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Abstract: Inner product encryption, first introduced by Katz et al., is a type of predicate encryption
in which a ciphertext and a private key correspond to an attribute vector and a predicate vector,
respectively. Only if the attribute and predicate vectors satisfy the inner product predicate will the
decryption in this scheme be correct. In addition, the ability to use inner product encryption as an
underlying building block to construct other useful cryptographic primitives has been demonstrated
in the context of anonymous identity-based encryption and hidden vector encryption. However,
the computing cost and communication cost of performing inner product encryption are very high
at present. To resolve this problem, we introduce an efficient inner product encryption approach
in this work. Specifically, the size of the private key is only one G element and one Z, element,
and decryption requires only one pairing computation. The formal security proof and implementation
result are also demonstrated. Compared with other state-of-the-art schemes, our scheme is the most
efficient in terms of the number of pairing computations for decryption and the private key length.

Keywords: predicate encryption; inner product encryption; constant-size private key;
efficient decryption; constant pairing computations

1. Introduction

Inner product encryption (IPE), first introduced by Katz et al. [1], is a type of predicate
encryption [2] in which a ciphertext and a private key correspond to an attribute vector x and a
predicate vector y, respectively. In particular, the decryption will be correct if and only if the attribute
vector and the predicate vector satisfy the inner product predicate, meaning that the inner product
operation of x and y equals zero ((x,y) = 0). Over the past decade, many IPE schemes have been
proposed, such as those based on pairing [3-7] and lattice [8-11]. The security definition of an IPE
scheme [1] can be naturally extended from the IND-CPA security of identity-based encryption [12-14].
More precisely, under the security approach of IPE, an adversary learns nothing about the encrypted
message from a ciphertext associated with an attribute vector x if they do not own the private key
associated with a predicate vector y such that (x,y) = 0. Such a definition is also called the IND-CPA
security for IPE scheme in some papers [15] and is defined as the payload-hiding property in [1].
Alternatively, the security definition defined in [1], called the attribute-hiding property, states that a
ciphertext reveals nothing about the corresponding ciphertext attribute x. However, we emphasize
that the attribute-hiding property is not an absolutely necessary property for IPE. Many IPE schemes
proposed in the literature achieve only IND-CPA security /payload hiding, such as that in [15-17].

In addition to their usefulness in fine-grained access control, IPE schemes can be used
to construct various cryptographic primitives or can be converted to more complex primitives,
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such as identity-based encryption [12-14], hidden vector encryption [2,18] and subset predicate
encryption [19,20]. We refer readers to the work presented in [1,19] for details.

Although many IPE schemes have been introduced, the computing cost and communication cost
of these schemes are high. In particular, the pairing operation required by existing pairing-based IPE
schemes is typically linearly related to the vector length; therefore, the computational efficiency of
these schemes is low. Moreover, the size of the private key of most schemes is linearly related to vector
lengths. However, although the existing lattice-based IPE schemes are considered quantum-resistant,
the key size of almost all schemes is too large or the message space is too small. In addition, Internet of
Things devices are gradually becoming common in daily life; however, the problems mentioned in the
preceding discussion make the application of an IPE scheme impractical for these resource-constrained
devices. Thus, an unresolved question remains: can we obtain an efficient IPE scheme by reducing the
cost of decryption and optimizing the length of the private key?

1.1. Our Contributions

Herein, we resolve the aforementioned problem by introducing an effective IPE scheme.
In particular, in the proposed scheme, the length of a private key is independent of the length of the
predicate vector. In addition, the decryption only requires one pairing operation; thus, the decryption
is also independent of the length of the predicate vector. Rigorous proofs are provided to demonstrate
that, under a modified decisional Diffie-Hellman assumption, our proposed scheme is coselective
IND-CPA secure. Moreover, our proposed scheme is more efficient than other advanced schemes,
as listed in Tables 1 and 3.

