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Featured Application: The results of this study have the potential for application in agriculture
for increasing the production of industrial hemp biomass and the yield of cannabinoids.

Abstract: In this study, the effects of seed treatments with different stressors, such as cold plasma (CP),
a vacuum and an electromagnetic field (EMF), on the in vitro germination of industrial hemp cv.
Futura 75 were compared with the effects on germination in the field, plant growth, and the amount
of major cannabinoids in the leaves and inflorescences of female plants. CP and EMF (but not
vacuum) treatments improved in vitro seed germination, but had no impact on germination in the
field. EMF treatment increased the weight of the above-ground part of male and female plants grown
for 4 months by 65–70% and the number of female inflorescences by 70%. CP stimulated the growth of
male plants (weight increased 1.4 times) but reduced the growth of female plants. Vacuum treatment
did not induce changes in the growth of female and male plants. Vacuum and EMF treatments did
not change the amount of cannabidiolic acid (CBDA), but CP decreased the CBDA content in hemp
leaves by 41%. Vacuum treatment increased the amount of CBDA in female plant inflorescences
by 26%. Thus, hemp seed treatment with EMF has a potential application for increasing the biomass
of female plants. CP treatment can be used to increase male plant production while vacuum treatment
can stimulate CBD production.

Keywords: cold plasma; cannabinoids; electromagnetic field; industrial hemp; seed germination;
growth; biomass production

1. Introduction

The improvement of crop agricultural performance and production yields without using chemicals
is one of the most important challenges in sustainable and organic agriculture [1,2]. Various pre-sowing
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seed treatments are being used to increase seed quality and to stimulate germination [3,4]. In this
respect, the effectiveness of physical stressors, such as low-temperature plasma (cold plasma (CP)) and
electromagnetic fields (EMFs), has been intensively explored in the last several decades, and numerous
studies concluded that such treatments can improve seed germination and enhance the production
yields of various crops (reviewed in [5–9]). The majority of studies in this field are focused on
germination. However, the importance of long-term observations has become clear by the much larger
effects obtained in plant growth and biomass production. For example, it was recently reported that
red clover seed treatment with CP and EMFs can increase the biomass by up to 40% [10].

Industrial hemp (Cannabis sativa) is a multi-use crop (e.g., fiber, food, pharmaceuticals,
and bioenergy production) of high economic value [11–13]. However, only a few short-term
studies [14–16] have been published on the effects of seed treatment with physical stressors on
industrial hemp until now. Significant environmental benefits of hemp that are relevant for sustainable
farming have been demonstrated, including the potential for soil phytoremediation, converting high
amounts of atmospheric CO2 into biomass, use in crop rotation, and the ability to suppress soil
pathogens and weeds (reviewed in [17]). In addition, hemp is valued for the synthesis of a wide
array of biologically active secondary metabolites (e.g., phytocannabinoids, terpenes, and phenolic
compounds) with pharmacological properties [18–20]. Cannabidiolic acid (CBDA) and cannabidiol
(CBD) are the most abundant phytocannabinoids in the majority of industrial hemp cultivars, but some
of them biosynthesize cannabigerol (CBG) as the main constituent [19]. Among other cannabinoids,
CBD, its precursor CBDA, and CBG are particularly valued as non-psychotropic substances with
numerous biological effects and potential therapeutic uses, due to their anticonvulsant, anti-spasmodic,
anxiolytic, anti-nausea, anti-rheumatoid arthritis, and neuroprotective properties [18,19].

Several studies reported earlier that pre-sowing seed treatment with CP and EMFs can stimulate
the synthesis of secondary metabolites in the leaves or roots of different plants [10,21–23]. Taking into
account the rapidly rising demand for hemp biomass and pharmacologically important hemp products,
we aimed to determine the effects of seed treatment with CP and EMFs on germination, biomass
production, and plant growth in the field, as well as on the content of CBD and CBDA in the leaves and
inflorescences of female hemp plants. We intended to verify the hypothesis that hemp seed treatments
can stimulate biomass production and CBDA (CBD) synthesis. Vacuum treatment was used as an
additional control for low pressure CP treatment. The obtained results showed that, although CP and
EMFs (but not the vacuum) stimulated hemp seed germination, EMFs strongly stimulated the growth
of female plants and CP stimulated the growth of male plants, whereas only the vacuum treatment
increased the amount of CBDA in female hemp inflorescences.

