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Abstract: Biometric-based authentication is widely deployed on multimedia systems currently;
however, biometric systems are vulnerable to image-level attacks for impersonation. Reconstruction
attack (RA) and presentation attack (PA) are two typical instances for image-level attacks. In RA,
the reconstructed images often have insufficient naturalness due to the presence of remarkable
counterfeit appearance, thus their forgeries can be easily detected by machine or human. The PA
requires genuine users’ original images, which are difficult to acquire in practice and to counterfeit
fake biometric images on spoofing carriers. In this paper, we develop false acceptance attack (FAA)
for a palmprint biometric, which overcomes the aforementioned problems of RA and PA. FAA does
not require genuine users’ images, and it can be launched simply with the synthetic images with
high naturalness, which are generated by the generative adversarial networks. As a case study,
we demonstrate the feasibility of FAA against coding-based palmprint biometric systems. To further
improve the efficiency of FAA, we employ a clustering method to select diverse fake images in
order to enhance the diversity of the fake images used, so the number of attack times is reduced.
Our experimental results show the success rate and effectiveness of the FAA.

Keywords: false acceptance attack; palmprint; naturalness; clustering; diversity enhancement;
generative adversarial network

1. Introduction

Today, people are enjoying variety of internet services that are associated to the advancement of
telecommunication, smart devices, small IoT devices, and social media. For the growth of multimedia
in future, multimedia security should be braced with the supporting technologies, such as identity
management. Unlike traditional identity management approaches that require users to supply
their own credentials and/or known-knowledge for authentication, biometric systems offer better
usability [1,2] and have become versatile [3]. However, biometric systems are vulnerable to several
attacks, such as image-level attack. In image-level attacks, the attackers try to find or artificially
counterfeit the fake biometric images that can successfully cheat the systems, which can be used to
impersonate genuine users [4]. Two typical instances are reconstruction attack (RA) [5] and presentation
attack (PA) [6].

In RA and PA, only “similarity” is considered while additional significant evaluation of
“naturalness” is neglected. “Similarity” refers to the closeness of two biometric templates in terms of
a distance metric. In image-level attacks, the two biometric templates are generated from a genuine
users’ original biometric image and a found/counterfeited fake biometric image. If “similarity” is
satisfied, the image-level attack is successful; i.e., the genuine user is impersonated successfully.
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On the other hand, “naturalness” refers to a requirement where a found/counterfeited fake
image must look natural, which implies the image should not have strong noise or look artificial.
The counterfeited image without sufficient naturalness can be easily detected by a human operator or
artificial intelligence machine.

“Naturalness” means an image seems natural rather than counterfeited. If an image has strong
noise or noiselike appearance, it seems remarkably counterfeited. An image without sufficient
naturalness can be easily detected and resisted against. The three biometric image-level attacks, namely
RA, PA, and FAA, are discussed in terms of the two aforementioned evaluations and other performance,
as follows.

RA is shown in Figure 1. A biometric image is reconstructed from a genuine user’s target
feature template in feature domain. Some evolution algorithms, such as the genetic algorithm (GA)
or hill-climbing (HC) algorithm, are used to iteratively modify the fake image in image domain and
continuously enhance the similarity in feature domain until RA is successful. Typically, if RA is
successful, the target feature template and fake feature template are similar, while the target image and
the fake image are dissimilar, because the similarity in feature domain does not ensure the similarity
in image domain. In addition, since the naturalness is not considered in RA, the reconstructed fake
images typically have insufficient naturalness; i.e., they have a counterfeit appearance that reveals they
are not captured in natural environments. Furthermore, the evolution algorithms in RA become invalid
in biocryptosystems if the extracted/recovered bio-key is strictly protected with one-way function.
The correlation between the input and output is completely damaged by one-way function, so the
evolution algorithms in RA cannot enhance the similarity in feature domain.
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Figure 1. Reconstruction attack.

PA is shown in Figure 2. In PA, the attackers must have a genuine user’ original target biometric
image, and counterfeit a fake biometric image on some spoofing carriers, including print the image on
a piece of paper, display the biometric image on a monitor, counterfeit a mask for a face or a glove
for palmprint. They use the spoofing carriers containing the genuine users’ original target biometric
images, such as the paper, monitor, mask, and glove, to cheat the biometric system. It is easy to capture
genuine users’ original target face images or obtain them on internet social networks, but sometimes it
is difficult to gain genuine users’ original target images of other biometric modalities, such as palmprint.
Some biometrics, such as veins or electrical biosignals, can resist PA and be used for liveness detection
due to their concealed nature [7].
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Figure 2. Presentation attack.

