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Abstract: In this paper, the stability problem of a class of multi-agent tracking systems with
quasi-cyclic switching topologies is investigated. The existing results of systems with switching
topologies are usually achieved based on the assumption that the piecewise constant communication
topologies are connected and the switchings are cyclic. The communication topologies are possible
to be unconnected and it is difficult to guarantee the topologies switch circularly. The piecewise
unconnected topology makes the interactive multi-agent tracking system to be an unstable subsystem
over this time interval. In order to relax the assumption constraint, a quasi-cyclic method is proposed,
which allows the topologies of multi-agent systems to switch in a less conservative way. Moreover,
the stability of the tracking system with the existence of unstable subsystems is analyzed based
on switched control theory. It is obtained that the convergence rate is affected by the maximum
dwell time of unstable subsystems. Finally, a numerical example is provided to demonstrate the
effectiveness of the theoretical results.
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1. Introduction

Multi-agent systems (MASs), with entities possessing flexibility and autonomy, have been
extensively studied to analyze and simulate complex systems in the past few years [1–4]. As an
essential category of distributed artificial intelligence, MASs have been applied in the field of control
engineering, such as the formation of spacecraft systems [5], robot systems [6,7], underwater vehicle
systems [8], and unmanned aerial vehicles [9], etc. Tracking approaches for MASs have been widely
used in areas of collaborative target tracking [10], convoy protection [11] and defensive navigation [12].

During the multi-agent tracking process, where some tracking agents aim to track the target
agent, the communication topology between agents may change or even be unconnected due to
obstacles, communication limitations and unknown disturbances. In terms of the case where the
communication topology of the agents is connected, the whole interactive multi-agent tracking system
is stable, while the unconnected topologies of the agents lead to the intermittent existence of unstable
subsystems. In this paper, the division of the stable subsystem and the unstable subsystem results from
the change of communication topology. Thus, it is not based on the system of the agent itself, but on
the whole system between multiple agents. The time-varying topologies of the agents are generally
described as switching topologies. The switching topology is an essential but challenging issue in
MASs practical applications. The process of MASs switching topology is usually complicated because
many kinds of scenarios must be considered when designing the switching rules [13–16].
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Up to now, some researchers have focused on switching topologies of multi-agent systems,
and numerous valuable research results were obtained with different models and control
strategies [17–23]. To be more specific, consensus problems for networks of dynamic agents with
switching topologies were addressed in [24–27]. Multi-agent systems with Lipschitz-type node
dynamics was studied in [28], which obtained sufficient conditions for consensus tracking under
weakly connected and switched topologies. The authors in [29] achieved exponential tracking of
heterogeneous second-order time-varying nonlinear multi-agent systems under directed switching
topology through constructing the topology-dependent Lyapunov function and designing appropriate
time-varying regulation factors. In [30], a coordinated formation control task was accomplished with
an iterative update algorithm based on the nearest neighbor relative distances under the condition that
the topology has a spanning tree over iteration intervals with finite lengths. The core of the approaches
in [31–33] was the achievements of the switching controllability in discrete-time multi-agent systems
with time-delays on undirected networks. But, these results only considered multi-agent systems
which switch among stable subsystems, in other words, the switching topologies were all-connected.

The complexity is significantly increased if there are unstable subsystems in multi-agent switching
systems [34]. The work in [35] focused on a class of cyclic switched nonlinear systems, and achieved the
finite-time stability by making the most of the trade-off among impulsive dynamics, initial conditions,
and the dynamics of each mode. The authors in [36] discussed the case that switching subsystems were
unstable, designed the dwell-time and proposed an event-triggered controller so as to achieve global
stability. The multi-agent relay tracking problems with changing the number of agents, jumping of
tracking errors, and communication time delays were solved in [37]. However, these studies were
based on the premise that the sequence of topologies follows a strict cyclic period.

