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Abstract: Lithium-ion battery on-line monitoring is challenging due to the unmeasurable
characteristic of its internal states. Up to now, the most effective approach for battery monitoring
is to apply advanced estimation algorithms based on equivalent circuit models. Besides, a usual
method for estimating slowly varying unmeasurable parameters is to include them in the state vector
with the zero-time derivative condition, which constitutes the so-called extended equivalent circuit
model and has been widely used for the battery state and parameter estimation. Although various
advanced estimation algorithms are applied to the joint estimation and dual estimation frameworks,
the essence of these estimation frameworks has not been changed. Thus, the improvement of the
battery monitoring result is limited. Therefore, a new battery monitoring structure is proposed in
this paper. Firstly, thanks to the superposition principle, two sub-models are extracted. For the
nonlinear one, an observability analysis is conducted. It shows that the necessary conditions for
local observability depend on the battery current, the initial value of the battery capacity, and the
square of the derivative of the open circuit voltage with respect to the state of charge. Then, the
obtained observability analysis result becomes an important theoretical support to propose a new
monitoring structure. Commonly used estimation algorithms, namely the Kalman filter, extended
Kalman filter, and unscented Kalman filter, are selected and employed for it. Apart from providing
a simultaneous estimation of battery open circuit voltage, more rapid and less fluctuating battery
capacity estimation are the main advantages of the new proposed monitoring structure. Numerical
studies using synthetic data have proven the effectiveness of the proposed framework.

Keywords: lithium-ion battery; battery monitoring; extended equivalent circuit model; observability
analysis; Kalman filtering

1. Introduction

As a typical type of electrochemical power source, lithium-ion batteries (LIBs) undergo
degradation in both energy capacity and internal resistance during their irreversible aging process [1].
Hence, a reliable and efficient operation of LIBs requires monitoring, control, and management [2,3]. A
battery management system (BMS) is of great importance for the batteries, and state estimation is one
of its key roles [4]. Accurately assessing the battery state of charge (SOC) and state of health (SOH)
can not only make batteries work closer to their physical limits, but also guarantee their safety and
lifetime [5]. However, due to the unmeasurable characteristic of these indicators, battery monitoring
is challenging. With a mathematical model that characterizes the dynamics of the battery, indicators
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such as SOC, SOH, etc., need to be inferred from the limited available measurements such as current,
terminal voltage, and surface temperature [6].

Up to now, the most effective approach for battery monitoring is to apply advanced estimation
algorithms based on equivalent circuit models (ECMs) [7]. The ECM composed of an open circuit
voltage (OCV) source connected in series with a resistor and one or more RC networks is widely
used to reproduce the battery’s electrical behavior and to further accomplish the objective of battery
state estimation [8]. However, the model parameters are actually affected by many factors such as
temperature, SOC, charge/discharge rates, and battery aging [4]. Hence, the state-of-the-art estimation
methods usually focus on an on-line identified battery model, namely the adaption of model parameters
is indispensable. In [9], the parameters of a Thevenin model were constantly updated by a forgetting
factor recursive least squares algorithm, while the nonlinear Kalman filter was used to perform the
SOC estimation. The series combination of the commonly used recursive least squares (RLS) method
and nonlinear state estimator provides a feasible way to enhance the estimation accuracy. In addition,
a multi-timescale estimator with a vector-type RLS parameter adaption mechanism was proposed in [4].
The vector-type RLS can address the different variation rates of battery parameters, and then, Kalman
filter-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form
of dual estimation. Furthermore, considering the the current and voltage sensors are usually corrupted
by noises, a novel technique that integrates the Frisch scheme-based bias compensating RLS with a SOC
observer was proposed in [10]. The proposed method estimates the noise statistics and compensates
the noise effect so that the model parameters can be extracted without bias. Similarly, the on-line
model parameterization process considering the measurement noises was discussed in [11,12] recently.

In fact, the aforementioned battery monitoring process can be eventually converted to a classical
state and parameter estimation problem. A usual method for estimating slowly varying unmeasurable
parameters is to include them in the state vector with the zero-time derivative condition [13]. We can
obtain the so-called battery extended ECM. Then, joint or dual estimation methods, mainly based
on single or double observers, are preferred [14] and can be applied to the battery extended ECM.
Apart from enhancing the accuracy of state estimation, the estimated parameters can also be used to
build a battery SOH indicator. SOH, usually evaluated by some related battery parameters correlated
with their aging degrees, can be effectively estimated with the zero-time derivative condition. SOC,
as the battery energy state indicator, usually appears as a state variable derived from the common
ampere-hour integral method [15].