FAA is shown in Figure 3, which does not have the aforementioned issues that were presented
in RA and PA. FAA does not require the genuine users’ images, and it generates a large number of
fake palmprint images with image generation technologies, such as generative adversarial network
(GAN) and variational autoencoder (VAE), to impersonate genuine users. The fake images used to
impersonate genuine users consist of the fake image set. The attackers try to find the fake image in
fake image set to satisfy the similarity in feature domain; i.e., the fake image found can generate the
fake feature template that is similar to the target feature template.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 16 

 

Figure 2. Presentation attack. 

FAA is shown in Figure 3, which does not have the aforementioned issues that were presented 

in RA and PA. FAA does not require the genuine users’ images, and it generates a large number of 

fake palmprint images with image generation technologies, such as generative adversarial network 

(GAN) and variational autoencoder (VAE), to impersonate genuine users. The fake images used to 

impersonate genuine users consist of the fake image set. The attackers try to find the fake image in 

fake image set to satisfy the similarity in feature domain; i.e., the fake image found can generate the 

fake feature template that is similar to the target feature template. 

 

Figure 3. False acceptance attack. 

Although biometrics is a powerful tool widely deployed in various security systems, biometric 

characteristics are largely immutable, resulting in permanent biometric compromise when a feature 

template is stolen. Thus, the usage of feature templates without protection should be forbidden. 

Cancellable biometric and biocryptosystem are two main pipelines for biometric template protection, 

whose frameworks are shown in Figures 4 and 5, respectively. The similarity between the feature 

templates in feature domain is approximatively preserved between the cancellable templates in 

cancellable domain, so the evolution algorithms in RA are valid for a cancellable biometric [8]. In 

biocryptosystems, a bio-key can be extracted/recovered and protected with a one-way function, such 

as hash function. RA becomes invalid because one-way functions completely damage the 

correlation/linkage between the input and output. However, PA uses the spoofing carriers containing 

the genuine users’ original target biometric images to cheat biometric systems; while FAA uses the 

fake image set to cheat biometric systems. Neither PA nor FAA requires the data in feature domain, 

cancellable domain, and hash domain. Thus, PA and FAA are still valid in biocryptosystems. If a fake 

feature template is similar enough to a target feature template, i.e., the similarity in feature domain 

is satisfied, the bio-key in bio-key domain can be extracted/recovered from the fake feature template. 

Figure 3. False acceptance attack.

Although biometrics is a powerful tool widely deployed in various security systems, biometric
characteristics are largely immutable, resulting in permanent biometric compromise when a feature
template is stolen. Thus, the usage of feature templates without protection should be forbidden.
Cancellable biometric and biocryptosystem are two main pipelines for biometric template protection,
whose frameworks are shown in Figures 4 and 5, respectively. The similarity between the feature
templates in feature domain is approximatively preserved between the cancellable templates in
cancellable domain, so the evolution algorithms in RA are valid for a cancellable biometric [8].
In biocryptosystems, a bio-key can be extracted/recovered and protected with a one-way function,
such as hash function. RA becomes invalid because one-way functions completely damage the
correlation/linkage between the input and output. However, PA uses the spoofing carriers containing
the genuine users’ original target biometric images to cheat biometric systems; while FAA uses the
fake image set to cheat biometric systems. Neither PA nor FAA requires the data in feature domain,
cancellable domain, and hash domain. Thus, PA and FAA are still valid in biocryptosystems. If a fake
feature template is similar enough to a target feature template, i.e., the similarity in feature domain is
satisfied, the bio-key in bio-key domain can be extracted/recovered from the fake feature template.
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The three image-level attacks are compared in Table 1, which demonstrates the advantages of FAA.

Table 1. Comparison of three image-level attacks counterfeiting biometric image.

Attack Methods Similarity in
Feature Domain

Naturalness in
Image Domain

Original
Target Image

Cancellable
Biometric BioCryptosystem

Reconstruction
attack

√
× Required Valid Invalid

Presentation
attack

√ √
Not required Valid Valid

False acceptance
attack

√ √
Not required Valid Valid

Palmprint refers to the inner surface from the fingers to the wrist, which contains rich unique
personal features, such as ridges, minutiae, and textures, so it is discriminative, noninvasive, stable,
acceptable, and has good privacy. In addition, many feature extractors of other biometric modalities
are suitable for palmprint, so palmprint is an important and representative biometric modality. In this
paper, we develop false acceptance attack (FAA) for a palmprint biometric. The contributions of this
paper include:

• We develop FAA for palmprint biometrics and demonstrate its feasibility against coding-based
palmprint biometric systems. The FAA is free from the issues found in RA and PA.

• FAA does not require genuine users’ images, and it can be launched simply with the synthetic
images with high naturalness, which are generated by the generative adversarial networks.
The naturalness of the reconstructed images is neglected in PA, so the FAA is a more fraudulent
attack than RA.