2. Materials and Methods

2.1. Plant Material

Seeds of the industrial hemp (Cannabis sativa) cultivar (cv.) Futura 75 were received from
the Endobiotech company. Seed quality was checked visually, and damaged seeds were removed;
thus, only undamaged seeds were used for experiments.

2.2. Seed Treatment with CP, Vacuum, and EMF

In order to determine the optimal duration for seed treatments, pilot experiments were performed
to test the effect on germination by using irradiation with cold plasma (CP) for 2, 5, and 7 min,
or treatment with radio frequency (RF) EMF for 5, 10, and 15 min. The optimal duration of treatments
for seed germination in vitro were 5 min for CP treatment and 15 min for EMF. These durations of
treatments were used in the study.

A schematic diagram of the experimental setup for seed treatments with RF EMFs and CP with a
device for optical emission spectroscopy (OES) analysis of the plasma species and measurement of the
discharge characteristics is presented in Figure 1.
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Figure 1. Schematic diagram of the experimental setup. 1 = RF generator, 2 = inductor, 3 = dielectric 
container with seeds, 4 = screen, 5 = commutator, 6 = vacuum chamber, 7 = powered electrode, 8 = 
lower electrode, 9 = Petri dish with seeds, 10 = measuring capacitor, 11 = window, 12 = oscilloscope, 
13 = voltage probe, 14 = lens, 15 = spectrometer, and 16 = computer. 

Seed treatment with radiofrequency (RF) EMF was carried out by placing the dielectric container 
with seeds in the three-turn, water-cooled coil of the RF generator operating at 5.28 MHz. The 
characteristics of the EMF strength components in the axial zone of the coil were as described 
previously [24]. The amplitude values of the magnetic and electric components were 835 A/m (B ≈ 1 
mT) and 17.96 kV/m, respectively. The treatment was performed in ambient air at atmospheric 
pressure and room temperature for 15 min (this treatment is abbreviated as EMF15). 

Low-pressure, capacitively coupled plasma was produced at a frequency of 5.28 MHz in a planar 
geometry reactor, consisting of two water-cooled copper electrodes (120 mm diameter) placed at a 
distance of 20 mm from each other in a stainless steel hermetic chamber. The RF voltage was applied 
to the upper electrode by the commutator (Figure 1). An open, sterile Petri dish with evenly dispersed 
seeds was placed on a grounded electrode. Seed treatment with CP was performed in open air at a 
pressure of 200 Pa, and the average value of the input power was 8.4 W (measured as described in 
[25]). The plasma parameters were as follows. The effective electron temperature Te ≈ 2.3 eV, and the 
electron density ne ≈ 5 × 108 cm−3. Before igniting the discharge, the air was pumped from the chamber 
for about 7 min to reach the working pressure (such seed treatment with a vacuum was used as an 
additional control for CP treatment). The CP treatment lasted 5 min (this treatment is further 
abbreviated as CP5). 

Optical emission spectroscopy (OES) analysis was used to identify the active species produced 
in the plasma. Spectra were recorded in a range from 220 to 950 nm by a spectrometer equipped with 
a CCD (charge coupled device) area image sensor S10141 (Hamamatsu Photonics Norden AB, 
Sweden). During plasma treatment, molecular bands of nitrogen (second positive system) dominated 
in the OES spectra (Figure 2), and weak bands of N2+ (first negative system) were observed. In the 
wavelength range of 220–320 nm, a number of oxygen-containing reactive species were recorded, 
such as nitric oxide and hydroxyl bands. However, the intensity of these molecular bands was 
relatively low. 

All experiments were performed in three replicates. The control, vacuum-, CP-, and EMF-treated 
seeds were stored at room temperature (19–22 °C) until germination tests. 

Figure 1. Schematic diagram of the experimental setup. 1 = RF generator, 2 = inductor, 3 = dielectric
container with seeds, 4 = screen, 5 = commutator, 6 = vacuum chamber, 7 = powered electrode,
8 = lower electrode, 9 = Petri dish with seeds, 10 = measuring capacitor, 11 = window, 12 = oscilloscope,
13 = voltage probe, 14 = lens, 15 = spectrometer, and 16 = computer.

