The magnetite was black and massive. There were two types of magnetite, one of
which was fine grained and denser with high iron content, and the other coarse grained, euhedral and
with low content (Figure 6a,b). The main altered rocks closely related to the mineralization were
dark green, and were mainly composed of garnet and chlorite. From the high-grade iron ore to the
periphery, the garnet in the alteration wall rocks gradually decreases, while the chlorite increases.
According to the hydrothermal minerals and their paragenesis, the alteration types can be classified
into three categories, i.e., the proximal chlorite-garnetization, the transitional garnet-chloritization and
the distal chloritization (Figure 6).



Appl. Sci. 2020, 10, 8369 8 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 16 

Proximal to the high-grade iron ore body, G 05 is the chlorite–garnetite, and garnet accounts for 
more than 75%. It is stratiform and occurred in the top and bottom of the high-grade iron body. 
Garnet is broken, fleshy red, subhedral-anhedral and has no zoning structure. Quartz and magnetite 
are mostly scattered in the garnet. Chlorite is mainly disseminated around garnet or in the cracks. 
Chlorite is mostly dark green or yellowish green (Figure 6c). 

In transitional zone, G 06 is the garnetic chloritite, mainly composed of garnet, chlorite and a 
small amount of quartz and magnetite. The chlorite is greenish to dark green and accounts for more 
than 60% of total content of the rock. Usually the chlorite is scattered within garnet in the form of 
stockwork. The garnet is subhedral-anhedral, relatively small and grayish brown. In most cases, the 
content of garnet in this alteration zone is less than 30% (Figure 6d). 

G 07 belongs to the distal chloritite zone, and mainly consists of dark or emerald green chlorite 
(more than 75%) with a variable amount of garnet debris (less than 20%), whose grain size is too small 
to be recognized by naked eyes. Occasionally there occur small amounts of magnetite and quartz. 
Magnetite usually scatters in chlorite. As shown in red box in Figure 6e, some garnet is probably 
metasomatized into chlorite, especially at the boundary (Figure 6e,f).  

 

Figure 6. Photomicrographs showing the representative mineral assemblage and texture of iron ore 
and wall-rock from the Gongchangling number 2 mining area. (a) high-grade magnetite (Mag) under 

Figure 6. Photomicrographs showing the representative mineral assemblage and texture of iron ore
and wall-rock from the Gongchangling number 2 mining area. (a) high-grade magnetite (Mag) under a
reflected light microscope; (b) magnetite of large grain size (c) chlorite garnetite consisting of garnet
(Grt) and chlorite (Chl), showing porphyroblastic texture (plane-polarized light); (d) garnetic chloritite;
(e) and (f) chloritite.

Proximal to the high-grade iron ore body, G 05 is the chlorite–garnetite, and garnet accounts
for more than 75%. It is stratiform and occurred in the top and bottom of the high-grade iron body.
Garnet is broken, fleshy red, subhedral-anhedral and has no zoning structure. Quartz and magnetite
are mostly scattered in the garnet. Chlorite is mainly disseminated around garnet or in the cracks.
Chlorite is mostly dark green or yellowish green (Figure 6c).

In transitional zone, G 06 is the garnetic chloritite, mainly composed of garnet, chlorite and a small
amount of quartz and magnetite. The chlorite is greenish to dark green and accounts for more than
60% of total content of the rock. Usually the chlorite is scattered within garnet in the form of stockwork.



Appl. Sci. 2020, 10, 8369 9 of 16

The garnet is subhedral-anhedral, relatively small and grayish brown. In most cases, the content of
garnet in this alteration zone is less than 30% (Figure 6d).

G 07 belongs to the distal chloritite zone, and mainly consists of dark or emerald green chlorite
(more than 75%) with a variable amount of garnet debris (less than 20%), whose grain size is too small
to be recognized by naked eyes. Occasionally there occur small amounts of magnetite and quartz.
Magnetite usually scatters in chlorite. As shown in red box in Figure 6e, some garnet is probably
metasomatized into chlorite, especially at the boundary (Figure 6e,f).

4.2. Hyperspectral Mapping Alteration Minerals

Generally, the rock chips are larger than the thin sections, which means that the results of
hyperspectral mineral mapping can indicate the mineral types and their distributions at a larger
scale. Figure 7 illustrates that the results of hyperspectral mineral identification are in excellent
agreement with the overall mineral identification of the sample and microscopic identification. G 05,
G 06 and G 07 are altered surrounding rocks, and the following is a detailed description of the form of
alteration zoning.
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G 05, adjacent to the high-grade iron ore, is the altered wall rock and mainly contains garnet,
chlorite and magnetite, in which garnet accounts for about 75% and the chlorite accounts for about
20%. Chlorite grows around garnet and contains a few fine grains of quartz. The garnet grains are
relatively complete and are infilled slightly by chlorite. As shown in Figure 7, some small magnetite
grains are contained in garnet and show straight boundaries with garnet and chlorite.