• To further improve the efficiency of FAA, we employ a clustering method to select diverse fake
images in order to enhance the diversity of the fake images used, so the number of attack attack
times is reduced; i.e., the attackers can quickly find the fake image in a fake image set, which can
cheat the system successfully.

2. Related Works

2.1. Biometric Image-Level Attacks

Biometric image-level attacks, including RA, PA, and FAA, counterfeit biometric images to
impersonate genuine users. The basic goal is “similarity,” that is the attacks are successful only when
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the similarity is satisfied. Another important goal is “naturalness” that is neglected. The naturalness
can be briefly divided into three levels, namely low, medium, and high levels, as shown in Figure 6.
The fake images with low naturalness seem noiselike (random) or incomplete. The fake images with
medium naturalness are complete but have a somewhat counterfeit appearance that reveals they
are not captured in natural environments. The fake images with high naturalness are similar to real
natural images.
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The state-of-the-art biometric image-level attacks are summarized and compared in Table 2.

Table 2. Existing biometric image-level attacks.

Ref. Year Modality Naturalness Level Methodology

[9] 2004 Fingerprint Low Reconstruct fingerprint minutiae image using a
hill-climbing (HC) algorithm.

[10] 2007 Fingerprint Low
Reconstruct the direction, category, and ridge of the

original fingerprint ridge from the fingerprint
minutiae template.

[11] 2004 Face Low Reconstruct face image using HC.

[12] 2019 Palmprint Low Reconstruct image from cancellable biometric template
using a genetic algorithm (GA).

[13] 2016 Iris Medium Generate iris image using generative adversarial
network (GAN).

[14] 2011 Fingerprint Medium Reconstruct phase image from the fingerprint minutiae
template and then converted into a gray image.

[15] 2015 Fingerprint Medium

Encode the prior knowledge of fingerprint ridge
structure through the direction patch and continuous

phase patch dictionary, and then reconstruct the
direction field and ridge pattern.

[16] 2010 Face Medium Reconstruct face image using HC based on
Bayesian adaptation.

[17] 2014 Face Medium

Reconstruct the real-valued template from the binary
template using perceptual learning, and then use HC to

iterate out the real-value template that meets
the conditions.

[18] 2018 Face Medium Reconstruct face image from a deep face template using
neighbor deconvolutional neural network.

[19] 2010 Iris Medium Divide the initial template into blocks of the same size
and modify the pixel value in units of blocks.

[20] 2011 Iris Medium Generate feature texture from the iris template and
embed it into a real iris image.

[21] 2013 Iris Medium Reconstruct real-value template from binary template
using GA.

[22] 2018 Fingerprint High Reconstruct fingerprint image from fingerprint minutiae
template using conditional adversarial networks.

[23] 2019 Iris High Reconstruct fingerprint image using RasGAN.
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2.2. Coding-Based Palmprint Recognition

Palmprint has many advantages. In addition, many feature extractors of other biometric modalities
are suitable for palmprint, so palmprint is an important and representative biometric modality [24,25].
Many palmprint recognition methods were proposed based on subspace, statistic, deep learning [26],
coding, etc. Compared with the others, coding-based methods have low computation complexity, low
storage cost, and can be free from training [27]. Meanwhile, coding-based methods are insensitive
to illumination variances. Coding-based methods are popular for palmprint recognition, so FAA
is conducted on six coding-based palmprint recognition methods in this paper, namely palm code
(PC) [28], fusion code (FC) [29], competitive code (CC) [30], ordinal code (OC) [31], robust line
orientation code (RLOC) [32], binary orientation co-occurrence vector (BOCV) [33], double orientation
code (DOC) [34], and discriminative and robust competitive code (DRCC) [35]. Please note that the
FAA developed is also suitable for other palmprint recognition methods.

2.3. Palmprint Template Protection

Biometric protection can be briefly categorized into cancellable biometric and biometric
cryptosystems.

Cancellable biometric refers to the intentional and systematically repeatable distortion of biometric
features in order to protect sensitive user-specific data. If a cancellable feature is compromised, the
distortion characteristics are changed, and the same biometric is mapped to a new template, which is
used subsequently [36]. Three goals of cancellable biometric follow.

Changeability: It is also reusability/revocability or diversity, i.e., straightforward revocation and
reissue in the event of compromise. In addition, no same cancellable features can be used across
various applications, therefore a large number of protected templates from the same biometric feature
are required.

Noninvertibility: Noninvertibility of template computation is to prevent the recovery of original
biometric image.

Accuracy: The protection should not deteriorate the recognition accuracy, in other words,
the accuracy of the protected templates should approximate that of the original feature templates.