Based on the above discussions, this paper proposes a quasi-cyclic method that allows the
topologies of multi-agent tracking systems with unstable subsystems to switch in a less conservative
way. In comparison with the existing literature, the main contributions of the paper are mainly twofold.
Firstly, the concept of quasi-cyclic switching signals (QCSS) is introduced to describe a more practical
scenario, compared with the multi-agent systems with connected switching topologies [28–33] or
strict cyclic switching topologies including unconnected cases [35–37]. Secondly, the stability of the
multi-agent tracking system with both stable subsystems and unstable subsystems is guaranteed as
well as the conservativeness of switched system conditions is reduced by finding a set of switching
signals with admissible quasi-cyclic signals.

The remainder of the paper is organized as follows. Some preliminaries and the model formulation
are presented in Section 2. The switched system with quasi-cyclic switching topologies (QCST) are
introduced and the main theoretical results are established and proved in Section 3, followed by the
simulation results with illustration of theoretical analysis in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Preliminaries and Problem Formulation

2.1. Notations

The following notations are used throughout the paper. Let N be the set of nonnegative integers.
‖ · ‖ represents Euclidean norm. Rn refers to the set of all n-dimensional real column vectors. IN stands
for a N × N identity matrix. The Kronecker product is denoted by ⊗, and the operation ⊗ on matrix
A ∈ Rm×n and matrix B ∈ Rp×q results in a block matrix A ⊗ B ∈ Rmp×nq. The floor and ceiling
functions are defined as bxc = max{p ∈ Z | p ≤ x}(x ∈ R) and dxe = min{q ∈ Z | q ≥ x}(x ∈ R)
respectively. T(ζ, t), (ζ ≤ t ∈ R) refers to the time interval [ζ, t). T−(ζ, t) and T+(ζ, t) stands for
the total time length of stable and unstable subsystems from initial time ζ till the present time t,
respectively. And the main parameters of the model in this paper are introduced in Table 1.
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Table 1. Nomenclature.

Symbol Description

xi(t) state vector of the i-th agent
ui(t) control input of the i-th tracking agent
σ(t) switching signal
Ns period length of stable subsystems
Nus period length of unstable subsystems

eij(t) tracking error between the i-th and the j-th tracking agent
ei(t) tracking error between the i-th tracking agent and the target agent
N−s the set of stable subsystems in the quasi-cyclic switching process
N+

us the set of unstable subsystems in the quasi-cyclic switching process

2.2. Graph Theory

In this work, we focus on the overall behavior of dynamic systems relying on interactive
communication networks. Each agent can be treated as a node and the path of information interaction
between agents can be treated as an edge. Then the whole multi-agent system network can be described
by a graph with nodes and edges. There is a communication link between two tracking nodes (i, j),
if node j is within the communication range of node i. A weighted graph G = (V , E ,A) containing N
nodes is composed of a node set V = {1, 2, ..., N}, an edge set E ⊆ V × V and a weighted adjacency
matrix A = [aij] ∈ RN×N , where i and j denote tracking agents. Nodes within the communication
radius of node i are called neighbors of node i, which is denoted as Ni = {j | j ∈ N, (j, i) ∈ E}.
When node j is out of the communication range of node i (j /∈ Ni), the connection weight between
the two tracking nodes is 0, which is denoted by aij = aji = 0, otherwise aij = aji > 0. In this work,
we consider each node without self-loop i.e., aii = 0. Let hi denote of connection weight between
tracking agent i and the target agent, hi > 0 if the former can communicate with the latter, otherwise
hi = 0. Denote the Laplacian matrix of communication topology with target agent as L+H, where

L = D −A

D = diag{∑
j∈V1

a1j, ∑
j∈V2

a2j, ..., ∑
j∈VN

aNj}

H = diag{h1, h2, ..., hN}.

2.3. Problem Formulation

Consider a set of agents committing the task of tracking a target agent, the dynamics of the i-th
tracking agent is described as follows:

ẋi(t) = Axi(t) + Bui(t), t ≥ t0 (1)

where i = 1, 2, ..., N, xi(t) ∈ Rm is state vector of the i-th agent, A ∈ Rm×m and B ∈ Rm×p are dynamic
matrices of the system, and ui(t) ∈ Rp×m is the control input of the i-th tracking agent.