On the one hand, the joint estimation method based on a single observer can cope with the battery
monitoring problem in high-dimensional state space directly. For instance, a single extended Kalman
filter (EKF) was applied to the joint estimation structure for battery state and parameter estimation
in [16]. Improvement of the battery monitoring performance with the joint estimation method
using the unscented Kalman filter (UKF) can be found in [17]. Furthermore, simultaneous battery
OCV estimation is realized with adaptive EKF in the joint estimation framework in [18]. Recently,
considering the model uncertainties in [19], H∞ EKF was introduced to the joint estimation structure in
order to have a robust estimation of battery SOC and ohmic and polarization resistance simultaneously.

On the other hand, a more flexible estimation framework based on two observers is called the
dual estimation method. The double EKF [14], double UKF [17], double sliding mode observer [20],
double H∞ observer [21], and double particle filter [22] are introduced to the dual estimation
framework, where battery parameters and states can be estimated separately with different time
scales. Additionally, merging the advantages of different filtering techniques is another objective of the
dual estimation method. For example, the UKF and H∞ observer were applied in the dual estimation
framework in [23], in which the H∞ observer was used to have a robust battery parameter estimation,
and more accurate SOC estimation was achieved with UKF.

Although fruitful research works have been brought based on the two aforementioned classical
structures, the essence of the different observer-based battery monitoring studies has not changed.
The main existing problem in the current two monitoring structures will be intuitively pointed out
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by a representative research work as follows. In [24], the multi-time scale dual estimation framework
was studied with EKF. As shown in Figure 1, an interesting phenomenon can be observed from the
experimental results. It raises several questions.

1. Why is the convergence speed of the battery usable capacity so slow?

A similar problem can also be found in other research works such as [2,14], etc. Although they
explained that the capacity estimation is faster than the capacity degradation, the slow
convergence speed of battery usable capacity in classical monitoring structures, usually several
hours, still needs to be explored.

2. Why will the smaller initial value of battery usable capacity lead to a rapid convergence speed?

As can be observed from Figure 1a–d, although the steady state error was similar for 1 Ah or 2
Ah, the convergence speed of the estimation was faster with the lowest initial value.

3. Are there other observability conditions that can guarantee a rapid convergence speed for the
battery usable capacity?

Based on the above question, how to find the other observability conditions to improve the battery
monitoring result is of great importance. Indeed, the convergence rate can be adjusted by varying
the process and measurement noise covariance during the observer design process [24]. However,
intrinsic characteristics from the battery or the used model should be mastered, whether we can
take advantage of them or effectively avoid them.

4. How can we improve the battery monitoring performance based on the classical extended ECM,
if the answers to the aforementioned questions are found?

That is, how can we take advantage of the existing literature, including the validated model and
experimental information, to propose a new battery monitoring structure that can overcome the
drawbacks of the traditional joint and dual estimation frameworks?

Figure 1. Battery usable capacity estimation result with the dual estimation framework [24], Copyright
Elsevier, 2012. (a,b) are the capacity estimation result with a multi-time scale; (c,d) are the capacity
estimation result with a single time scale. Both of these two experimental validations are tested with
smaller (1 Ah) and larger (2 Ah) initial values in EKF than the true value of 1.5 Ah (Ah: ampere-hour).

Hence, the contribution of this paper lies in answering the four previously proposed
questions. Namely:



Appl. Sci. 2020, 10, 1009 4 of 20

• Thanks to the superposition principle, two sub-models are extracted. For the nonlinear one,
an observability analysis is conducted. The local observability for battery ECM parameters and
battery usable capacity are analyzed separately.

• The necessary observability conditions for the extended ECM are derived and clearly listed.
It shows that the necessary conditions for local observability depend on the battery current value,
the initial value of the battery capacity, and the square of the derivative of the OCV with respect
to the SOC.

• A new cascaded framework for the LIB state and parameter estimation is proposed based on the
obtained theoretical analysis results. The battery ECM parameter estimation and battery capacity
estimation are divided into two parts. A simultaneous estimation of OCV will connect these
two parts.