G 06 mainly consisted of garnet and chlorite, in which garnets accounted for about 90% of the whole
sample; chlorite accounted for 10%. The distribution was concentrated for chlorite, while dispersed for



Appl. Sci. 2020, 10, 8369 10 of 16

garnet. The garnet always displayed cataclastic texture, and was infilled and replaced by chlorite as
veins. Compared to G 05, The content of chlorite increased obviously.

G 07 is mainly composed of chlorite, garnet and quartz, in which garnet accounts for about 40%,
chlorite accounts for about 30% and quartz accounts for about 30%. Disseminated chlorite grows
around garnet and infills cracks in garnet, and quartz veins filled the boundary between garnet and
chlorite. Garnet, including a few fine grains of magnetite, is infilled and replaced by chlorite and
quartz. It is worth noting that there is a quartz veinlet on the upper part, which is supposed to be the
late stage of alteration. The concentrating degree of garnets is decreasing from the proximal to distal
part of high-grade iron ore.

The spectrum results are consistent with the observation of hand specimens and results under a
microscope. The relative contents of garnet in the three samples are higher than the identification results
under microscope, possibly resulting from the loss of chlorite, a soft phyllosilicate, during rock chipping.

4.3. Mapping Spectral Features of Alteration Zonation

The mineral composition of altered surrounding rocks in the Gongchangling rich iron deposit is
relatively simple. In consideration of alteration classification scheme proposed by Meyer and Hemley [4],
combining the research habits of most domestic scholars, the alteration zonation was divided into the
most abundant minerals in the altered rock: i.e., a chlorite–garnet zone, a garnet–chlorite zone and a
chlorite zone.

There are many spectral parameters in the short-wave infrared spectrum, and the spectral
information such as wavelength position and absorption depth are most used at present. The wavelength
is usually sensitive to the chemical compositions of specific minerals, while the absorption depth is
often related to the mineral abundance. Based on the macroscopic zonation, the spectral parameters
of the extracted single mineral were analyzed to obtain more detailed characteristic information.
Since garnet and chlorite are closely related to the mineralization of high-grade iron ore, their spectral
features can provide subtle information on the physiochemical conditions of ore-forming processes.
Therefore, the spectral characteristics at ca. 1200 nm, which are considered to be caused by Fe2+ [51,52]
being shared by the two minerals, have been selected to characterize the intrinsic chemical and/or
structural variations of the specific minerals. To highlight the transformation regular, a threshold was
set, according to the spectral features at 1200 nm of chlorite and garnet, for the classifying spectrum.
The threshold was 20 nm for wavelength position, and 0.02 for absorption depth.

In the garnet-chlorization zone, the wavelength position of chlorite ranges from 1210.0 to 1230.0 nm
and 1250.0 to 1270.0 nm, and absorption depth from 0.02 to 0.06; as for garnet, the wavelength position
ranges from 1190.0 to 1210.0 nm and 1250.0 to 1270.0 nm, and absorption depth from 0.02 to 0.06, a very
small part of 0.06–0.08 (Figure 8). The overall spectral features can be summarized as “intermediate
wavelength of garnet–chlorite; intermediate depth of garnet–chlorite.”

In the chloritization zone, the wavelength position of chlorite ranges from 1250.0 to 1270.0 nm,
and absorption depth from 0.02 to 0.04; as for garnet, the wavelength position ranges from 1190.0 to
1210.0 nm and 1250.0 to 1270.0 nm, and absorption depth from 0.02 to 0.04 (Figure 8). In comparation
with those in the other two zones, the overall spectral features can be summarized as “longer wavelength
and small depth of chlorite.” Garnet’s concentration area can be seen as a little shallow spectrally, and the
scattered visible part of chlorite at the intersection of chlorite and garnet has greater absorption depth.
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5. Discussion

The features of the wall rock in Gongchangling high-grade iron ore were studied by systematic
sampling, observation under microscope and identification of HySpex hyperspectral images. Chlorite,
garnet and other silicates have regular evolutionary sequences in different geological environments.
In turn, the reaction sequences of typical minerals can be used as indicators of their geological
environmental formation to a large extent [53]. HySpex hyperspectral data show that the spectral
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parameters always changed regularly in the same mineral and in different alteration zones,
which contains vitally more accurate indication on the micro scale for processes of alteration and
mineralization. There is a gradual change between the altered rock and the ore-rich body, and the
spectral information is obviously zonal [11].

5.1. Spectral Parameters and Their Implications for Redox Conditions

In alteration wall rocks of Gongchangling high-grade iron ore, the changes of wavelength position
and absorption depth at ca. 1200 nm wavelength position represent the content Fe2+ in octahedron
lattice position for chlorite and dodecahedron lattice position for garnet. With the gradual increase
content of Fe2+, the wavelength position moves towards the short wavelength direction and the
absorption depth increases dependently [11,54–56].