1.2. Related Works

1.2.1. Pairing-Based IPE Schemes

The first IPE scheme, introduced by Katz et al. [1], entails the evaluation of predicates over
Zy using the inner product, where N is a composite number. After this pioneering work, many
studies followed. For example, Okamoto and Takashima [3] proposed the first hierarchical predicate
encryption method (or delegable predicate encryption) for inner product predicates; this provides a
user with functionality to delegate more restrictive functionality to another user. Attrapadung and
Libert [16] constructed an IPE scheme that solves the inefficiency problem of the previous scheme.
More precisely, provided that the description of the ciphertext attribute vector is not included in the
ciphertext, the ciphertext overhead of the scheme is reduced to O(1). By combining dual system
encryption [21] and dual pairing vector spaces [3] carefully, Lewko et al. [22] obtained the first
fully secure IPE scheme and hierarchical predicate encryption under the n-extended decisional
Diffie-Hellman assumption. However, the security of all these previous studies was based on
nonstandard assumptions. To resolve this issue, Park [23] developed the first IPE scheme under
the standard assumptions (i.e., decisional bilinear Diffie-Hellman and decisional linear (DLIN)
assumptions). Okamoto and Takashima [24] then introduced two nonzero inner product encryption
schemes that support constant-size ciphertexts and a constant-size secret key, respectively, which are
adaptively secure under the DLIN assumption in the standard model. The authors also proposed
the first IPE scheme that is fully secure and fully attribute-hiding [25] as well as the first unbounded
IPE scheme that is also fully secure and fully attribute-hiding in the standard model under the DLIN
assumption [26]. Kawiai and Takashima [27] introduced a new notion, called IPE with ciphertext
conversion, which considers the security of predicate-hiding. Zhenlin and Wei [28] then introduced
another concept, called multiparty cloud computation IPE with multiplicative homomorphic property,
which enables an IPE scheme to support multiparty cloud computation. Kim et al. [29] proposed a new
efficient IPE scheme that only requires n exponentiation and three pairing computations for decryption.
Huang et al. [30] proposed the first enabled—disabled IPE, which supports timed-release services and
data self-destruction. Ramanna [15] constructed two IPE schemes using tag-based quasi-adaptive
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noninteractive zero knowledge, where the first and second both have the property of constant-size
ciphertext but only the second has the property of attribute-hiding. Zhang et al. [7] recently proposed
a new IPE scheme based on a double encryption system; it has been demonstrated to achieve adaptive
security under a weak attribute-hiding model.

As discussed subsequently, extensive research has focused on the developed and proposed
schemes; however, the private key length of most schemes is linearly dependent on the vector length
or requires many pairing operations, making these schemes impractical. Thus, determining how to
construct a more practical scheme remains a critical area of research.

1.2.2. Lattice-Based IPE Schemes

To fend off attack from quantum computers in the future, Agrawal et al. [8] proposed the first
IPE scheme based on the lattice hard assumption (i.e., the learning with error assumption, which is
believed to be able to withstand quantum attacks); to do so, they modified an identity-based encryption
approach proposed by Agrawal et al. [31]. Xagawa [9], inspired by the work of Agrawal et al., proposed
an improved lattice-based IPE scheme that reduced the size of public parameters and ciphertext.
Li et al. [10] proposed a lattice-based IPE scheme that further reduced the size of public parameters
and ciphertext. In contrast to [9], their work reduced the size by a factor of log 1, where 7 is the security
parameter. Wang et al. [11] recently proposed the first compact IPE scheme that employs an IPE
scheme [9], fully homomorphic encryption [32] and vector-encoding schemes [33]. Although these
constructions are thought to be able to withstand quantum computer attacks, they are based on the
learning with errors assumption, resulting in key lengths that are still too large to be practical.

1.3. Organization

The remainder of this paper is organized as follows. In Section 2, we start by discussing some
preliminaries on bilinear maps, complexity assumptions and the definition of IPE. In Section 3, we then
propose our IPE scheme and demonstrate its correctness. In Section 4, we subsequently demonstrate
security proofs using a modified decisional Diffie-Hellman problem, and then in Section 5, we compare
our approach with other state-of-the-art schemes and reveal the implementation results. In Section 6,
we finally conclude the paper.

2. Preliminaries

Herein, we present the necessary preliminaries, such as notations, complex assumptions, and the
definition of an IPE scheme.

2.1. Notations

Throughout this paper, we use x & S to denote “choose an element x randomly and uniformly
from the set S” and x < A to denote “x is the output of the algorithm A”. Moreover, we use a to
denote a vector and use a; to denote the i-th entry of vector a. The inner product of these two vectors
x,y is denoted as (x,y). For a prime p, we use Z, to denote the set of integers modulo p. Finally,
we use N and Z to denote the set of positive integers and integers, respectively.