The dynamics of the target agent is described by

ẋt(t) = Axt(t), t ≥ t0 (2)

where xt(t) ∈ Rm is the state vector of the target agent.
If for any initial condition, the tracking agents in the system presented by Equation (1) can

accommodate themselves to the target agent’s state described by Equation (2) with the effect of
designed controller such that

lim
t→∞
‖xi(t)− xt(t)‖ → 0 (3)

then it is said that the tracking agents successfully track the target agent.
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In the practical tracking process, due to obstacles or the interference of external communication
signals, the communication topology of multi-agent systems is likely to be different over different time
intervals. If the topology is connected, the whole interactive tracking system is a stable subsystem over
this corresponding time interval, otherwise, it is called unstable subsystems. Additionally, the stable
subsystems and the unstable subsystems appear alternately, the switching law of which does not
conform to the complete periodicity. Therefore, this paper proposes a quasi-cyclic method to solve this
practical problem.

The switching signal σ(t) : [t0, ∞) 7→ IN = {1, 2, ..., n} is piecewise constant, where n > 1 is the
number of subsystems. σ(t) is continuous from right everywhere and may be either autonomous or
controlled in general. Generally, the more information we know about the switching signals, the more
refined conclusions we could obtain.

In practice, switching topologies of the multi-agent tracking systems are usually not
arbitrary due to some restrictions of physical entities, such as unknowable environmental impact,
component failure and sensors. Therefore, in this section, we assume the switching signals satisfy the
following assumption.

Assumption 1. For a given set S = {1, 2, ..., NT}, n ≥ NT ∈ N, NT is the length of the period of
quasi-switching, and a mapping φ : IN 7→ S satisfy

φ(i) ∈ S, ∀i ∈ IN ; φ(IN ) = S.

Set φj = {i ∈ IN : φ(i) = j}, j ∈ S. The switching law satisfies the following conditions, let σ(ti) ∈
φr, r ∈ S.

• If r < m, σ(ti+1) ∈ {φr+1, φm+1};
• If r = m, σ(ti+1) ∈ {φ1, φm+1};
• If m < r < NT , σ(ti+1) ∈ {φr+1, φm+1, φ1};
• If r = NT , σ(ti+1) ∈ {φ1, φm+1}.

The switching signal that satisfies Assumption 1 is called quasi-cyclic switching signal. As shown
in Table 2, φi(i = 1, 2, ..., m; m < NT) belongs to a quasi-cyclic switching topology set of stable
subsystems, φj(j = m + 1, m + 2, ..., NT) belongs to a quasi-cyclic switching topology set of unstable
subsystems. Let Ns, Nus be the length of the period of stable subsystems and unstable subsystems
respectively, so that Ns = m, Nus = NT − Ns.

Table 2. The schematic table for Assumption 1.

Stable Subsystems Unstable Subsystems
φ1 φ2 ... φm φm+1 ... φNT

φ(1) φ(d1 + 1) φ(dm−1 + 1) φ(dm + 1) φ(ds−1 + 1)
φ(2) φ(d1 + 2) φ(dm−1 + 2) φ(dm + 2) φ(ds−1 + 2)

...
...

...
...

...
φ(d1) φ(d2)

...

φ(dm) φ(dm+1)

...

φ(ds)

Figure 1 displays a possible case of Table 2, where the quasi-switching follows Assumption 1.
As shown in Figure 1, the switching times are represented by tκ(κ ∈ N), which consist of the switching
not only among consecutive stable subsystems or consecutive unstable subsystems but also between
stable and unstable subsystems. The time series pk(pk ∈ tκ , k ∈ N) is introduced to denote the
switching times between stable and unstable subsystems. When p0 = t0, p1 = ts1 , . . . , pk = tsk , . . . pn =

tsn(sς ∈ κ, ς ∈ N), the systems are switched between stable and unstable systems.
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Figure 1. Illustration of quasi-cyclic switching times.