Seed treatment with radiofrequency (RF) EMF was carried out by placing the dielectric
container with seeds in the three-turn, water-cooled coil of the RF generator operating at 5.28 MHz.
The characteristics of the EMF strength components in the axial zone of the coil were as described
previously [24]. The amplitude values of the magnetic and electric components were 835 A/m (B ≈ 1 mT)
and 17.96 kV/m, respectively. The treatment was performed in ambient air at atmospheric pressure
and room temperature for 15 min (this treatment is abbreviated as EMF15).

Low-pressure, capacitively coupled plasma was produced at a frequency of 5.28 MHz in a planar
geometry reactor, consisting of two water-cooled copper electrodes (120 mm diameter) placed at a
distance of 20 mm from each other in a stainless steel hermetic chamber. The RF voltage was applied
to the upper electrode by the commutator (Figure 1). An open, sterile Petri dish with evenly dispersed
seeds was placed on a grounded electrode. Seed treatment with CP was performed in open air at
a pressure of 200 Pa, and the average value of the input power was 8.4 W (measured as described
in [25]). The plasma parameters were as follows. The effective electron temperature Te ≈ 2.3 eV,
and the electron density ne ≈ 5 × 108 cm−3. Before igniting the discharge, the air was pumped from the
chamber for about 7 min to reach the working pressure (such seed treatment with a vacuum was used
as an additional control for CP treatment). The CP treatment lasted 5 min (this treatment is further
abbreviated as CP5).

Optical emission spectroscopy (OES) analysis was used to identify the active species produced in
the plasma. Spectra were recorded in a range from 220 to 950 nm by a spectrometer equipped with a
CCD (charge coupled device) area image sensor S10141 (Hamamatsu Photonics Norden AB, Sweden).
During plasma treatment, molecular bands of nitrogen (second positive system) dominated in the OES
spectra (Figure 2), and weak bands of N2

+ (first negative system) were observed. In the wavelength
range of 220–320 nm, a number of oxygen-containing reactive species were recorded, such as nitric
oxide and hydroxyl bands. However, the intensity of these molecular bands was relatively low.

All experiments were performed in three replicates. The control, vacuum-, CP-, and EMF-treated
seeds were stored at room temperature (19–22 ◦C) until germination tests.



Appl. Sci. 2020, 10, 8519 4 of 14

  

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

Article 

Changes in Growth and Production of Non-

Psychotropic Cannabinoids Induced by Pre-Sowing 

Treatment of Hemp Seeds with Cold Plasma, 

Vacuum and Electromagnetic Field 

Anatolii Ivankov 1, Zita Nauciene 1, Rasa Zukiene 1, Laima Degutyte-Fomins 1,  

Asta Malakauskiene 2, Paulius Kraujalis 3, Petras Rimantas Venskutonis 3, Irina Filatova 4, 

Veronika Lyushkevich 4 and Vida Mildaziene 1,* 

1 Faculty of Natural Sciences, Vytautas Magnus University, Vileikos str. 8, LT-44404 Kaunas, Lithuania; 

anatolii.ivankov@vdu.lt (A.I.); zita.nauciene@vdu.lt (Z.N.); rasa.zukiene@vdu.lt (R.Z.);  

laima.degutyte-fomins@vdu.lt (L.D.-F.) 
2 Botanical Garden, Vytautas Magnus University, Z. E. Zilibero str. 6, LT-46324 Kaunas, Lithuania; 

asta.malakauskiene@vdu.lt 
3 Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų rd. 19,  

Kaunas LT-50254, Lithuania; polijus@gmail.com (P.K.); rimas.venskutonis@ktu.lt (P.R.V.) 
4 B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Prospekt Nezavisimosti, 

Minsk BY-220072, Belarus; filatova@presidium.bas-net.by (I.F.); verolyu@tut.by (V.L.) 

* Correspondence: vida.mildaziene@vdu.lt 

Received: 26 October 2020; Accepted: 25 November 2020; Published: date 

Featured Application: The results of this study have the potential for application in agriculture for 

increasing the production of industrial hemp biomass and the yield of cannabinoids. 

 

 

 

 

 

 

 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. 

 

©  2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

Figure 2. Emission spectra of radio frequency (RF) air plasma in the wavelength range of (a) 220–270 nm,
(b) 280–340 nm, and (c) 340–400 nm.