Some cancellable palmprint methods were proposed for palmprint template protection.
The parameters of filters are randomly disturbed to generate cancellable palmprint templates [37];
however, the noninvertibility is not satisfactory. PalmHash Code and PalmPhasor Code are two
important coded cancellable palmprint templates [38]. The security of PalmPhasor Code is higher
than PalmHash Code, while its computational complexity is also higher than PalmHash Code [39].
Actually, the correlation between the adjacent entries in the cancellable template should be low to resist
statistical analysis attack, so the filtered texture feature matrix before 2D cancellable transformation
was transposed to suppress the vertical correlation between the adjacent entries in the cancellable
template [40] and improve the accuracy [41]. Since the horizontal correlation between the adjacent
entries is absent in 2DPalmHash Code and 2DPalmPhasor Code, horizontal-shift matching can be
ignored. Therefore, the multiple-shift matching can be greatly simplified. This simplified matching has
three advantages, namely reduction of matching complexity, enhancement of changeability performance,
and improvement of verification performance [42]. Although the cancellable transformations are
noninvertible, they are not strictly one-way. The similarity between two feature templates in feature
domain is typically preserved between two cancellable templates in cancellable domain, so RA is valid
for a cancellable biometric [8].

In biometric cryptosystems, the extracted/recovered bio-keys are used as the authenticators.
Fuzzy commitment and fuzzy vault are two mainstream biometric cryptosystems. The palmprint
cryptosystems were successfully developed based on fuzzy commitment and fuzzy vault [43,44].
The extracted/recovered bio-keys can be protected with a one-way hash function; accordingly, there
is no available correlation between output and input of the hash function, so RA is disabled for the
biometric cryptosystem.
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3. Methodology and Evaluation

3.1. Framework

The framework of palmprint FAA with deepconvolutional GAN (DCGAN) is shown in Figure 7.
The region of interest (ROI) is localized and cropped from the original palmprint image for recognition.
DCGAN is employed to generate a large number of fake ROI palmprint images. The fake image set
consists of the fake images used to impersonate a genuine user. FAA is successful once one fake image
can impersonate the genuine user; that is, the similarity in feature domain is satisfied.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16 
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3.2. Image Generation

We selected DCGAN to generate the fake palmprint images used for FAA because of the
following advantages:

• DCGAN is stable in training in most cases, so it is suitable for palmprint image generation if the
number of the palmprint training images is not very large. In addition, the batch normalization in
DCGAN can effectively suppress overfitting and accelerate convergence.

• DCGAN can generate the fake images with high resolution.
• The main hypothesis of this work is that the features (after feature extraction) of fake palmprints,

which are generated from the DCGAN, are diverse. This is because if the fake palmprint feature
templates are similar (lacking of diversity), then it is difficult for FAA to attack successfully. In other
words, the greater the diversity of fake images, the higher the success rate of FAA. This hypothesis
is experimentally confirmed by the red curves (imposter fake) in Figure 11. The distances between
the fake palmprint templates are large, which demonstrates that the feature templates of the fake
palmprint images, which are extracted from the DCGAN, are highly dissimilar; i.e., the diversity
in feature domain is high.

DCGAN employs several techniques for optimization:

• Fully convolutional neural network—strided convolution is used instead of spatial pooling,
which allows the network to learn more appropriate spatial downsampling methods.

• Avoidance of the fully connected layer after the convolution layer—although the fully connected
layer increases the stability of the model, it also slows the convergence speed.

• Batch normalization is used in all the layers except for the output layer of generator and the input
layer of discriminator. Even if the initialization is poor, batch normalization can ensure that the
gradients in the network are strong enough.
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• Effective activation functions—for the generator, Tanh and ReLu are used as the activation
functions of the output layer and other layers, respectively. For the discriminator, leaky ReLU is
used as the activation function.

The configuration of DCGAN in this paper is shown in Table 3.

Table 3. Configuration of DCGAN; 4 × 4 conv1 represents the size of the first layer of convolution
kernel and 512 represents the size of the output feature map.