3. Controller Design and Stability Analysis

3.1. Controller Design

The distributed controller of i-th tracking agent is designed as

ui(t) = −K1 ∑
j∈Ni(t)

aij(σ(t))eij(t)− K2hi(σ(t))ei(t) (4)

where K1, K2 ∈ Rp×m are the control matrices. eij(t) = xi(t)− xj(t) is the tracking error between the
i-th tracking agent and the j-th tracking agent, ei(t) = xi(t)− xt(t) is the tracking error between the
i-th tracking agent and the target agent.

Define the collective tracking error E(t) = [eT
1 (t), eT

2 (t), ..., eT
N(t)]. Then the error dynamics can be

obtained through combining the tracking agent’s dynamics (1), the target agent’s dynamics (2), and the
controller (4), which is designed with tracking errors based on distributed control protocol.

Ė(t) = (IN ⊗ A)E(t)− (Lσ(t) ⊗ BK1 +Hσ(t) ⊗ BK2)E(t)

= ((IN ⊗ A)− (Lσ(t) ⊗ BK1 +Hσ(t) ⊗ BK2))E(t)
(5)

where Lσ(t) ∈ RN×N , Hσ(t) ∈ RN×N are the corresponding Laplacian matrices of dynamic graph at
tracking time t related to switching signal σ(t). Denote Aσ(t) = (IN ⊗ A)− (Lσ(t) ⊗ BK1 +Hσ(t) ⊗
BK2), tracking error system (5) is reorganized as

Ė(t) = Aσ(t)E(t) (6)
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Since Aσ(t) = (IN ⊗ A)− (Lσ(t) ⊗ BK1 +Hσ(t) ⊗ BK2), Aσ(t) is related to control matrices K1, K2,
and the Laplacian matrix of tracking topology with target agent Lσ(t),Hσ(t). Thus, according to the
definition of successful tracking, the tracking problem can be elaborated as the stability of the above
tracking error system.

Then the collective tracking error of the multi-agent system is obtained:

E(t) = eAσ(t)(t−t0)E(t0) (7)

Let a = maxk∈IN ak, where aσ(ti)
≥ 0, aσ(tj)

≥ 0 such that [38]‖e
Aσ(ti)

t‖ ≤ eaσ(ti)
−λσ(ti)

t, σ(ti) ∈ N−s
‖eAσ(tj)

t‖ ≤ e
aσ(tj)

+λσ(tj)
t
, σ(tj) ∈ N+

us

(8)

where N−s = {1, 2, ..., Ns}, N+
us = {NT − Nus + 1, NT − Nus + 2, ..., NT} is the set of a

quasi-cyclic switching sets of stable subsystems and unstable subsystems respectively. λσ(ti)
=

−max{Re(λAσ(ti)
)} > 0 and λσ(tj)

= max{Re(λAσ(tj)
)} > 0, λAσ(ti)

, λAσ(tj)
are the eigenvalues of Aσ(ti)

and Aσ(tj)
respectively. λσ(ti)

and λσ(tj)
are related to the Laplacian matrix Lσ(t), Hσ(t) and control

matrix K1, K2.

Remark 1. According to the Equations (4)–(8), the eigenvalue of the subsystem is related to the Laplacian
matrices of topology among multiple agents. The positive and negative eigenvalues correspond to the unstable
and stable subsystem respectively. Different from cyclic switching in [37], quasi-cyclic switching system does
not follow a strict cycle, and could jump from any subsystem in stable quasi-cyclic period to the first subsystem
in unstable quasi-cyclic period and vice versa.