• The derived local observability conditions and the new proposed framework extend the traditional
battery monitoring study.

The remainder of this paper is organized as follows. Firstly, details of the extended battery ECM
will be introduced in Section 2. Secondly, a theoretic and systematic observability analysis for the
nonlinear extended battery ECM will be developed in Section 3, where the necessary local observability
conditions of the battery state and parameter estimation will be clearly listed. Thirdly, a new cascaded
framework for battery monitoring, with a main improvement for the battery usable capacity estimation,
will be proposed in Section 4. Furthermore, Section 5 is dedicated to the numerical evaluation of the
estimation framework. Last, but not least, conclusions will be drawn in Section 6.

2. Battery ECM and Extended Battery ECM

2.1. Battery ECM

The considered battery ECM is shown in Figure 2. It is one of the most widely used ECMs [6],
and it includes a double RC network, which is a good trade-off between the error and the complexity
of the model compared with single and triple RC structures [25].

Figure 2. Battery equivalent circuit model (ECM) with the double RC network.

The resistor R0 stands for ohmic resistance, which includes the resistance of contacts, electrodes,
as well as electrolytes [26]. The double pair RC captures the transient battery dynamics such as the
charge transfer kinetics, the lithium ion diffusion, and solid/electrolyte interface (SEI) dynamics [8].

The voltage source VOC represents the OCV, which mainly depends on the battery SOC [8]. As an
example shown in Figure 3, its average value, VOC(soc), is usually a monotonically increasing function
of SOC [27]. In each SOC interval, it can be approximated by VOCi(soc) = ai · soc + bi (ai and bi are
constant in the ith SOC interval). The nonlinearity of this curve is inevitable.
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Figure 3. General form of the average open circuit voltage (OCV) curve (example adapted from [28],
Copyright IEEE, 2013).

Furthermore, the battery SOC ∈ [0%, 100%] can be modeled by the classical Coulomb counting
method [28]:

soc(t) = soc(t0)− η

t∫
t0

Ibatt(τ)

Cn
dτ (1)

where soc is the operator of SOC; η is the Coulombic efficiency; Cn (Ah) is the battery usable capacity;
soc(t) is the required SOC at time point t based on its initial value soc(t0).

Therefore, the battery dynamic behavior can be described by the following state-space representation:
dV1(t)

dt

dV2(t)
dt

dsoc(t)
dt

 = M


V1(t)

V2(t)

soc(t)

+ NIbatt(t)

Vbatt(t) = VOC(soc)−V1(t)−V2(t)− R0 Ibatt(t)

(2)

where,

M =


−1

R1C1
0 0

0 −1
R2C2

0

0 0 0

 , N =


1

C1
1

C2
−η
Cn


and Vbatt is the battery output voltage. V1 and V2 are the voltages across the capacitors C1 and C2,
respectively; Ibatt is the battery input current, according to its reference direction in Figure 2; “+” means
discharging process, while “-” means charging process.

2.2. Extended Battery ECM

To take into account the parametric variation due to the aging process, the relationship dP
dt ≈ 0 will

be considered to build an extended battery ECM, where P is a general representation of the parameters
such as R0, R1, R2, C1, C2, and Cn. Details for the zero-time derivative condition for battery parameters
can be found in [29]. Hence, the extended battery model is given in (3).

It has been shown that the parameter variation of the second RC network during the aging process
can be neglected [19]. Therefore, R2 and C2 are considered as constant. Hence, only the four parameters
R0, R1, C1, and Cn are considered as additional state variables and will be estimated with the SOC.
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The updating of these variables will cancel or at least mitigate the battery aging effect or temperature
variation on the monitoring [23]. Finally, the extended battery model is as follows:

dV1(t)
dt = −1

R1(t)C1(t)
V1(t) + 1

C1(t)
Ibatt(t)

dV2(t)
dt = −1

R2C2
V2(t) + 1

C2
Ibatt(t)

dsoc(t)
dt = −η Ibatt(t)

Cn(t)
dR0(t)

dt ≈ 0
dR1(t)

dt ≈ 0
dC1(t)

dt ≈ 0
dCn(t)

dt ≈ 0

(3)

Vbatt(t) = VOC(soc)−V1(t)−V2(t)− R0(t) · Ibatt(t)

3. Local Observability Conditions for the Extended Battery ECM

The concept of observability is useful in reconstructing the unmeasurable state variables from the
measurable signals. Therefore, assessing the observability for the used model before executing the
state and parameter estimation is necessary. However, due to the numerous states and nonlinearity,
observability analysis for the extended battery model (3) is challenging and usually overlooked by
most of the research works.