Layer Generator Discriminator

1

Input:1 × 1 × 128
4 × 4 convTrans1: 512, stride = 2

BatchNormalization
ReLU

Input: 128 × 128
4 × 4 conv1: 16, stride = 1

BatchNormalization
LeakyReLU

2
4 × 4 convTrans2: 256, stride = 2

BatchNormalization
ReLU

4×4 conv2: 32, stride = 2
BatchNormalization

LeakyReLU

3
4 × 4 convTrans3: 128, stride = 2

BatchNormalization
ReLU

4×4 conv3: 64, stride = 1
BatchNormalization

LeakyReLU

4
4 × 4 convTrans4: 64, stride = 2

BatchNormalization
ReLU

4 × 4 conv4: 128, stride = 2
BatchNormalization

LeakyReLU

5
4 × 4 convTrans5: 32, stride = 2

BatchNormalization
ReLU

4 × 4 conv5: 256, stride = 1
BatchNormalization

LeakyReLU

6 4 × 4 convTrans3: 16, stride = 2
Tanh( )

4 × 4 conv3: 16, stride = 2
LeakyReLU

3.3. Clustering for Diversity Enhancement

Quickly finding the fake image that can impersonate the genuine user successfully is desired.
In FAA, if one fake image fails to attack, it is highly probable that its similar fake images also fail to
attack. Thus, the fake image set with low dissimilarity, i.e., the fake image set in which the fake images
are highly similar to each other, commonly leads to a large number of idle attacks. The attack times
can be calculated by how many fake images are used to impersonate the genuine user until FAA is
successful. For example, 10,000 fake images are used to impersonate the genuine user, the 10,000th fake
image impersonates the genuine user successfully while the former 9999 fake images fail, and then the
number of the attack times is 10,000. In practical attacks, attackers want the number of attack times to
be as small as possible; they can then quickly find the fake image that can successfully impersonate the
genuine user.

Since DCGAN also suffers from a mode collapse problem as in other GAN models, the diversity
of the fake images is insufficient and can be further enhanced. If one fake image cannot impersonate
the genuine user successfully, then it is highly probably that its similar fake images cannot impersonate
the genuine user successfully either. If the diversity in the fake image set is enhanced, the attack times
can be reduced.

Thus, K-means clustering is conducted on the fake image set as follows to enhance the diversity
and accordingly reduce the number of attack times.

Input: The original dataset contains 40,000 fake images.
Output: The clustered dataset contains 20,000 fake images that are selected from the

original dataset.

Step 1. Randomly select 20,000 fake images from the original dataset as the centroids of 20,000 classes.
Step 2. Compute the distance between each fake image in the original dataset and each centroid.

If the distance is less than a threshold, this fake image is considered as a sample of the class
of this centroid.
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Step 3. Recompute the centroids of the 20,000 classes.
Step 4. If the 20,000 centroids before and after Step 3 are sufficiently close, i.e., the distance between

the centroid before Step 3 and its corresponding centroid after Step 3 is less than a threshold,
the state is converged and the algorithm is stopped; otherwise, repeat Steps 2–4.

After K-means clustering, 40,000 fake images are clustered to 20,000 classes. The first fake image of
each class is selected, and the selected 20,000 fake images reconstitute the fake image set with diversity
enhancement. Since the diversity is enhanced, the number of attack times is accordingly reduced.

In general, image-level attacks can be conducted in either online or offline mode. Online attacks
can easily trigger blocking the ID after a few failed attack attempts. In offline attacks, repetitive attacks
are allowed. FAA is in offline mode and not for real-time deployment. The needed time depends
on the number of attacks until the first successful attack. For example, if the system is attacked first
successfully by the n-th fake image, then the number of attacks is n. The computational complexity of
every time attack is the same as that of every time matching operation.

3.4. Evaluation

The similarity goal in feature domain is that the reconstructed fake image can generate the fake
template that is similar to the genuine user’s target template. However, the reconstructed fake images
typically do not have sufficient naturalness; that is, they have a remarkable counterfeit appearance that
reveals they are not captured in natural environments. In other words, the existing RA methods only
consider similarity in feature domain, while neglecting the naturalness in image domain.

“Similarity” means that the distance between two templates is less than a set threshold.

dis(F1,F2)≤τ (1)

where F1 and F2 are two templates and τ is the set threshold.
“Naturalness” means an image seems natural rather than counterfeit. Counterfeiting typically

damages correlation and reduces the correlation coefficient, so the correlation coefficient can be used to
measure the naturalness. The correlation coefficient is:

ρ =
Cov(X, Y)√

Var(X)Var(Y)
(2)

where X and Y are the variances of two adjacent pixels in an image, respectively. Cov() and Var()
denote covariance and variance functions, respectively, and % ∈ [−1, 1]. If an image has strong noise or
noiselike appearance, it seems remarkably counterfeited and its correlation coefficient is low. An image
without sufficient naturalness can be easily detected and resisted against. A smaller % indicates a
stronger counterfeit appearance (i.e., noise or noiselike appearance).