2.3. Seed Germination Tests

In vitro germination tests were started four days after seed treatment with CP, a vacuum, and EMFs.
Seeds were distributed on two layers of filter paper in plastic Petri dishes 12 mm in diameter and filled
with 5 mL of distilled water. For each experimental group, three replicates of 30 seeds (90 seeds in
total) were used for germination testing. Petri dishes with germinating seeds were placed in a climatic
chamber with automated control over the light, temperature, and moisture (60%). The following
regime of alternating light and temperature was used: in darkness, 14 ◦C for 10 h, and in light, 21 ◦C for
14 h. To prevent drying, seeds in the Petri dishes were given additional water, if necessary. Germinated
seeds were counted every day until their number stopped increasing.

For the analysis of the germination results of each replicate, Richards’ function [26] was used
for the analysis of the germinating seed population [27]. For the control and treated seed groups,
the following indices of germination kinetics were calculated: the final germination percentage or seed
viability (Vi (%)), the median germination time or the germination halftime of a seed lot or germination
rate (Me (hours)), and the quartile deviation, or the dispersion of germination time in a seed lot as
described earlier in more detail (Qu (hours)) [22,24].

2.4. Plant Cultivation in the Field and Morphometric Analysis

Field experiments were carried out in the central lowland of Lithuania in the Sakiai district
(54◦94′49” N, 22◦88′50” E). The soil in the experimental site was Endocalcari-Epihypogleyic Cambisol
with a pH of 7.4. For each experimental group, 200 seeds were sown at a distance of 20 cm in rows
20 cm apart, with 25 seeds per row and 8 rows per plot. The size of the basic plot of each experimental
group was ~10 m2 with 1 m of distance between the plots. Herbicides or fertilizers were not applied in
the field tests. Four months after sowing, the above-ground part of the plants was cut and used for
morphometric analysis. Although industrial hemp variety Futura 75 is considered as monoecious,
only a few hermaphroditic plants developed, and it was possible to separate the plants into two groups
with different sexual phenotypes: male plants, tiny staminate plants with male flowers (Figure 3a),
and female plants, large pistillate plants with female inflorescences (Figure 3b). For the morphometric
analysis, at the end of the vegetation season, 30–37 female plants and 20–23 male plants were used.
The leaves and inflorescences of the female plants were collected and used to prepare extracts for the
estimation of radical scavenging activity and for CBDA and CBD analysis.

The dry matter yield was determined by drying separate plant samples at 70 ◦C to a constant
moisture (at least 72 h). The number of inflorescences per plant was measured by counting these
morphological structures for each plant by hand.
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Figure 3. Sexual dimorphism of industrial hemp cv. Futura 75. (a) Inflorescences of a staminate male
plant. (b) Inflorescences of a pistillate female plant.

2.5. Measurement of Radical Scavenging Activity

Radical scavenging activity was determined in methanol extracts prepared from fresh leaves.
Ten leaves from the tops of 12 plants from each group were weighed and grinded with ice-cold 85%
methanol (using the proportional 10 mL methanol solution for 1 g of leaves). The homogenate was
sonicated for 15 min (4 ◦C) and centrifuged at 13,000× g for 10 min. Supernatants were immediately
tested for radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay [28]
as described earlier [22]. Six milligrams of the DPPH radical were dissolved in 200 mL of an
acetonitrile-methanol (1:1, v/v) solution and mixed with 200 mL of a 0.1 M sodium acetate buffer
(pH 5.5). Absorbance was measured at 515 nm using a spectrophotometer. From the sample, 50 µL
was added to 1.95 mL of the DPPH buffered solution and left in the dark at an ambient temperature
for 15 min. A control sample was prepared using the same procedure, replacing the leaf extract with
the same amount of 85% methanol. A calibration curve was obtained using 0.05–0.25 mg/mL rutin
solutions. Radical scavenging activity was expressed in milligrams of rutin equivalents per 1 g of dry
leaf weight.