The chlorite and garnet in alteration rocks of Gongchangling iron deposit were analyzed
emphatically. Fe2+ could result in a crystal field effect, due to the spin-allowed transition between
the Eg and T2g levels into which the D ground state splits in an octahedral field, which is the most
important factor for the spectroscopy [57]. In previous research, the absorption band, caused by
the crystal field effect and electron transition of Fe2+ at 1000–1200 nm, resulted from to the large
amount of Fe2+ in chlorite and other phyllosilicates [57]. The absorption peak wavelength position
moves towards the long wavelength direction with decreased content of Fe2+ [52,56]. The absorption
characteristic of Fe2+ at 1200 nm generally is sixth coordination divalent iron for chlorite, and eighth
coordination iron divalent for garnet [11]. If iron ion is located in a complete octahedral lattice
site, and only one spin allows transition, it will produce a characteristic band in the visible and
near-infrared region. However, when the octahedral position is distorted and the iron ion is in the
non-equivalent position, another characteristic transition will occur [57]. Therefore, the spectral features
of Fe2+ have been used to obtain information on the changes of mineral texture and implications for
mineralization environment.

From proximal ore bodies to the outer zones of wall rocks, the movement of wavelength position
towards the long wavelength direction and the decreases of absorption depth for chlorite and garnet
indicated a gradual decrease in the content of Fe2+, a change of water–rock interaction and a relatively
reductive environment of the formation for the whole altered rock. Additionally, it is implied that the
garnet’s formation environment is more reductive and higher in water–rock interactions in proximal
than distal ore bodies. That is consistent with the previous research; therefore, the content of Fe2+

revealed by HySpex spectrum can be vector of deposit exploration.

5.2. Spectral Alteration Zonation

Traditional zoning, based on mineral assemblage and a symbiotic relationship, has been widely
used to solve many problems. The spectral features can reveal some features of mineralogy more
deeply, so spectral alteration zonation is proposed. In this paper, the relative content changes
of chlorite and garnet are used as indicators for identifying minerals. Therefore, the alteration
information of Fe2+ in alteration rocks was extracted separately, and the spectral alteration zoning was
studied according to the microscopic alteration phenomenon, which is used as the micro prospecting
standard for the Gongchangling magnetite deposit. It is divided into three spectral alteration zones,
the shorter-wavelength zone, the transitional zone and the longer-wavelength zone.

The combination of traditional and spectral alteration zones can better indicate the regular change
of alteration rock during mineralization. In Gongchangling deposit, magnetite mineralization and wall
rock alterations are consistent in both time and space, and each are relatively reductive environments,
which was revealed by the HySpex spectrum data and results of traditional geological methods and is
in consistent with the previous studies, including fluid inclusions, whole rock geochemistry analysis
and rare earth trace elements analysis [27,29,36,40]. Hence, the alteration zonation results according to
the HySpex spectrum are credible.
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According to the real geological background, the shorter-wavelength zone corresponds to the
high-grade iron ore, while the longer-wavelength zone corresponds to distal alteration of the wall rock,
which is a visual indicator and estimates marking on the macroscopic scale for the HySpex spectrum.
It can not only indicate the existence of blind ore bodies, but also predict the locations of ore bodies
according to the types and characteristics of altered rocks.

6. Conclusions

Spectral alteration zoning proved to be a fast and effective method to indicate systematic changes
in data extracted from mineralogical maps. The same mineral composition changes to some degree,
and this method can easily identify the microscopic mineral differences between the alteration rocks
with the same or similar mineral assemblages. In this paper, the HySpex imaging hyperspectral data of
Gongchangling high-grade ore in Anshan-Benxi area were used for mineral identification and spectral
alteration zoning, and the following conclusions are drawn:

1. The microscopic observation and hyperspectral mineral identification indicate that the main
minerals in the altered rocks of Gongchangling high-grade ore are garnet, chlorite, quartz and magnetite.
According to the type, content and paragenesis of hydrothermal minerals, the alteration type can
be divided into three alteration zones: the chlorite–garnet zone, the garnet–chlorite zone and the
chlorite zone.

2. The wavelength positions of characteristic altered minerals in the altered wall rocks shift
significantly. The absorption depth of chlorite and garnet increases from proximal to distal to the
high-grade iron ore body. It is indicated that with the gradual decrease in the content of Fe2+, there is a
change in the water–rock interaction and the relatively reductive environment of the formation for
whole alteration rock. This rule can be used as an exploration rule of similar rich iron ore bodies in
the future.

3. Since the spectral features of some specific minerals can manifest special mineralogical,
compositional or crystal information, the convectional alteration zonation combined with the
hyperspectral features of particular minerals can provide more detailed metallogenetic information;
thus, the nomenclature of spectral alteration zonation is promoted in this paper. As for Gongchangling
high-grade iron ore, three spectral alteration zones were allocated, i.e., the proximal short-wavelength
large depth chlorite–garnet zone, the transitional garnet–chlorite zone and the distal long-wavelength
small depth of chlorite zone.

4. Using the regular changes of the spectral characteristics of Fe2+ at 1200 nm as the basis
for zonation, we proposed a new concept of spectral alteration zonation, which could obtain more
information concerning mineralization. The method of spectral alteration zoning mainly studies
information of altered minerals, such as texture, composition and crystal coordination, to reveal the
genesis of ore deposits, which is suitable not only for iron ore deposits but also for hydrothermal
deposits developed by other altered rocks.
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