Figure 8 shows the naturalness of three image samples, namely, target images (real image),
fake images in this paper, and fake images reconstructed with GA [21]. The fake images (Figure 8b) and
(Figure 8c) are indeed very different from the target image (Figure 8a); however, their feature templates
are highly similar. Thus, (Figure 8b) and (Figure 8c) can cheat a palmprint biometric system since
the similarity measure takes place in feature domain rather than in image domain. The similarities
in image domain and feature domain are nonequivalent. Neither (Figure 8b) nor (Figure Figure 8c)
satisfies the similarity in image domain, but they both satisfy the similarity in feature domain.

Some RA methods, including the GA used to create Figure 8c, combine a noiselike fake image
and a real image to improve naturalness; i.e., the fake image is the fusion of a noiselike image and
a real image at image level. The noiselike image has good similarity while the real image has good
naturalness, so the fake image as a combination/fusion is a compromise between similarity and
naturalness, and accordingly has a lower counterfeit appearance. It is desired that the system can
automatically identify these fake images in terms of naturalness.



Appl. Sci. 2020, 10, 8547 10 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 

After K-means clustering, 40,000 fake images are clustered to 20,000 classes. The first fake image 
of each class is selected, and the selected 20,000 fake images reconstitute the fake image set with 
diversity enhancement. Since the diversity is enhanced, the number of attack times is accordingly 
reduced. 

In general, image-level attacks can be conducted in either online or offline mode. Online attacks 
can easily trigger blocking the ID after a few failed attack attempts. In offline attacks, repetitive 
attacks are allowed. FAA is in offline mode and not for real-time deployment. The needed time 
depends on the number of attacks until the first successful attack. For example, if the system is 
attacked first successfully by the n-th fake image, then the number of attacks is n. The computational 
complexity of every time attack is the same as that of every time matching operation. 

3.4. Evaluation 

The similarity goal in feature domain is that the reconstructed fake image can generate the fake 
template that is similar to the genuine user’s target template. However, the reconstructed fake images 
typically do not have sufficient naturalness; that is, they have a remarkable counterfeit appearance 
that reveals they are not captured in natural environments. In other words, the existing RA methods 
only consider similarity in feature domain, while neglecting the naturalness in image domain. 

“Similarity” means that the distance between two templates is less than a set threshold. 

dis(F1,F2)≤τ (1) 

where F1 and F2 are two templates and τ is the set threshold. 
“Naturalness” means an image seems natural rather than counterfeit. Counterfeiting typically 

damages correlation and reduces the correlation coefficient, so the correlation coefficient can be used 
to measure the naturalness. The correlation coefficient is: 

( )
( ) ( )YX

YX
VarVar
,Cov=ρ

 
(2) 

where X and Y are the variances of two adjacent pixels in an image, respectively. Cov() and Var() 
denote covariance and variance functions, respectively, and ρ ∈ [−1, 1]. If an image has strong noise 
or noiselike appearance, it seems remarkably counterfeited and its correlation coefficient is low. An 
image without sufficient naturalness can be easily detected and resisted against. A smaller ρ indicates 
a stronger counterfeit appearance (i.e., noise or noiselike appearance). 

Figure 8 shows the naturalness of three image samples, namely, target images (real image), fake 
images in this paper, and fake images reconstructed with GA [21]. The fake images (Figure 8b) and 
(Figure 8c) are indeed very different from the target image (Figure 8a); however, their feature 
templates are highly similar. Thus, (Figure 8b) and (Figure 8c) can cheat a palmprint biometric system 
since the similarity measure takes place in feature domain rather than in image domain. The 
similarities in image domain and feature domain are nonequivalent. Neither (Figure 8b) nor (Figure 
c) satisfies the similarity in image domain, but they both satisfy the similarity in feature domain. 

   
(a) Target image (b) Fake image using DCGAN (c) Fake image using GA 

Figure 8. Image samples in three image sets. Figure 8. Image samples in three image sets.

The correlations in different parts of Figure 8c are highly different, so the average correlation
coefficient of the whole image in Figure 8c is approximate to those of Figure 8a,b. Thus, the correlation
is calculated in each block of an image to better detect and discriminate the counterfeit appearance.
The ROI image size and block size are 128 × 128 and 8 × 8, respectively, so the block number is 16 × 16
= 256. Figure 9 shows the histograms of the correlation coefficient of the whole image in three image
sets. Figure 10 shows the histograms of the correlation coefficient of the block in the three image sets.
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Figure 10. Histograms of the correlation coefficient of the block in three image sets. (a) Target images,
(b) fake images using DCGAN, and (c) fake images using GA.

In Figure 9, it is difficult to distinguish (Figure 9c) from (Figure 9a). The abscissa range of
(Figure 9b) is narrower than (Figure 9a), which implies that the correlation coefficients in (Figure 9b)
also exist in (a), so it is also difficult to distinguish (Figure 9c) from (Figure 9a).