2.6. Detection of Cannabinoid Amount

The extracts for the cannabinoid analysis were prepared from dried hemp leaves grinded in a
Retsch ZM200 centrifugal high-speed mill (Haan, Germany) using a 0.5 mm sieve. From that, 500 mg
of powder were extracted with a mixture of methanol:chloroform (9:1 v/v) (UNODC, 2009), using the
following procedure: mixing for 10 s in a vortex, then performing extraction for 15 min in an ultrasound
bath and vortexing for 10 s after 5, 10, and 15 min. The mixture was centrifuged at 14,000 rpm for
20 min, 100 µL of centrifugate was diluted with 900 µL of methanol, and 100 µL of the solution obtained
was diluted with 900 µL of methanol. The latter solution was used for HPLC (high performance liquid
chromatography) analysis.

Quantitative determination of the CBD and CBDA contents was performed on an HPLC system,
consisting of a Waters 2795 separation module and a 2487 UV detector (Milford, MA, USA). Separation
was performed in a 150 µm length column Pro C18, S-3, 12 nm YMC (Kyoto, Japan), 4.0 mm I.D using
a CH3CN/ultra-pure H2O mobile phase (4:1) with 0.1% formic acid (v/v) as a mobile phase. The flow
rate was set to 1.0 mL/min and the oven temperature to 30 ◦C. The mobile phase was continuously
degassed with an on-line degasser. The injection volume was 10 µL. Isocratic elution was completed
in 20 min.
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2.7. Statistical Analysis

Statistica 10 software was used for statistical analysis of the obtained results. Differences between
the control and treatment groups were compared using Student’s t-tests for independent samples,
and results were considered statistically significant at p ≤ 0.05. The number of repetitions in the
experiments is indicated in the legends of the figures and tables.

3. Results

3.1. Effects on In Vitro Germination

The results of in vitro germination tests for the control and treated seeds of industrial hemp cv.
Futura 75 are presented in Figure 4.
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Figure 4. Germination dynamics of the control and treated seeds of industrial hemp. Mean values of
the three replicates ± standard error are presented. The number of seeds in each replicate was 30 (n = 3).

The obtained germination curves showed that the germination of the vacuum-treated seeds did
not differ from the control, but both the CP5 and EMF15 treatments stimulated germination. Two days
after sowing, when the first seeds started to germinate in the control and vacuum-treated groups,
the percentage of germinated seeds was 26% in the CP5 group and 11% in the EMF15 group. To quantify
the induced changes in germination, indices of germination kinetics Vi, Me, and Qu were calculated
for each seed group (Table 1). There were no differences between the vacuum and the control groups
in the indices of germination kinetics. However, compared with the control, the maximal germination
percentage Vi was 25% higher in the CP5 group and 32% higher in the EMF15 group. CP5 treatment
increased the germination rate (reduced Me) by 21%.
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Table 1. Indices of the germination kinetics of industrial hemp seeds in the experimental groups.

Treatment Vi (%) Me (Hours) Qu (Hours)

Control 58.9 ± 4.8 64.1 ± 1.1 8.6 ± 2.7
Vacuum 56.7 ± 7.7 68.7 ± 3.8 8.6 ± 2.1

CP5 78.9 ± 4.0 * 50.8 ± 2.2 * 9.6 ± 3.1
EMF15 86.7 ± 3.8 * 61.7 ± 3.4 9.0 ± 1.4

Vi = the final germination percentage, Me = the median germination time, and Qu = the quartile deviation.
Results are presented as mean values ± standard errors. * Significantly different from the control group (p ≤ 0.05).

The percentage of germinated seeds sown in the field was counted two weeks after sowing,
and the obtained results were different from those obtained in vitro. Maximal germination in the
control, vacuum, CP5, and EMF15 groups was 72%, 63%, 67% and 66%, respectively. Thus, pre-sowing
seed treatments did not stimulate germination of the industrial hemp cultivar Futura 75 in the field.

3.2. Changes in Growth of Female and Male Plants

Four months after sowing in the field, female and male plants were cut, and morphometric
analysis of their above-ground parts was performed by measuring the length and weight and counting
the number of female inflorescences per plant. The results are presented in Figure 5.
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Figure 5. Morphometric parameters of female and male hemp plants four months after sowing and
growth in field conditions. The means ± standard errors are presented (n = 20–37). * Significantly
different from the control group (p ≤ 0.05).