2.2. Bilinear Maps

Let G and Gt be an additive and a multiplicative cyclic group, respectively; here, the order of
G and Gr is a large prime p (i.e., |G| = |Gr| = p). Then, let P be a generator of G. A bilinear map
(pairing) e : G x G — Gr is a mapping with the following properties:

e Bilinearity: For a,b € Z,, e(aP,bP) = ¢(P, P)™.
* Nondegeneracy: 3P € G, such thate(P, P) # 1g,.
e Computability: The mapping e is efficiently computable.
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In this work, we take advantage of the generalized decisional Diffie-Hellman exponent (GDDHE)
problem, based on [34]. The GDDHE problem is a generic framework within which new complexity
assumptions can be created. We first give an overview of the GDDHE problem. Let

* pbea prime;

* 5,nbe two positive integers;

* P,QelF,[Xy,..., Xy)° be two s-tuple of n-variate polynomials over F,; and
*  fbean n-variate polynomial in Fy[Xy, ..., Xy].

Q, Qr are two ordered sets with multivariate polynomials, and thus, we define Q = (41,42, .-, 4s)
and R = (rq,12,...,7s). As stated in [34], we require p; = q; = 1 to be two constant polynomials.
Consider a bilinear map e : G x G — G with the generator P of G and gt = ¢(P, P) € Gr. For a
vector (x1,%2,...,%;) € JF;, we define

Q(x1,x2, ..., x0)P = (q1(x1,%x2, ..., xn)P, ..., qs(x1,%2,...,%,)P) € G®,

and
R(x1,%2,-/%n) 71 (X1,X2,00,%n) 75 (X1,%2,.,Xn)

8r = (87 ro0r8T ) € GT.
By “f depends on (Q, R)” we mean that there are s> + s constants {ai,j}?,jzl and {by };_, such that

S S
f=Y aiqiqi+ Y bery.
k=1

ij=1

We say that f is independent of (Q, R) if f does not depend on (Q, R).

Definition 1 (The (Q, R, f)-GDDHE Problem). Given (Q(x,...,xn)P, glé(xl,...,x,,)l 7) € G x G5 x Gr,
decide if Z 2z g-’;(x]r'“rxn).

Then, for an algorithm 4, the advantage of A in solving the (Q, R, f)-GDDHE problem is
defined as

Ado(@RMCOPHE () — |4 (Q(x1,..., %) P, g ™), ) — A Q. 1) PLgF ), 2 & Br).

Boneh et al. propose that the (Q, R, f)-GDDHE problem is difficult if f is independent of (Q, R)
and demonstrate that a large class of hard problems can be fit into the framework of the GDDHE
problem; for instance, the DDH problem over Gr.

Definition 2 (The decisional Diffie-Hellman problem over Gt (DDHg, problem)). Let gt = e(P, P) be

a generator of Gr. Given (P,gr, A = g%, B = gl%,C) € G x G%, where a, b <i Ly, decide whether C = g‘%b
or an random element from Gr.

By setting Q = (1),R = (1,a,b),f = ab, the DDH problem over Gr is equivalent to the
(Q,R, f)-GDDHE problem. Observe that no constants exist such that the linear combination of
1,4, b equals ab; therefore, f is independent of (Q, R). Given the result of Boneh et al., we conclude that
no algorithm is available with which to solve the DDHg, problem with a nonnegligible advantage.
See [34] for additional details.

Next, we present a modified version of the DDHGT problem, which will be used in the
security proof.
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Definition 3 (The modified decisional Diffie-Hellman problem over Gt (M-DDHg, problem)).
Let g = e(P,P) be a generator of Gr. Given (P,A' = aP,gr,A = g% B = ¢%,C) € G*> x G4,

where a, b & Ly, decide whether C = ¢4 or a random element from Gr.

Theorem 1 (The modified decisional Diffie-Hellman assumption over Gy (M-DDHg, assumption)).
We say that the M-DDHg,, assumption holds if there is no algorithm D for solving the M-DDHg,, problem
with a nonnegligible advantage.

Proof. Compared with the DDHg, problem, the instance of the M-DDHg, problem contains an
additional element A’ = aP. The M-DDHg, problem is equivalent to the (Q,R, f)-GDDHE
problem with

Q=1(1,a),R=(1,a,b), f = ab.