In Figure 10, (Figure 10c) shows more blocks in an image with small correlation coefficients than
(Figure 10a) and (Figure 10b). For example, there are more blocks in (Figure 10c) that have small
(less than 0) correlation coefficients than (Figure 10a) or (Figure 10b).
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According to our observation and analysis above, two thresholds are used to measure the
naturalness; i.e., an image is real or fake. T1 is the correlation threshold and T2 is the number threshold.
D(T1,T2) means an image has at least T2 blocks whose correlation coefficients are less than or equal to
T1. A smaller T1 and a larger T2 means that more blocks in an image have lower correlation coefficients,
and then it is more likely that the image is fake.

4. Experiments and Discussion

4.1. Dataset

All experiments were tested on the public palmprint dataset, the PolyU dataset, containing
7752 palmprint images from 386 different palms collected in two sessions. Each palm provided around
20 images, each person provided around 40 images.

Four thousand images of 200 palms were used as the training images to train DCGAN. One hundred
fifty images in the remaining 186 palms were selected as the target images to compose the FAA test set.
The 150 target images were of 25 palms; i.e., each palm had six images.

4.2. Matching Distance Distributions

Normalized Hamming distance was used as the matching distance to measure the dissimilarity.
One hundred fifty fake images were randomly selected from the fake image set, which corresponded to
150 classes/palms. Four distance distributions were calculated, as shown in Table 4. The four distance
distributions of different coding-based palmprint recognition methods are shown in Figure 11.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 16 

4.1. Dataset 

All experiments were tested on the public palmprint dataset, the PolyU dataset, containing 7752 
palmprint images from 386 different palms collected in two sessions. Each palm provided around 20 
images, each person provided around 40 images. 

Four thousand images of 200 palms were used as the training images to train DCGAN. One 
hundred fifty images in the remaining 186 palms were selected as the target images to compose the 
FAA test set. The 150 target images were of 25 palms; i.e., each palm had six images. 

4.2. Matching Distance Distributions 

Normalized Hamming distance was used as the matching distance to measure the dissimilarity. 
One hundred fifty fake images were randomly selected from the fake image set, which corresponded 
to 150 classes/palms. Four distance distributions were calculated, as shown in Table 4. The four 
distance distributions of different coding-based palmprint recognition methods are shown in Figure 
11. 

Table 4. Four distance distributions. 

Distributions Matching between 
Imposter (Fake) Two images in 150 fake images 

Imposter (Target) Two images of the different classes in 150 target images 
Attack One image in 150 fake images and one image in 150 target images 

Genuine (Target) Two images of the identical class in 150 target images 
 

   
(a) PC (b) FC (c) CC 

   
(d) OC (e) RLOC (f) BOCV 

  

 

(g) DOC (h) DRCC 
Figure 11. Four distance distributions. (a) palm code (PC), (b) fusion code (FC), (c) competitive code 

(CC), (d) ordinal code (OC), (e) robust line orientation code (RLOC), (f) binary orientation co-
Figure 11. Four distance distributions. (a) palm code (PC), (b) fusion code (FC), (c) competitive code
(CC), (d) ordinal code (OC), (e) robust line orientation code (RLOC), (f) binary orientation co-occurrence
vector (BOCV), (g) double orientation code (DOC), and (h) discriminative and robust competitive code
(DRCC)
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Table 4. Four distance distributions.

Distributions Matching between

Imposter (Fake) Two images in 150 fake images
Imposter (Target) Two images of the different classes in 150 target images

Attack One image in 150 fake images and one image in 150 target images
Genuine (Target) Two images of the identical class in 150 target images

Imposter (Fake) distribution is on the right of Genuine (Target) distribution, so the diversity of fake
images is good. However, Imposter (Fake) distribution is on the left of Imposter (Target) distribution,
so the diversity of fake images is worse than that of target images. When the fake images are used
for FAA, Attack distribution and Imposter (Target) distribution almost totally overlap, so the Attack
distribution approximates the Imposter (Target) distribution.

4.3. Success Rate

The success rates of FAA, i.e., the ratios between the target images attacked successfully and the
total target images, are shown in Figure 12. The eight palmprint coding methods are divided into two
groups for clear comparison The success rates of FAA increase with the increment of distance threshold.
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4.4. Reduction of Number of Attack Times

The attack times can be calculated by the number of the fake images used to impersonate the
genuine user until FAA is successful. The original results are tested on a fake image set containing
40,000 fake images, while the K-means results are tested on the fake image set after K-means clustering,
which contains 20,0000 fake images. The comparisons in Figure 13 confirm that the clustering can
effectively reduce the number of attack times.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 16 

occurrence vector (BOCV), (g) double orientation code (DOC), and (h) discriminative and robust 
competitive code (DRCC) 

Imposter (Fake) distribution is on the right of Genuine (Target) distribution, so the diversity of 
fake images is good. However, Imposter (Fake) distribution is on the left of Imposter (Target) 
distribution, so the diversity of fake images is worse than that of target images. When the fake images 
are used for FAA, Attack distribution and Imposter (Target) distribution almost totally overlap, so 
the Attack distribution approximates the Imposter (Target) distribution. 