In the control, the heights of the above-ground parts of the male and female plants did not differ,
but female plants were 5.6 times heavier (Figure 5). Seed treatment with a vacuum did not induce
changes in the morphometric parameters of female and male plants. CP5 treatment stimulated the
growth of male plants (height increased by 11% and weight 1.4 times greater) and reduced female
plant growth (27% lower weight compared with the control). In contrast, EMF15 treatment had a
strong positive effect on both male and female plants. In comparison to the controls, the heights of the
above-ground parts of the female plants in the EMF15 group increased by 9%, the weight increased
by 65%, and the number of inflorescences increased by 70%. EMF15 treatment increased male plant
height by 22% and weight by 70% compared with the control.



Appl. Sci. 2020, 10, 8519 8 of 14

3.3. Changes in the Content of CBDA (CBD) and in Radical Scavenging Activity

The amount of CBDA and CBD was determined only in the leaves and inflorescences of
the female plants, since females accumulate significantly greater cannabinoid content than male
plants (predominantly in the inflorescences) and are therefore commonly used for cannabinoid
production [27]. This study was focused on CBDA and CBD, because the detected amounts of THC
(tetrahydrocannabinol) and other cannabinoids were much lower. The results of the HPLC analysis of
CBDA and CBD content in the leaves and inflorescences of female plants are presented in Figure 6a.
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from the control group (p ≤ 0.05).

The amount of CBDA in the leaves of the hemp growing from vacuum- and EMF15-treated seeds
did not differ from the control, but the CBDA in the leaves of the CP5 group decreased by 41%. No CBD
was detected in the leaves. The inflorescences of the control plants contained 2.5 times more CBDA
compared with the leaves, but the amount of CBD was 10 times lower compared with the amount of
CBDA. Seed treatment with a vacuum increased the amount of CBDA by 26% in the inflorescences,
but it reduced the amount of CBD by 7 times. The average amount of CBD in the inflorescences
of the EMF15 group was more than two times lower compared with that of the control; however,
this difference was not statistically significant. There was no CBD found in the inflorescences of the
CP5 group. It is assumed that the acidic forms of cannabinoids (e.g., CBDA) are synthesized in hemp
tissues, and their neutral forms (such as CBD) originate from the non-enzymatic decarboxylation of
corresponding carboxylated forms [18,19], particularly during the extraction process. Since the CBD
detected in the extracts was formed from CBDA, the total amount of CBDA + CDB could be regarded
as the important marker of changes in cannabinoid production. The amount of CBDA + CBD was
0.91 ± 0.02, 1.11 ± 0.05, 0.51 ± 0.02, and 0.83 ± 0.03 in the extracts of the inflorescences of female plants
in the control, vacuum, CP5 and EMF15 groups, respectively. Thus, despite the decrease in the CBD
amount, the CBDA + CBD content in the extract of the vacuum group was 22% larger compared with
the control (p < 0.05). The reason why the extent of CBDA decarboxylation to CBD was decreased in
the vacuum group remains to be established.

Antioxidant activity of the female hemp leaf extracts was determined using a DPPH radical
scavenging assay, and the results (Figure 6b) showed that it was significantly lower in the leaves of
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plants growing from treated seeds compared with the control. DPPH radical binding was reduced by
31%, 43%, and 27% in the vacuum, CP5, and EMF15 groups, respectively.

4. Discussion

Pre-sowing seed treatments with various dormancy-breaking agents are traditionally applied
to stimulate crop germination and to increase the uniformity of germination [3,4]. In addition to
changes in germination (tested in vitro under laboratory conditions), CP and EMF treatments can
decrease seed microbial contamination and exert positive effects on early seedling growth. However,
rather moderate effects (5–20%) on early growth have been achieved for the majority of annual
crops [5–9]. The application of such innovations in agriculture requires knowledge on how plants
respond to such treatments over a longer time scale and under more natural conditions. It is important
to estimate if the effects observed on seed germination and growth in the laboratory are followed
by changes in plant behavior throughout the entire vegetation cycle while cultivated in the field.
A small number of long-term studies on the effects of CP [10,29–32] and EMFs [10,32–36] have been
performed, and the results show that the effects of seed treatments on crop growth are retained for
the whole vegetation period in most cases. However, for industrial hemp, studies have been limited
on the effects of CP on germination and early seedling growth. It has been shown that gliding arc
plasma treatment can increase the growth of seedlings (estimated up to 5 days of cultivation) in both
cv. Finola and cv. Bialobrzeskie hemp, while seed treatment with CP, generated by a downstream
microwave device, inhibited seedling growth [14,15]. It has been reported recently [16] that hemp seed
treatment with DBD (dielectric barrier discharge) plasma stimulated 8-day-old seedling growth and
enhanced the transcription rates of the transcription factor WRKY1 and four key genes involved in
the biosynthesis of cannabinoids in the leaves of 30-day-old seedlings. The expression of olivetolic
acid cyclase was increased 42 times, olivetol synthase 19 times, cannabidiolic acid synthase 12.4 times,
and ∆9-tetrahydrocannabinolic acid synthase 25.6 times. The latter finding implied that hemp seed
treatment with CP may have a strong effect on the biosynthesis of hemp’s secondary metabolites,
in line with findings reported on other plants [10,21–23]. However, the amount of cannabinoids was
not measured in this study [13].