No constants exist such that the linear combination of the monomials (1 -a),1,4,b equals the
polynomial ab. Therefore, considering the the results of Boneh et al., we conclude that the M-DDHg; .
problem is hard. Moreover, we define the advantage for an algorithm D in solving the M-DDHg; .
problem as

AdoMPPHer (D) — |Pe(D(P, A',gr, A, B,C = gff) = 1] — Pr[D(P, A", gr, A,B,C & Gr) =1]|.
O

2.3. Definition of Inner Product Encryption

An IPE scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The details
of the algorithms are as follows:

. Setup(l/\, 14). Take as inputs the security parameters (1/\, 15), where A, ¢ € N, and the algorithm
outputs the system parameter params and the master secret key msk. The descriptions of the
attribute vector space 2 and the predicate vector space 8 are implicitly included in params.
Moreover, the inner product operation over 2 and ‘B must be well defined.

e Encrypt(params,x, M). Given the system parameter params, an attribute vector x € 2 and a
message M, the algorithm outputs a ciphertext Cx for the attribute vector x.

e KeyGen(params,msk,y). Given the system parameter params and a predicate vector y € ‘B,
the algorithm outputs the private key Ky for the predicate vector y.

*  Decrypt(params, Cy,Ky). Given the system parameter params, a ciphertext Cx and the private key
Ky, the algorithm outputs a message M or a error symbol L.

The correctness is defined as follows. For all A, £ € N, let Cx < Encrypt(params,x € A, M) and
let Ky <— KeyGen(params, msk,y € B); thus, we have

M < Decrypt(params, Cx, Ky) if (x,y) =0;
L < Decrypt(params,Cx, Ky) if (x,y) #0,

where (params, msk) < Setup(14,1).

2.4. Security Model

Here, we first introduce IND-CPA security for IPE. The IND-CPA game of IPE for the attribute
vector space 2 and predicate vector space I3 is defined as an interactive game between a challenger C
and an adversary A.

e Setup. The challenger C runs Setup(1%,1°) and sends the system parameter params to the
adversary A.
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*  Query Phase 1. The challenger polynomially answers many private key queries for y € B for the
adversary A by returning Ky < KeyGen(params, msk,y).

* Challenge. The adversary A submits an attribute vector x* € 2 such that (x*,y) # 0 for all
y that have been queried in Query Phase 1 and two messages My, M; with the same length
to challenger C. Then, C randomly chooses f € {0,1} and returns a challenge ciphertext
Cx+ < Encrypt(params, x*, Mg).

*  Query Phase 2. This phase is the same as Query Phase 1, except that the adversary is not allowed
to make a query with y € P such that (x*,y) # 0.

¢ Guess. The adversary A outputs a bit / and wins the game if ' = B.

The advantage of an adversary for winning the IND-CPA game is defined as

Ado'ND-CPA( 4y —

Pilp = 6l - 5 -

Definition 4 (IND-CPA Security for IPE). We say that an IPE is IND—-CPA secure if there is no probabilistic
polynomial-time adversary A who wins the IND-CPA game with a nonnegligible advantage.

As we mentioned in Section 1, in some literature [1,23], the security notions for an IPE are
defined with the notions “payload hiding” and “attribute hiding”. Informally, payload-hiding
(or attribute-hiding) is defined to argue that a ciphertext leaks no information about the encrypted
message (or attribute vector). The IND-CPA security shown in this section is equivalent to
payload-hiding. We emphasize that attribute-hiding is unnecessary for an IPE scheme; in [15-17],
schemes have been proposed satisfying only payload hiding.

We next present the selective security and the coselective security [16,35] for IPE. The selective
IND-CPA (sIND-CPA) game is defined the same as the IND-CPA game, except that the adversary A
is forced to commit before the Setup phase to an attribute vector x*, and A is not allowed to make
private key queries with y such that (x*,y) # 0 in both Query Phase 1 and Query Phase 2.

Definition 5 (SIND-CPA Security for IPE). An IPE scheme is said to be IND—CPA secure if no probabilistic
polynomial-time adversary wins the SIND-CPA game with a nonnegligible advantage.