In [6], linear and nonlinear observability analysis methods were compared for the battery SOC
estimation with ECM. It was pointed out that the local observability of a nonlinear dynamic system
at an operating point is not the same as the observability of the system linearized around this point.
Recently, the observability analysis for the extended ECM without extending the battery capacity
was done in [19], where non-zero input battery current was deduced as the observability condition.
However, the observability analysis for the extended battery model (3) needs further discussion.

Hence, a theoretic and systematic observability analysis method is proposed specifically for the
extended battery ECM in this paper. Firstly, the characteristic of the battery ECM is used to decompose
the original ECM into two sub-models. Then, nonlinear observability analysis method is applied for
each sub-model. A schematic diagram of the proposed analysis method is shown in Figure 4, where
the arrows represent the analysis process.

Figure 4. Schematic diagram of the analysis process.
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3.1. Battery ECM Decomposition

In essence, the nonlinearity of the battery model is due to VOC. Therefore, researchers generally
resort to the linearized model to simplify the analysis process. The observability is studied in different
SOC operating intervals as shown in Figure 3 [6].

Based on the same approach, we consider that in each SOC interval, the ECM is a linear model
of the battery. Hence, the superposition principle can be applied [30]. The battery ECM displayed in
Figure 5a is split into two sub-models:

- in Figure 5b, only the current source is considered;
- in Figure 5c, the current source is disconnected and only the voltage source is under consideration.

One sub-model has two states, namely V1 and V2; while the other one, which is only composed of
the OCV voltage source, has only one state, which is SOC.

Figure 5. Battery ECM decomposition according to the superposition principle.

3.2. Observability Analysis for the Extended Sub-Models

The observability for the first sub-model depicted in Figure 5b was already studied in [31].
The conclusion was that the time varying behavior of battery current Ibatt was of utmost importance to
guarantee good observability conditions for the estimation of R0, R1, C1. To be specific, in order to
estimate the ECM parameters without affecting the battery discharging process, an additional pseudo
random binary signal (PRBS) can be added to the battery constant charging current by the charging
controller. The added PRBS provides a persistently exciting signal, which makes the extended system
observable [31].

Therefore, only the observability analysis for the second sub-model will be developed in the
following. When the current source is disconnected, Ibatt = Id, where Id stands for the self-discharge
current. This current is naturally very small compared to the current that flows in or out of the battery
when connected to the load. Therefore, the voltage across R0 and the RC networks can be neglected
when compared to VOC.

Eventually, the state-space representation of this sub-model can be written as:{ dsoc(t)
dt = −η Ibatt(t)

Cn(t)
dCn(t)

dt ≈ 0

y2 = VOC(soc)

(4)

Besides, one can first recall that a numerical determination theorem for the local observability of

a nonlinear model

{
ẋ = f (x, u)
y = h(x, u)

, where x is an n×1 state vector, y is a scalar output, u is a scalar

system input, f (·) and h(·) are nonlinear functions, at point x0 is as follows [31]:

Theorem 1. If the following Jacobian matrix J has full rank, then the nonlinear system is locally observable
at x0.
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J =
∂Y
∂x

=
∂

∂x


h(x, u)

L f (h)(x, U)

L f (h1)(x, U)
...

L f (hn−2)(x, U)

 (5)

where Y = [y, y′, ..., y(n−1)]T, U = [u, u′, ..., u(n−1)]T, and the ith derivative of the scalar output y can be
represented by Lie operator L f (h), which is the total differentiation of h:

y(i) = L f (hi−1)(x, U)

=
∂hi−1

∂x
(x, U) f (x, u) +

∂hi−1
∂u

(x, U)
dU
dt

(6)

e.g., y′ = dy
dt = ∂h

∂x f + ∂h
∂u u′ = h1(x, u, u′)

Hence, according to Theorem 1, the Jacobian matrix J for the extended sub-model (4) is:

J =
∂(y2, ẏ2)

∂(soc, Cn)
=

[ dVOC
dsoc 0

Θ dVOC
dsoc · (

η Ibatt(t)
C2

n(t)
)

]
(7)

Note 1: ẏ2 = dVOC(soc)
dt = dVOC

dsoc ·
dsoc
dt = dVOC

dsoc · (
−η Ibatt(t)

Cn(t)
)

Note 2: Because of the zero in (7), Θ is just a symbol to represent the corresponding term in the
2× 2 matrix, and it will have no effect on the determinant of J.