In this study, the effects of seed treatments with three different stressors (CP, a vacuum, and EMFs)
on the in vitro germination of industrial hemp cv. Futura 75 were compared, both with the effects
on germination in field conditions and on plant growth for the entire vegetation season (4 months).
In addition, the amounts of CBDA and CBD, the major cannabinoids biosynthesized by industrial
hemp cv. Futura 75 [37,38], in the leaves and inflorescences of female plants were estimated in the
control and treated groups.

The obtained results showed that both the CP and EMF treatments increased the maximal
germination percentage of hemp seeds, but only the CP treatment increased the rate of germination
in vitro under laboratory conditions (Table 1). However, maximal germination in the field was not
affected by seed treatments. Thus, the results obtained in the laboratory had low prognostic value
concerning the effects on germination in the field. This finding is in line with the observations reported
earlier [32,39], suggesting that the effects of seed treatments on germination in vitro and under other
conditions (e.g., in the substrate) are different.

Treatment with CP5 significantly improved seed germination kinetics, but had an adverse
effect on female plant height, antioxidant leaf activity, and cannabinoid content in the leaves
and inflorescences. A decrease in CBD and CBDA content seems to be in apparent contradiction
with the reported CP-induced increase in the expression of genes involved in the biosynthesis of
cannabinoids [13]. This could be explained by the different types of equipment used (the capacitively
coupled low-pressure CP device in this study and the atmospheric DBD plasma device in [13]), as well
as the parameters used for seed treatment (e.g., treatment dose) or the dependence of the effects on
plant cultivars. All mentioned factors could cause different treatment outcomes (as shown in [14,15]).
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Sexual dimorphism was observed in the response of hemp to CP5 treatment, as the same treatment
increased the height and weight of the male plants (Figure 5).

A strongly positive effect from the EMF15 treatment on hemp germination and growth was
observed. An increase in the germination yield in vitro (by >30%) was followed a substantial increase
in the growth of the above-ground part in both female and male plants, as well as the increased number
of female inflorescences (by 70%) (Figure 5). Thus, the obtained results indicate that seed treatment
via EMFs could be used to increase the bioproduction of industrial hemp. The antioxidant activity of
the leaves was negatively affected by EMFs (but to a lesser extent when compared with CP5), and the
observed decrease in the amount of CBDA and CBD was not statistically significant. It remains to be
established if such changes can affect the defense mechanisms of plants. Taking into account a strong
positive effect on the leaf biomass and the number of inflorescences, it might be concluded that the
yield of CBD and CBDA produced per plant in the EMF15 group could be accordingly higher when
compared with the control.

Seed treatment with a vacuum did not induce changes in seed germination and plant morphometric
parameters (Table 1 and Figure 5). However, biochemical analysis revealed a follow-up response
of plants to vacuum treatment. Radical scavenging activity in the leaves was reduced, whereas the
amount of CBDA was increased and the amount of CBD decreased in the female inflorescences. Such a
finding provides an interesting example of a hidden plant response to stress experienced by the seeds,
and this has to be studied in more detail in the context of possible applications of seed treatment with a
vacuum to increase the amount of biosynthesized CBD in industrial hemp.