The coselective IND-CPA (csIND-CPA) game is defined as equal to the IND-CPA game,

except that the adversary A is forced to commit before the Setup phase g to predicate vectors
(1)
y

is required to invoke the Challenge phase with an attribute vector x* such that (x*,y/)) # 0 for
i=1...,q

,...,y9 for the private key queries, where g is a polynomial in the security parameter A and .A

Definition 6 (csIND-CPA Security for IPE). An IPE scheme is said to be csIND—-CPA secure if no probabilistic
polynomial-time adversary wins the csSIND-CPA game with a nonnegligible advantage.

Coselective security can be understood as a complementary notion to selective security. In the
selective security game, the adversary can learn the private key in accordance with its previous
choices, whereas in the coselective security game, the adversary can choose its target after seeing
the public parameter and learning the private keys of its choice. Although selective security and
coselective security are weaker than full security, both notions are, by definition, incomparable in
general by definition.
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3. Proposed Inner Product Encryption Scheme

Our IPE scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The details

of the proposed scheme are explained in the following.

Setup(l)‘, 1¢ ). Given the security parameters (1/\, 14), where A, ¢ € N, the algorithm performs
as follows.

1. Choose bilinear groups G, Gt of prime order p > 2*. Let P and g1 = e(P, P) be the generator
of G and G, respectively.

Set the predicate vector space and the attribute vector space to Zf,.

Choose s = (s1,52,...,5¢) <i Zf,.

Compute h = (§), = (h,...,hy).

Output the system parameter params = (P, g7, ﬁ), and the master secret key msk = s.

AR

Encrypt(params, x, M). Given the system parameter params, a vector X = (x1,X2,...,Xy) € Zf,,
and a message M € Gr, the algorithm performs as follows.

Choose 7,6 i L.
Compute Cy = rP, and Co = 8T
Compute C; = Er 'g(;xi -Mfori=1to/.

Output the ciphertext Cx = (Co, Co,C1,Ca, - - .,Cy).

Ll

KeyGen(params, msk, y). Given the system parameter params, a master secret key msk, and a
vectory = (y1,Y2,...,Y¢) € ng, where Zle yi # 0, the algorithm performs as follows.

1. Choose k < Lyp.

2.  Compute Ky = kP, and K; = (s,y) +k mod p.

3. Output the private key Ky = (Ko, X1).

Decrypt(parans, Cy, Ky). Given the system parameter params, a ciphertext Cx, and the private
key Ky, where y = (1,2, ...,y,) the algorithm performs as follows.

Compute Dy = e(Ko, Cp).
2. ComputeD; = [T'_, cl'.
Do - Dq
/\K .
CO1

3. ComputeD =

4. Computed = (X%, y;)~' mod p.
5.  Compute M = D“.

Correctness

The correctness of the proposed scheme is shown as follows.

Dy = e(Ko, Co) = e(kP,rP) = gh'.

Di = Mo = T g My = TG (g™ - () =
T ((83)%) T (87 Ty (M) = g7 - 5P MEa v,

~K K )k
Colzg;lzng(Sﬁ e
Dg - Dy ng<s'y> '8(;<x'y> - ME1yi ¥ —

D = =
d! r(s,y)+rk
Co 8T

gi<x’y> . szzl ]/i_

We have D = M):le Vi iff (x,y) = 0.
Thus D? = MEiz1 ¥4 (Eay) ™ mod p) — pf.
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4. Security Analysis of the Proposed Scheme

We now provide the security proof for the coselective security of the proposed IPE scheme. In the

subsequent proof, we view a vector as a row vector.

Theorem 2. The proposed scheme is csIND—CPA secure for q private key queries, where q is a polynomial in
the security parameter A, under the M-DDHg, assumption.

Proof. Given (P,A’ =aP,gr, A =g},B = gl%, C), we build an algorithm C using the adversary A to
solve the M-DDHg,,. problem as follows.

Init. The adversary A commits g predicate vectors y(!), ...y,
Setup. C first finds a vector u = (uq, uy, ..., uy) such that

Y1
y2

. u' = 02—,
Yq

where 0, = (0,0,...,0). Such u exists when q > ¢. The operation is to find a vector u such
N—
14
tAhat (u, yj> = 0 for = 1to qA C then chooses v = (01,02,...,05)A<i Zf,. Next, C computes
h = (B% ~g?)f:1 = (hy,...,hy). Finally, C sets params = (P, g7, h) and sends params to A.
Note that C implicitly setsmsk =s = (s; = u; - b+ vi)le.