Therefore, the local observability condition for extended model (4) is defined by (8), where several
interesting concluding remarks can be drawn.

det(J) =
(

dVOC
dsoc

)2
· ( η Ibatt(t)

C2
n(t)

) 6= 0 (8)

1. The term
(

dVOC
dsoc

)2
induces the inherent weaker observability environment for the battery capacity

Cn. Because dVOC
dsoc is usually smaller than one, this means its square is always smaller than itself.

2. The input Ibatt appears in the numerator of det(J), which means the current value will also affect
the observability condition. It has been indicated in [32] that a higher absolute value of the
determinant will lead to a better observability. Hence, the larger the current is, the better is the
observability condition. However, the selected current level should be adequate, namely it should
make a compromise between the convergence speed and the battery high-rate charging current.

3. As C2
n is in the denominator of det(J), then its impact cannot be ignored. A very practical problem

in reality is how to choose the initial value for the estimation algorithm, namely an initial value
that is larger than the reference one or smaller than the reference one, and the reason why we
make that decision. With our demonstration, an initial capacity value that is smaller than the
reference value is recommended when the battery capacity is estimated under the extended model
framework, because this will enhance the observability condition.

To summarize, a schematic resume of the obtained necessary observability conditions for the
extended battery ECM is shown in Figure 6.

Note that these observability conditions are necessary, but not sufficient for battery monitoring,
because the observability of the model (3) will definitely be weaker than the observability of each
sub-model. However, the proposed indirect observability analysis method can avoid applying the
nonlinear observability method directly to the extended battery model, which would be tricky.
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Figure 6. Schematic resume of the necessary observability conditions for extended ECM.

4. New Cascaded Framework

Since the battery state and parameter estimations are usually carried out in the discrete time
domain inside BMS [33], the classical estimation methods will be reviewed rapidly based on the
discrete time model (9) before presenting the new cascaded estimation framework. The discrete time
model (9) is obtained with the zero-order hold approximation under the assumption that the current
Ibatt is constant between two adjacent sampling points. k is the time index.

In addition, considering the uncertainty of the modeling and data acquisition process, the
stochastic model is employed instead of a deterministic one. Hence, ω1, ω2, ω2 are additive model
errors. Using the common random walk model [19], ω4, ω5, ω6, ω7 are added to the slowly varying
parameters. υ is measurement noise. The sampling period is T. It is assumed that all noises are
additive white Gaussian (AWG).



V1(k) = e
−T

R1(k−1)C1(k−1) V1(k− 1) + R1(k− 1) ·
(

1− e
−T

R1(k−1)C1(k−1)

)
· Ibatt(k− 1) + ω1(k− 1)

V2(k) = e
−T

R2C2 V2(k− 1) + R2 ·
(

1− e
−T

R2C2

)
· Ibatt(k− 1) + ω2(k− 1)

soc(k) = soc(k− 1)− ηT
Cn(k−1) · Ibatt(k− 1) + ω3(k− 1)

R0(k) = R0(k− 1) + ω4(k− 1)
R1(k) = R1(k− 1) + ω5(k− 1)
C1(k) = C1(k− 1) + ω6(k− 1)
Cn(k) = Cn(k− 1) + ω7(k− 1)

Vbatt(k) = VOC(soc)−V1(k)−V2(k)− R0(k) · Ibatt(k) + υ(k)

(9)