3.2. Stability Analysis

Theorem 1. Consider the multi-agent system (6), if there exist positive numbers λ̄ > 0, λ̆ > 0, λF > 0 and
λ∗ > 0 such that 

λ̄ =
(∑Ns

i=1 λφi )

Ns
, φi ∈ N−s

λ̆ =
(∑Nus

j=1 λφj)

Nus
, φj ∈ N+

us

(9)

{
λF = max(λφi ), φi ∈ N−s
λ∗ = max(λφj), φj ∈ N+

us
(10)

where λφi = min{λφ(di−1+1), λφ(di−1+2), ..., λφ(di)
}, λφj = max{λφ(dj−1+1), λφ(dj−1+2), ..., λφ(dj)

}. τus
max and

τs
min refer to the maximum dwell time of unstable subsystems and the minimum dwell time of stable subsystems,

respectively. Then if there exists 0 < γ < λ̄, which satisfies

τus
max

τs
min
≤

((λ̄− γ)
⌈

N−σ (t0,t)
Ns

⌉
− λF)Ns

((λ̆ + γ)
⌊

N+
σ (t0,t)
Nus

⌋
+ λ∗)Nus

(11)

the tracking multi-agent system (6) with quasi-cyclic switching signals is exponentially stable, and the rate of
stability equals Γ which is a positive number related to γ.

Proof. Select the Lyapunov candidate for the tracking system (6) as

V(t) = ET(t)E(t) (12)
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According to the collective tracking error of the multi-agent system (7), it has

V(t) = [eAσ(t)(t−t0)E(t0)]
T [eAσ(t)(t−t0)E(t0)]

= ET(t0)(e
Aσ(t)(t−t0))TeAσ(t)(t−t0)E(t0)

(13)

Without loss of generality, suppose the subsystem is stable at the first time interval. Then, over the
time interval [p0, p1) = [t0, ts1), according to (8), it has

V(t1) ≤ e2(aσ(t1)
−λσ(t1)

(t1−t0))V(t0)

V(t2) ≤ e2(aσ(t2)
−λσ(t2)

(t2−t1))V(t1)

≤ e2(aσ(t2)
−λσ(t2)

(t2−t1)+aσ(t2)
−λσ(t1)

(t1−t0))V(t0)

...

(14)

V(ts1) ≤ e2(aσ(ts1 )
−λσ(ts1 )

(ts1−ts1−1))V(ts1−1)

≤ e2(aσ(ts1 )
−λσ(ts1 )

(ts1−ts1−1)+...+aσ(t2)
+λσ(t2)

(t2−t1)

+aσ(t1)
−λσ(t1)

(t1−t0))V(t0)

≤ e
2(∑

s1
i=1 aσ(ti)

−∑
s1
i=1(λσ(ti)

T−
σ(ti)

(t0,ts1 )))V(t0)

≤ e2(∑
s1
i=1 aσ(ti)

−τs
min ∑

s1
i=1 λσ(ti)

)V(t0)

(15)

≤ e
2(∑

s1
i=1 aσ(ti)

−τs
min(∑

Ns
i=1 λφi

⌈
Nσ(t0,ts1 )

Ns

⌉
−λFNs))

V(t0)

≤ e
2(a(Nσ(t0,ts1 )+1)−(λ̄Ns

⌈
Nσ(t0,ts1 )

Ns

⌉
−λFNs)τs

min)V(t0)

At time p1 = ts1 , the multi-agent tracking system switches from a stable subsystem to an
unstable subsystem.

V(ts1+1) ≤ e
2(aσ(ts1+1)

+λσ(ts1+1)
(ts1+1−ts1 ))V(ts1)

≤ e
2(aσ(ts1+1)

+λσ(ts1+1)
(ts1+1−ts1 ))V(ts1)

V(ts1+2) ≤ e
2(aσ(ts1+2)

+λσ(ts1+2)
(ts1+2−ts1+1))V(ts1+1)

≤ e
2(aσ(ts1+2)

+λσ(ts1+2)
(ts1+2−ts1+1))V(ts1+1)

...