Thus, our results show that short (5–15 min) seed exposure to three different physical stressors
(CP, a vacuum, and EMFs) resulted in stressor-specific effects on seed germination, plant growth,
and secondary metabolism. In comparison with the vacuum or EMFs, low-pressure CP is a more
complex stressor consisting of multiple components, such as low pressure, UV radiation, electrical
discharge, electromagnetic field, and reactive plasma particles [40]. The performed OES analysis
showed that nitric oxide NO· and hydroxyl radical OH· (Figure 2) were the dominating forms of reactive
particles produced by the equipment used for hemp seed treatment with CP in this study. These two
highly reactive species are also known as universal regulators of signaling processes in plants [41,42]
and, together with numerous other ROS (reactive oxygen species) species, may contribute to the
stimulation or inhibition of seed germination [43]. However, most studies have attempted to explain
the interaction between plasma particles and seeds by the processes that occur on the seed surface or
the treated seed coat. The simplest and most popular explanation is that seed germination is stimulated
by etching or chemical modifications of the seed coat, followed by an increase in seed hydrophilicity
(wettability) and the facilitated penetration of water in a dry seed after imbibition [44–46]. However,
other reports do not support this explanation, since germination can be stimulated by CP in the absence
of surface etching [24,47]. Moreover, supra-optimal CP doses inhibit seed germination, despite the
increased wettability [48].

Numerous reports have been published recently showing that the effects of physical stressors
on seed germination are far more complex and involve multiple responses to internal seed
processes. Both the CP and EMF treatments increase a seed’s EPR (electron paramagnetic resonance)
signal [32,49], induce changes in the balance of seed phytohormones involved in the control of
germination [23,39,50,51], and modulate ROS production in germinating seeds [32]. These changes have
an impact not only on germination and early seedling growth, but also on plant growth and development
processes on a longer time scale, including protein expression in seedling leaves [51], photosynthetic
activity [39,51], the secondary metabolism [10,16,21–23], and biomass production [10,24]. The intriguing
finding is that EMF treatment can induce similar or sometimes even stronger enhancement of agronomic
plant properties (e.g., biomass production, as shown for hemp in this study and for red clover in [10]),
compared with CP. The similarity of the response to different stressors leads to a hypothesis that plants
have developed universal molecular mechanisms in seeds for sensing environmental changes that
could be dangerous for the survival of seedlings, as well as for responding to such signals by mobilizing
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internal resources and the defensive potential, leading to improved plant fitness and competitiveness
(stimulated growth, defense, and reproduction). The complexity of such a response is only beginning
to be understood, and detailed knowledge of these mechanisms needs to be gained to apply them in
the development of innovative technologies in sustainable agriculture.

5. Conclusions

The performed long-term observations revealed that the pre-sowing treatment of industrial hemp
seeds with CP, a vacuum, and EMFs induced stressor-specific changes in important agronomic plant
properties, such as germination, biomass production, and secondary metabolite synthesis. Although
CP5 and EMF15 treatments positively affected germination in vitro, the germination of treated and
control seeds was not different in the field. This shows the limited value of laboratory germination
tests for estimating the effects on germination in the field. Furthermore, the effects of treatments on the
growth of the above-ground parts of the plants and the secondary metabolism also did not correlate
with the effects on germination in vitro. The growth of industrial hemp was affected differently by
the stressors used for seed treatment. EMF15 strongly increased (up to 70%) the weight of both
the female and male plants and increased the number of female inflorescences, the main part used
for the extraction of CBD and other cannabinoids. The molecular mechanisms underlying such
strong stimulations of hemp growth by seed treatment with EMFs remain to be elucidated, and we
hypothesize that such changes are related to a shift in the balance of growth regulating phytohormones.
The observed gender-dependent effects of CP5 treatment on hemp growth (growth stimulation in male
plants and inhibition in female plants) also deserve further investigation and point to the potential use
of CP for increasing the production of high-quality fiber, since the stems of male plants are valued as
a source of fine fiber, whereas crude fiber is made from female stems [52]. Finally, only the vacuum
treatment increased the amount of CBDA in female inflorescences, and this result is highly relevant in
the context of applied science, since the vacuum has obvious advantages compared with CP and is not
only cheaper, but a technically simpler mode of seed treatment.
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Ivanauskas, L.; Filatova, I.; Lyushkevich, V. Pre-sowing seed treatment with cold plasma and
electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea)
leaves. Plasma Process. Polym. 2018, 14, 1700059. [CrossRef]
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