Based on (9), one way to execute the state and parameter estimation is to use a single observer,
which is called the joint estimation method. Another way that resorts to two parallel observers is
named as the dual estimation method, where parameter estimation can be isolated. Thus, it makes the
multi-time scale estimation possible [17]. Although employing more advanced observers can improve
the monitoring result based on these two classical estimation structures, the improvement is limited
due to the incorrect parameter grouping.
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After obtaining the necessary observability conditions, it shows that battery usable capacity
estimation has a higher demand for the observability condition. Especially, its inherent weak

observability caused by the term
(

dVOC
dsoc

)2
brings the challenge. It is better to estimate the battery usable

capacity separately. Hence, the new proposed cascaded framework for battery state and parameter
estimation is shown in Figure 7, where X̂ (X = SOC, R0, R1, C1, VOC, Cn) stands for the estimated
vector. Three estimation modules can be clearly observed from this schematic representation, namely
the battery capacity estimation, the battery OCV estimation, and the battery SOC and ECM parameter
estimation. Besides, the aforementioned three parts are connected together by some key state variables.
Details for each part will be introduced in the following.

Figure 7. New proposed structure.

4.1. Battery Usable Capacity Estimation

A novel method to separate and estimate the battery usable capacity Cn is introduced here, where
the Coulomb counting model is reused. In addition, VOC(soc) is used as the output model in this
module because of its inherent relationship with SOC.

Hence, after adding Cn as an additional state, the on-line monitoring model prepared for the
battery capacity is shown in (10).{

soc(k) = soc(k− 1)− ηT
Cn(k−1) Ibatt(k− 1) + γ1(k− 1)

Cn(k) = Cn(k− 1) + γ2(k− 1)

yO(k) = VOC(soc) + δ(k)

(10)

where the added noises γ1,2 and δ are AWG.
Moreover, UKF, as a more powerful nonlinear observer, is selected for this two-state nonlinear

model. This choice can not only guarantee the estimation performance of Cn, but also limits the
increase of on-line calculation burden due to the separation.

However, the output equation yO in (10) is the battery OCV, which can not be measured during
the battery operation [34]. Hence, an OCV estimation part will be introduced later, which will be used
as a measured term for the battery usable capacity estimation module.
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4.2. Battery OCV Estimation

The estimated battery OCV plays an important role in the new cascaded framework. As can
be noticed in Figure 7, this module makes the connection between the estimated SOC and ECM
parameters and the estimation of the battery usable capacity.

Thanks to the zero-time derivative condition, the estimation of the battery OCV can also be done
similarly based on the extended model (11). The added noises ε1∼3 and ψ are also AWG. Furthermore:

F(k) =

 e
−T

R1(k)C1(k) 0 0

0 e
−T

R2C2 0
0 0 1

 , H = [−1,−1, 1]

G(k) =

 R1(k) · (1− e
−T

R1(k)C1(k) )

R2 · (1− e
−T

R2C2 )

0

 , J(k) = −R0(k)

 V1(k)
V2(k)

VOC(k)

 = F(k)

 V1(k− 1)
V2(k− 1)

VOC(k− 1)

+ G(k)Ibatt(k− 1) +

 ε1(k− 1)
ε2(k− 1)
ε3(k− 1)


Vbatt(k) = H

 V1(k)
V2(k)

VOC(k)

+ J(k)Ibatt(k) + ψ(k)

(11)

Note that based on our former research work, although the regression-based OCV estimation
algorithms can provide an independent OCV estimation, the observer-based method exhibits better
OCV estimation performance from the perspective of accuracy [34]. Hence, observer-based OCV
estimation is employed here in order to connect the other two parts. Besides, the estimation of the
polarization voltages V1 and V2 cannot be simply considered as done two times, i.e., during the
estimation of SOC and parameters, as well as the estimation of OCV. Because in the kth step, the battery
SOC and parameter estimation module use the information of the (k−1)th step; while the state transfer
matrix F(k) and the so-called control input matrix G(k) of (11) are calculated with the latest information
of the kth step, namely the estimation is executed with the updated battery ECM parameters.

Obviously, the full rank characteristic of the observability matrix for this linear model can be
easily verified. Therefore, the classical linear observer KF is used in this module.

4.3. Battery SOC and ECM Parameter Estimation

Due to the isolation of the battery usable capacity estimation, only the first six states of the state
model in (9) and its measurement model will be kept and used to estimate the battery SOC and
ECM parameters. Note that repetition of the Coulomb counting model is inevitable, because the
measured battery terminal voltage is an integral term, which cannot be divided into different
components respectively.