Query Phase 1. After receiving y(!) = (ygi), e ygi)) from A, wherei € [1,2,...,4], C first chooses

k& Zp and then computes K ;) = (Ko, K1) = (kP, (v,y)) + k mod p). The correctness of the
private key Kyt is demonstrated as follows.

Ky
= (s,y/)+k mod p
= 2]5;1 s]'y](-l) +k moq p
Zle(uj b+v;)- ](l) +k mod p
= bZ]é':l u]-y]@ + Zle vjy](l) +k mod p
= b{u,yD) + (v,y")) +k mod p
= (v,y)+k mod p.

Challenge. Upon receiving x*, where (x*,y()) # 0 fori = 1,...,q, and two equal-length
messages Mo, M; from A, the challenger C performs the following.

Choose g € {0,1}.

Choose 6 <& L.

SetCj = A’and C) = A.

For i = 1to ¢, compute C; = (C" - A 'géTxf) - Mg.

Set the challenge ciphertext C* = (Cp, Cp, €7, C5, ..., C)).
Return C* to A.

AR S
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Here, we implicitly set the randomness of the encryption procedure to a. Therefore, if C = g ,
then we have C0 = aP,C0 =grfori=1,...,¢

¢ = (Ct-A%-g7) My
abu; av,
= (8T , : ths)* B
<“<“*j’l>>~<gT )- Mg
— bt gh . My,

Thus, the challenge ciphertext C* is a valid ciphertext.

®  Query Phase 2. This phase is the same as Query Phase 1.

*  Guess. The adversary A outputs a bit /. The challenger C outputs 1 if .4 wins the game and
outputs a random bit otherwise.

Assume that the adversary A wins the game with advantage e:

Pr[p’ = B] —1‘ >e
2
If C = g%, then the view of the adversary is identical as that in real world. Thus, we have
Pr[C(P, A, g1, A,B,C = gi) =1]

Pr[p’ = f]
% + €.

AV

However, if C is a random element in G, then the choice of 8 is independent from the adversary’s
view and we have

PriC(P, A',gr, A, B,C & Gr) = 1]

Pr[f’ = p]

3

Therefore, the advantage of C in solving the M-DDHg,. problem is

‘PY[C(P,A’,gr,A, B,C = g‘%b) =1]
— Pr[C(P, A, g1,A,B,C & Gr) = 1]‘

> |(G+e) -4
> e

This means that if there is an adversary winning the game with nonadvantage ¢, then there is an
algorithm C solving the M-DDHg,, problem with a probability greater thane. [

5. Efficiency Analysis and Implementation Results

Herein, we compare the efficiency of the proposed IPE scheme with the schemes proposed
in [1,3,5-7,15,16,22-30,36] (Because [4,17] are the complete versions of [16,24], we only compare our
work with [16,24]). As shown in Table 1, we compare our scheme to others in two aspects: the size
of the private key and the number of pairing operations for decryption. The type of group order is
also presented because the efficiency of prime order groups is higher than that of composite order
bilinear groups.

As is evident in Table 1, our proposed scheme has the shortest private key length and smallest
number of pairings. Moreover, both the private key length and the number of pairings in our proposed
scheme are independent of the length of the predicate and attribute vectors. The most efficient existing
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scheme is [29], where the private key length is three group elements and three pairings are needed for
decryption. In our scheme, the private key is only an element of G and an element of Z,, and only one
pairing is necessary during decryption. Furthermore, in [5], the private key length (2m|G|) and the
number of pairings (2m) are independent of the lengths of the vectors, where m is the leakage-resilience
parameter. However, m must be at least equal to or greater than 2. Therefore, the private key length
and pairing number are still larger than those obtained with our approach (this is because their scheme
degenerates to a conventional IPE scheme without leakage resilience when m = 1).

Table 1. Comparison of our scheme’s efficiency with that of other schemes. The vector length for
an IPE scheme is denoted by /; the bit lengths of the representations for an element in Z, and G are
denoted by |Z,| and |G/, respectively; the leakage resilience parameter is denoted by .