4.3. Success Rate 

The success rates of FAA, i.e., the ratios between the target images attacked successfully and the 
total target images, are shown in Figure 12. The eight palmprint coding methods are divided into two 
groups for clear comparison The success rates of FAA increase with the increment of distance 
threshold. 

 
(a) (b) 

Figure 12. Success rates of FAA. (a) Group 1; (b) Group 2 

4.4. Reduction of Number of Attack Times 

The attack times can be calculated by the number of the fake images used to impersonate the 
genuine user until FAA is successful. The original results are tested on a fake image set containing 
40,000 fake images, while the K-means results are tested on the fake image set after K-means 
clustering, which contains 20,0000 fake images. The comparisons in Figure 13 confirm that the 
clustering can effectively reduce the number of attack times. 

   

(a) PC (b) FC (c) CC 

Figure 13. Cont.



Appl. Sci. 2020, 10, 8547 13 of 16
Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 16 

   
(d) OC (e) RLOC (f) BOCV 

  

 

(g) DOC (h) DRCC 

Figure 13. Attack times.  

4.5. Naturalness 

The naturalness is tested on three image sets, including the target images and fake images in this 
paper; fake images are reconstructed with GA [21]. Figure 14 shows the accuracies of real/fake 
detection according to D(T1,T2). Row indices and column indices correspond to T1 and T2, 
respectively. 

 
(a) Target image 

 
(b) Fake image using DCGAN 

Figure 13. Attack times.

4.5. Naturalness

The naturalness is tested on three image sets, including the target images and fake images in this
paper; fake images are reconstructed with GA [21]. Figure 14 shows the accuracies of real/fake detection
according to D(T1,T2). Row indices and column indices correspond to T1 and T2, respectively.
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Palmprint has several advantages and is a representative biometric modality. Thus, we develop 
FAA for palmprint biometrics and demonstrate its feasibility against coding-based palmprint 
biometric systems. The FAA is free from the issues found in RA and PA. FAA does not require 
genuine users’ images, and it can be launched simply with the synthetic images with high naturalness, 
which are generated by the generative adversarial networks. The naturalness of the reconstructed 
images is neglected in PA, so the FAA is a more fraudulent attack than RA. To further improve the 
efficiency of FAA, we employ a clustering method to select diverse fake images in order to enhance 
the diversity of the fake images used, so the number of attack attack times is reduced; i.e., the attackers 
can more quickly find the fake image in the fake image set, which can cheat the system successfully. 
In our future work, we will modify and improve GAN to enhance diversity to further increase the 
attack success rate. We will also try to develop more strategies to decrease the number of attack times. 
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Figure 14. Real/fake detection accuracy.

When T1 = −0.06 and T2 = 18, equal error rate (EER) minimizes at 23%; i.e., 76.67% of the target
images are correctly judged as real images, while 76.67% of the fake images using GA are correctly
judged as fake images. However, 97.33% of the fake images using DCGAN are judged as real images.
Actually, a fake image using GA in [21] is the fusion of a noiselike image and a real image at image
level, so it has better naturalness than the fake images in most other RAs. It is challenging to judge
the fake images in [21] as to their being either real or fake. However, compared with the fake images
in [21], more fake images with DCGAN in this paper are judged as real images, which demonstrates
that the fake images in this paper have better naturalness, so FAA in this paper outperforms [21]
in terms of naturalness.

5. Conclusions and Future Works

Palmprint has several advantages and is a representative biometric modality. Thus, we develop
FAA for palmprint biometrics and demonstrate its feasibility against coding-based palmprint biometric
systems. The FAA is free from the issues found in RA and PA. FAA does not require genuine users’
images, and it can be launched simply with the synthetic images with high naturalness, which are
generated by the generative adversarial networks. The naturalness of the reconstructed images is
neglected in PA, so the FAA is a more fraudulent attack than RA. To further improve the efficiency of
FAA, we employ a clustering method to select diverse fake images in order to enhance the diversity
of the fake images used, so the number of attack attack times is reduced; i.e., the attackers can more
quickly find the fake image in the fake image set, which can cheat the system successfully. In our
future work, we will modify and improve GAN to enhance diversity to further increase the attack
success rate. We will also try to develop more strategies to decrease the number of attack times.
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