Besides, EKF, as one of the most used observers, is selected for this module in order to cope with
the nonlinear and high-dimensional hyperspace. It should be pointed out that the battery capacity Cn

is updated by the previously mentioned part. Thus, the combination of linear and different nonlinear
state tracking methods can make the new structure maintain the on-line calculation burden as small
as possible.
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5. Simulation Studies

5.1. Observability Conditions’ Assessment

All the battery parameters used in this paper, including the coefficients of a seventh-order
polynomial OCV curve as shown in (12), were taken from [28]. They were identified through the
pulsed charge and discharge tests by a pouch cell LIB. The hardware-in-the-loop validation was done
in order to confirm the proposed model and parameters.

VOC(soc) = a1 · soc7 + a2 · soc6 + a3 · soc5 + a4 · soc4...

... + a5 · soc3 + a6 · soc2 + a7 · soc1 + a8
(12)

Firstly, as shown in Figure 8, three special periodic input currents Ibatt were considered. In one
cycle (300 s), the LIB was discharged and recharged by a dynamic current during a small time period
at the beginning; then, a constant discharge current was applied to the battery; and finally, the battery
was idle until the next period. Besides, in order to verify whether the current value will affect the
estimation of the battery capacity, three constant discharge values were selected, namely 10 A, 15 A,
and 20 A.

Note that the 20 A discharge current was the default value. The EKF was initialized with the vector
x0 = [0, 0, 0.8, 0.001 Ω, 0.0035 Ω, 17,000 F, 18 Ah] in the simulation test if there is no further indication.
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Figure 8. Three different input currents for the battery.

• dIbatt
dt 6= 0 (variable battery input current)

Although there are three estimated ECM parameters, only the estimation result of R0 will be
discussed as an example. In order to verify the observability condition for the ECM parameter
estimation, a simulation test was conducted in which R0 would increase slowly in the battery model.

The result is shown in Figure 9a. The dashed line is the estimation of R0 by EKF. Figure 9b
is the enlargement of the estimation result in Figure 9a from 2100 s to 2450 s, and Figure 9c is the
corresponding estimation error, while Figure 9d is the corresponding input current. From Figure 9c
and Figure 9d, we can deduce that the observer estimated efficiently the resistance only when the
input current was variable. Besides, the fluctuating characteristic of the estimated R0 in Figure 9a
could be found evidently. This can be explained from the perspective of observability. The fluctuating
characteristic of the estimated R0 was due to the input current dynamics.
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• Battery input current level

On the other hand, three previously mentioned input currents were fed to the battery ECM
in order to verify whether the input current value would influence the observability condition for
battery capacity Cn estimation. Considering the effect of randomness in measurement noise, a simple
quasi-Monte Carlo simulation test was conducted with 100 estimations. The estimation result based
on (9) is shown in Figure 10. It confirmed that a higher value of the battery input current improved the
convergence speed of the battery capacity Cn estimation.
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Figure 10. Battery input current level effect on battery capacity estimation.

• Initial capacity value

In order to evaluate the effect of the battery capacity initial value, the estimator was initialized
with three sets of different values, namely 17 Ah and 23 Ah, 18 Ah and 22 Ah, and 19 Ah and 21
Ah. To minimize the randomness effect, the estimator was executed with 100 sets of synthetic data.
The estimation result in Figure 11 shows that a smaller initial value of Cn could guarantee a rapid
convergence speed for tracking the reference value. This confirmed the experimental results from [24]
displayed in the Introduction of this paper.

5.2. Evaluation of the New Estimation Structure

The effectiveness of the new structure will be verified in the following. Comparison with
estimation results from the joint estimation frameworks composed of EKF or UKF respectively will
be presented.

Due to the maturity and numerous applications of KF, EKF, and UKF, the details will not be
presented here. Readers can refer to [14,17] to get more information. However, key information is
given as follows. Firstly, the characteristics of the noises are shown in Table 1, which were set according
to the existing works and several tests. For the joint estimation frameworks based on (9), the vector x0

was used to initialize the EKF or UKF. In the new structure, the initial value of the battery OCV was
set to 3.5 V, and the other initial values were the same as in the vector x0.

First of all, as a specific term appeared in the new structure, the estimation result of OCV is shown
in Figures 12 and 13. Firstly, as is shown in Figure 12, the OCV estimation converged rapidly to the
reference value and could track the dynamic change of the battery OCV. Then, from the OCV estimation
error in Figure 13, KF was capable of providing an accurate estimation, which was important to connect
the other two estimation modules.
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Figure 11. Initial capacity value effect on battery capacity estimation.