Scheme Private Key Length Number of Pairings for Decryption Group Order
[1] (20+1)|G]| 2041 Composite
[3] (L +3)|G| (43 Prime

[16]-1 (£+1)|G] 2 Prime
[16]-2 (L+6)|G|+ (£ —1)|Zy| 9 Prime
[22] (204 3)|G]| 2043 Prime
[24]1 (40+1)|G| 9 Prime
[24]-2 9|G| 9 Prime
[24]-3 11/G| 11 Prime
[23] (40+2)|G| 4042 Prime
[25] (40+2)|G]| 40+ 2 Prime
[26]-1 (15¢ + 5)|G| 150+ 5 Prime
[26]-2 (2144 9)|G| 21049 Prime
[27] 6/|G| 6/ Prime
[28] (|G| 14 Composite
[29] 3|G| 3 Prime
[30] (40+2)|G]| 40+ 4 Prime
[15]-1 (204+1)|G| + (£ —1)|Zy| 3 Prime
[15]-2 5G] 3 Prime
[5] 2m|G| 2m Prime
[36] (40+5)|G]| 4045 Prime
[6]-1 5|G| 5 Prime
[6]-2 7|G| 7 Prime
[7] (L+1)|G| 041 Composite
Ours 1|G| +1|Zy| 1 Prime

We also implemented our scheme and the schemes of [15,17,29] to compare efficiency. We chose
these three schemes for the following reasons:

* Among all the existing IPE schemes, the first scheme of [16] requires the smallest number of
pairings for decryption (only two pairings required);

* Among the schemes supporting constant private key length, the schemes of [15,29] require the
smallest number of pairings for decryption (only three pairings required).

The environment of the implementation is presented in Table 2, and the implementation results
are shown in Table 3. We implemented these schemes by using the Charm-Crypto library [37] and
Python language. For schemes constructed over symmetric paring groups (the approach in [16] and
our method), we selected the pairing group SS512 in [38] (also known as type A groups), and for
the schemes constructed over asymmetric pairing groups (in [15,29]), we chose the pairing group
BN254 in [39] (also known as type F groups). The SS512 group is a supersingular elliptic curve group
where the size of the base field order is 512 bits and the embedding degree is two. For a bilinear
map e : G x G — Gt over the SS512 group, the bit lengths of elements in G and Gt are 64 and
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128 bytes, respectively. In the case of the BN254 group, the size of the base field order is 256 bits and
the embedding degree is 12. For a bilinear map e : G; x Gy — Gr over the BN254 group, the bit
lengths of elements in Gy, Gy, and Gr are 64, 128, and 384 bytes, respectively. For the length of
predicate and attribute vectors, we chose £ = 100. As evident in Table 3, the encryption and decryption
algorithms of our scheme were highly efficient. For decryption and encryption, only 10 and 20 ms was
required, respectively. Our encryption algorithm was 5, 8.5, and 13 times faster than that in [15,16,29],
respectively, and our decryption algorithm was 10, 14, and 14 times faster than that in [15,16,29],
respectively. Moreover, our private key length was 86, 2.6, and 4.3 times shorter than that in [15,16,29],
respectively. However, as a trade-off, the length of the ciphertext in our scheme was the largest among
these schemes.

Table 2. Environment of the implementation.

Specification
(O] Ubuntu 18.04 LTS
CPU Intel i7-4790 3.6 GHz
RAM 8 gb
Language Python 3.6

Library Charm-Crypto v0.50

Table 3. Implementation results.

Encryption Time Decryption Time Private Key Length Ciphertext Length

Scheme (ms) (ms) (kb) (kb)
[16] 100 100 31.7 0.937
[29] 170 140 0.955 17.5
[15] 260 140 1.59 25.9

Ours 20 10 0.37 313

6. Conclusions

In this work, an efficient IPE scheme in which the size of the private keys and the number of
pairings for decryption are constant is introduced; moreover, this scheme is coselective IND-CPA
secure under the modified decisional Diffie-Hellman assumption. Comparison and experimental
results are also provided to illustrate that the size and computing cost of this scheme are small. In future
works, we aim to improve the efficiency by reducing the ciphertext length and provide a security proof
for stronger security concerns under standard assumptions. Because the proposed scheme is based on
bilinear pairing, it cannot resist quantum attacks, unlike lattice-based IPE schemes. In future work,
we will explore how to construct an efficient and practical quantum-resistant IPE scheme.
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