V(ts2) ≤ e2(aσ(ts2 )
+λσ(ts2 )

(ts2−ts2−1))V(ts2−1)

≤ e2(aσ(ts2 )
+λσ(ts2 )

(ts2−ts2−1)+...

+aσ(ts1+2)
+λσ(ts1+2)

(ts1+2−ts1+1)

+aσ(ts1+1)
+λσ(ts1+1)

(ts1+1−ts1 ))V(ts1)

≤ e
2(∑

s2
i=s1

aσ(ti)
+∑

s2
i=s1

(λσ(ti)
T+

σ(ti)
(ts1 ,ts2 )))V(t1)

≤ e2(a(Nσ(ts1 ,ts2 )+1)+τus
max ∑

s2
i=s1

λσ(ti)
)V(t1)

≤ e2(a(Nσ(ts1 ,ts2 )+1)

e
2(λ̆Nus

⌊
Nσ(ts1 ,ts2 )

Nus

⌋
+λ∗Nus)τus

max)
V(ts1)

(16)
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With iterations and derivations, at time t ∈ [tk, tk+1), we have

V(t) ≤ e2a(Nσ(t0,t)+1)

e
−2(λ̄Ns

⌈
N−σ (t0,t)

Ns

⌉
−λFNs)τs

min

+2(λ̆Nus

⌊
N+

σ (t0,t)
Nus

⌋
+λ∗Nus)τus

max
V(t0)

≤ Ce
2((λ̆

⌊
N+

σ (t0,t)
Nus

⌋
+λ∗)Nusτus

max−(λ̄
⌈

N−σ (t0,t)
Ns

⌉
−λF)Nsτs

min)

≤ Ce
2(((λ̆+γ)

⌊
N+

σ (t0,t)
Nus

⌋
+λ∗)Nusτus

max

−((λ̄−γ)

⌈
N−σ (t0,t)

Ns

⌉
−λF)Nsτs

min

−γ(

⌊
N+

σ (t0,t)
Nus

⌋
Nusτus

max+

⌈
N−σ (t0,t)

Ns

⌉
Nsτs

min))

(17)

where C = e2a(Nσ(t0,t)+1). From the condition in Theorem 1, it can be derived that

((λ̆ + γ)
⌊

N+
σ (t0,t)
Nus

⌋
+ λ∗)Nusτus

max

− ((λ̄− γ)
⌈

N−σ (t0,t)
Ns

⌉
− λF)Nsτs

min ≤ 0
(18)

Substituting (18) into (17), we have

V(t) ≤ Ce−2γ(αN+
σ (t0,t)τus

max+βN−σ (t0,t)τs
min)

≤ Ce−2γ′(N+
σ (t0,t)τus

max+N−σ (t0,t)τs
min)

≤ Ce−2γ′(T+(t0,t)+(1−η)T−(t0,t))

≤ Ce−2γ′(T+(t0,t)+T−(t0,t)−ηT−(t0,t))

≤ Ce−2γ′(t−t0−ηT−(t0,t))

(19)

where γ > 0, α ∈ (0, 1], β ∈ (0, 1], 0 < γ′ ≤ γmin{α, β}, η ∈ (0, 1]. There must be a positive number Γ
satisfying 2γ′(1− η) < Γ < 2γ′, namely, 2γmin{α, β}(1− η) < Γ < 2γmin{α, β} so that

V(t) ≤ Ce−Γ(t−t0))V(t0) (20)

which implies the exponential stability of the tracking error (7). Therefore, with the proposed tracking
strategy, the tracking error between each tracking agent and target agent is 0 when t → ∞ even if
unstable subsystems exist. Thus, the proof is complete.

4. A Numerical Example

In this section, a numerical example is provided to validate the effectiveness of the aforementioned
theoretical results.

Consider a multi-agent system with one target agent followed by three tracking agents under
the quasi-cyclic switched topologies, which is shown in Figure 2, where {φ1, φ2, φ3} ∈ N−s
(φ1 = {φ(1), φ(2), φ(3)}, φ2 = {φ(4), φ(5), φ(6), φ(7)}, φ3 = {φ(8), φ(9)}) and {φ4, φ5} ∈ N+

us
(φ4 = {φ(10), φ(11), φ(12)}, φ5 = {φ(13), φ(14), φ(15)}).