Table 1. Characteristics of the added noises.

ω1 ∼ N(0, 1× 10−8) γ1 ∼ N(0, 1× 10−7)

ω2 ∼ N(0, 1× 10−8) γ1 ∼ N(0, 1× 10−10)

ω3 ∼ N(0, 1× 10−9) δ ∼ N(0, 1× 10−4)

ω4 ∼ N(0, 1× 10−12) ε1 ∼ N(0, 1× 10−8)

ω5 ∼ N(0, 1× 10−10) ε2 ∼ N(0, 1× 10−8)

ω6 ∼ N(0, 1× 10−10) ε3 ∼ N(0, 1× 10−6)

ω7 ∼ N(0, 1× 10−10) ψ ∼ N(0, 1× 10−6)

υ ∼ N(0, 1× 10−6)
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Figure 12. Estimation result of the battery OCV.

Figure 13. Estimation error of the battery OCV.

Then, the estimation results of the other parameters are shown in Figure 14. Several improvements
brought by the new structure should be noticed. Firstly, as can be seen from Figure 14a,b, compared
to joint EKF or joint UKF, the main improvement with the new structure came from the estimation
of the battery capacity. Not only the convergence speed was more rapid, but also the estimation
was fluctuating less and more accurate. Secondly, it can be observed from Figure 14c–f that the
new framework improved the estimation accuracy of the RC network. Thirdly, as can be seen from
Figure 14i,j, due to the improvement of the parameter estimation, the determination of the battery SOC
was also improved.

Furthermore, as for the computational cost, ten simulation tests were executed for these three
monitoring algorithms. As shown in Figure 14, the current cycle duration for each test was 8500 s.
The simulation was performed by using the discrete time model with a sampling period equal to 1
s, with MATLAB/Simulink R2015b, on a desktop with an Intel Core i7-6700 CPU 3.4 GHz and 8 GB
RAM. The average calculation times of these ten simulation tests for each monitoring algorithm are
listed in Table 2.

However, this is only a general discussion of the computation load of the newly proposed
monitoring structure, because the multi-time scale can also be introduced into the new structure, which
means the sampling time period for the battery capacity can be extended to a larger value according to
the application. For example, the capacity estimation can even be performed quarterly or semiannually
because of its slow time varying property [35]. Thus, the new structure had similar computational
loads to the traditional frameworks. Although the further discussion about the multi-time scale is out
of the scope of this paper, one potential advantage of the new structure should be pointed out. That is,
working with the multi-time scale, the battery ECM parameters could still be estimated and updated
even when the battery capacity estimation was not activated.
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Figure 14. Comparison of the estimation results with joint EKF, joint UKF, and the new structure.
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Table 2. Computation efficiency of the new proposed monitoring structure.

Joint EKF Joint UKF New Structure

Average calculation time (s) 0.264 3.813 1.986

6. Conclusions

In this paper, a new model-based battery monitoring method was proposed. Firstly, the battery
internal characteristic was fully used for the theoretical observability analysis. Namely, the linear
segment characteristics of the battery OCV-SOC led to a model decomposition based on the
superposition principle. Thus, the original battery ECM was decomposed into two sub-models. Each
sub-model contained different battery states and parameters; hence, each of them was extended in
order to be analyzed. Therefore, after the nonlinear observability analysis, the necessary observability
conditions were clearly listed for the battery ECM parameters and battery capacity.

Answers to the four questions raised in the Introduction could be given as follows. Firstly,

the battery capacity estimation based on the extended ECM depended on
(

dVOC
dsoc

)2
, which induced the

inherent weak observability. Secondly, the smaller initial value of the battery capacity would guarantee
a better local observability condition, which would consequently lead to a rapid convergence speed.
Thirdly, the battery state and parameter estimation based on the extended ECM depended on the
battery current, namely both the current amplitude and its time varying behavior would affect the
observability. Last, but not least, according to the theoretical analysis, a new cascaded framework that
separated the battery ECM parameters and battery capacity estimation was proposed. The effectiveness
of the analysis results and the proposed framework was validated through numerical simulations.
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