Appl. Sci. 2020, 10, 8889 9 of 14

1
:

3

T

1 2

3

T

1 2

(1)

3

T

1 2

(1)

3

T

1 2

3

T

1 2

(2)

3

T

1 2

(2)

3

T

1 2

3

T

1 2

(3)

3

T

1 2

(3)

1
:

3

T

1 2

(1)

3

T

1 2

(2)

3

T

1 2

(3)

2
:

3

T

1 2

3

T

1 2

(4)

3

T

1 2

(4)

3

T

1 2

3

T

1 2

(5)

3

T

1 2

(5)

3

T

1 2

3

T

1 2

(6)

3

T

1 2

(6)

3

T

1 2

3

T

1 2

(7)

3

T

1 2

(7)

2
:

3

T

1 2

(4)

3

T

1 2

(5)

3

T

1 2

(6)

3

T

1 2

(7)

3
:

3

T

1 2

3

T

1 2

(8)

3

T

1 2

(8)

3

T

1 2

3

T

1 2

(9)

3

T

1 2

(9)

3
:

3

T

1 2

(8)

3

T

1 2

(9)

4
:

3

T

1 2

3

T

1 2

(10)

3

T

1 2

(10)

3

T

1 2

3

T

1 2

(11)

3

T

1 2

(11)

3

T

1 2

3

T

1 2

(12)

3

T

1 2

(12)

4
:

3

T

1 2

(10)

3

T

1 2

(11)

3

T

1 2

(12)

5
:

3

T

1 2

3

T

1 2

(13)

3

T

1 2

(13)

3

T

1 2

3

T

1 2

(14)

3

T

1 2

(14)

3

T

1 2

3

T

1 2

(15)

3

T

1 2

(15)

5
:

3

T

1 2

(13)

3

T

1 2

(14)

3

T

1 2

(15)

sta
b
le

u
n
sta

b
le

Figure 2. An example of quasi-cyclic switching topologies.

According to the dynamic feedback linearization technology [39] that has adopted in distributed
control of multi-agent systems with nonholonomic mobile robots [40,41], the dynamics of the system (1)
can be linearized with the following matrices

A =

[
0.6 0.8
−1.2 −0.5

]
, B =

[
0.5
0.5

]
(21)

The controller (4) of each tracking agent is designed with parameters

K1 = [3.61 1.27], K2 = [5.22 1.08] (22)

which have been verified that guarantee the stability of the system when the agents are topologically
connected and meet the requirements of Theorem 1.

Consider a scenario where a team of three agents track a maneuvering target in a two-dimensional
space. The initial position of the target agent is xt(0) = [6, 6]. The initial positions of the three tracking
agents are x1(0) = [0, 8], x2(0) = [0, 4] and x3(0) = [4, 0].

Tracking trajectories of the agents are shown in Figure 3, from which we can see that successful
tracking is eventually achieved.

Errors of position between target agent and each tracking agent are plotted in Figure 4. The errors
of tracking agents decreased to less than 0.01 within 5 s. Apparently every tracking agent successfully
tracks the target agent under the quasi-cyclic topologies with the proposed tracking strategy (4).
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Figure 3. Tracking trajectories of the system.

The switching signal in the simulation is depicted in Figure 5. The switching sequence is:
φ(1)→ φ(5)→ φ(9)→ φ(1)→ φ(4)→ φ(8)→ φ(2)→ φ(6)→ φ(11)→ φ(14)→ φ(11)→ φ(1)→
φ(6) → φ(8) → φ(3) → φ(10) → φ(14) → φ(11) → φ(15) → φ(1) → φ(7) → φ(9) → φ(2) →
φ(5) → φ(11) → φ(13) → φ(11) → φ(2) → φ(7) → φ(12) → φ(2) → φ(5) → φ(9) → φ(2) which
can also be represented as φ1 → φ2 → φ3 → φ1 → φ2 → φ3 → φ1 → φ2 → φ4 → φ5 → φ4 → φ1 →
φ2 → φ3 → φ1 → φ4 → φ5 → φ4 → φ5 → φ1 → φ2 → φ3 → φ1 → φ2 → φ4 → φ5 → φ4 → φ1 →
φ2 → φ4 → φ1 → φ2 → φ3 → φ1It obviously conforms to the quasi-cyclic law compared to Figure 2.
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Figure 4. Errors between target agent and each tracking agent.

The topology of the multi-agent system switches 33 times during the tracking process. The profiles
of the norm of tracking errors are plotted in Figure 6. It can be clearly seen that the tracking error
eventually converges to zero even though it increases at some instants due to the occurrence of unstable
subsystems. From the above results in Figures 3–6, we can see that the states of tracking agents can
track the target’s state successfully with the quasi-cyclic switched topologies.
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Figure 6. Norm of tracking errors.

According to Equations (17)–(20), the value of γ is related to the convergence rate. It can be seen
from the Equation (11) that the value of γ is also positively correlated with maximum dwell time of
unstable subsystems. Thus, there exists a trade-off in γ between the convergence rate and the maximum
dwell time of unstable subsystems. In this example, with the trade-off factor γ = 0.1, we obtain
τus

max = 1.2, τs
min = 0.3, λ̄ ≈ 0.47, λ̆ ≈ 0.05 , N−σ (t0, t) = 23, N+

σ (t0, t) = 11, Ns = 3, Nus = 2, λF ≈ 0.67,

λ∗ ≈ 0.05.
τus

max
τs

min
= 4,

((λ̄− γ)
⌈

N−σ (t0,t)
Ns

⌉
− λF)Ns

((λ̆ + γ)
⌊

N+
σ (t0,t)
Nus

⌋
+ λ∗)Nus

≈ 4.29, then
τus

max
τs

min
<

((λ̄− γ)
⌈

N−σ (t0,t)
Ns

⌉
− λF)Ns

((λ̆ + γ)
⌊

N+
σ (t0,t)
Nus

⌋
+ λ∗)Nus

,

which apparently satisfies the condition in Theorem 1. As analyzed, the stability of the multi-agent
tracking systems with quasi-cyclic topologies is related to the ratio of the maximum dwell time of
unstable subsystems and the minimum dwell time of stable subsystems, which effectively verifies the
correctness of theoretical results.
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5. Conclusions

In the paper, the switching problem of the multi-agent tracking systems with quasi-cyclic
communication topologies is investigated. During this tracking process, several tracking agents have
to cooperate and communicate with each other to track a maneuvering target. The communication
links among the multiple agents may be interrupted due to the limitation of communication range or
the appearance of obstacles, leading to unconnected communication topologies, which correspond to
unstable subsystems. Existing results usually require the piecewise topologies to be connected or switch
circularly. In order to relax the constraints, this paper proposes a quasi-cyclic method for MASs which
contain a more practical switching rule with respect to a looser dwell time criterion. Moreover, it is
proved that the tracking error converges exponentially in a less conservative way. Sufficient conditions
that guarantee the stability of MASs with unstable subsystems are achieved. A numerical simulation
is carried out to illustrate the validity of the theoretical results. It is concluded that the convergence
rate and the maximum allowable dwell time of unstable subsystems are contradictory. Besides,
the proposed method may be used not only in such scenarios as collaborative target tracking and
convoy of vehicles, but also be promising in surveillance of a specific area and multi-robot coordination,
in the case that the communication topologies of multiple agents are quasi-cyclic switched. However,
there are still some challenging problems for MASs with switching topologies to be solved. In our
future work, we will try to investigate a more widely applicable approach, considering the systems
with nonlinear agents, and unknown time-varying communication delays.
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