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Abstract: Since SVM is sensitive to noises and outliers of system call sequence data. A new fuzzy
support vector machine algorithm based on SVDD is presented in this paper. In our algorithm,
the noises and outliers are identified by a hypersphere with minimum volume while containing
the maximum of the samples. The definition of fuzzy membership is considered by not only the
relation between a sample and hyperplane, but also relation between samples. For each sample inside
the hypersphere, the fuzzy membership function is a linear function of the distance between the
sample and the hyperplane. The greater the distance, the greater the weight coefficient. For each
sample outside the hypersphere, the membership function is an exponential function of the distance
between the sample and the hyperplane. The greater the distance, the smaller the weight coefficient.
Compared with the traditional fuzzy membership definition based on the relation between a sample
and its cluster center, our method effectively distinguishes the noises or outlies from support vectors
and assigns them appropriate weight coefficients even though they are distributed on the boundary
between the positive and the negative classes. The experiments show that the fuzzy support vector
proposed in this paper is more robust than the support vector machine and fuzzy support vector
machines based on the distance of a sample and its cluster center.
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1. Introduction

Intrusion detection systems (IDS) are essential to information security. IDS can be divided into
signature-based IDS and anomaly-based IDS [1]. Both are based on pattern detection. Signature-based
IDS matches the system behavior against the known attack and lacks the ability to detect zero-day
attack. Anomaly-based methods construct normal behavior based on prior knowledge and judge
the deviation between the current behavior and the normal behavior [2]. The advantage of the
anomaly-based method is the ability to detect new attacks.

A system call requested by an application is a function built into the operation system kernel.
A system call sequence is a detailed account of the system calls occurring on a host. The behavior of
an application can be described in terms of the sequence of system calls. It is easy to get the system
call sequence in real-time. Therefore, the data of a system call sequence is often used as audit data for
analysis and classification of malicious processes.

The current methods of anomaly detection are based on traditional statistics, which is the study
of the asymptotic theory. That is, the limit property can be reached when the number of samples
approaches infinity. In intrusion detection systems, the observation samples are limited or even a small
number. This cannot satisfy the preconditions of a detection method based on traditional statistics.
As a result, the false alarm rate and missing rate are high.
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The algorithms of a system call in anomaly-based IDS need a lot of data. This is because these
algorithms are based on traditional statistics, which is the study of the asymptotic theory. That is,
the limit property can be reached when the number of samples approaches infinity. Unfortunately,
the anomaly data in the intrusion detection system is very limited. Therefore, we classify system calls
using an SVM-based algorithm, which is based on statistical learning theory. Statistical learning theory
makes the SVM-based classifier only depend on a small part of the support vectors (SVs). This is
very helpful for the training of classifiers with insufficient data. SVM-based algorithm, like the other
algorithm, also has an inherent shortcoming, that is, it is sensitive to noises and outliers. In order to
distinguish noises near the boundary from SV, fuzzy support vector machine is proposed to solve the
problem. Because there are no uniform guiding principles, the existing FSVM-based algorithms are
inconsistent with reality when classifying system call sequences. Therefore, the purpose of our paper
is to construct a fuzzy support vector machine that is suitable for classifying system call sequences.

Support vector machine [3–6], as a machine learning method based on statistical learning theory,
derives from the idea of the dual form to solve the large dimensional problems, makes the classifier only
depend on a small part of the support vectors, implements the structural risk minimization principle
in statistical learning theory, and solves the problems of nonlinearity and local minima. A system call
sequence can be converted into a vector in a high dimensional space by the frequency of short system
call sequences of a certain length. Therefore, abnormal detection can be carried out based on SVM.

There are always noises and outliers in solving practical engineering applications due to statistical
methods, human error and other factors. These noises and outliers cannot satisfy the precondition that
all samples are independent and identically distributed. The noises and outliers near the boundary
play the same role as SVs in constructing the optimal classification hyperplane. To solve this problem,
researchers proposed fuzzy support vector machine (FSVM), that is, different weights are assigned
to different samples, so that different samples contribute differently to the optimal classification
hyperplane. In order to eliminate the influence of noises and outliers, the small weights are given to
these samples. The design of the membership function is the key of the whole fuzzy algorithm and
is no uniform criterion to be followed. At present, there are many ways to construct a membership
function. Most of these methods are based on the distance between a sample and its cluster center.
The closer the sample is to the cluster center, the greater the weight coefficient is. The noises and SVs
distributed on the boundary are far from the cluster center. They are all given less weight coefficients.
This is quite different from the objective situation. SVs should be given greater weight coefficients.

To solve the above problem, our paper proposed a new fuzzy support machine method based on
support vector data description (SVDD). The contributions of our work are as follows:

• Our paper proposed a new fuzzy membership function which can effectively distinguish the noises
and SVs distributed on the boundary based on SVDD. SVs are given larger weight coefficients
while noises are given smaller coefficients. In this way, our method avoids imperfection of FSVM
based on the distance between a sample and its cluster center. Such a fuzzy membership function
structure method is more in line with reality.

• The method proposed in our paper uses the hyperplane, which passes through the cluster center
and takes the line of two cluster centers as the normal vector to replace each cluster center.
This is in accordance with the geometric principle of SVM. In other words, two hyperplanes with
maximum space are used to separate the training samples. Therefore, using the hyperplane in
class to replace the cluster center can better approximate the actual situation.

• Our method is more efficient, especially for anomaly-based IDS with high real-time requirements.
In our method, the noises and outliers are identified by a sphere with minimum volume
while containing the maximum of the samples. Some uncontributed vectors are eliminated by
pre-extracting the boundary vector set containing the support vectors. This reduces the number
of training samples and speeds up the training. It is important that IDS speed up detection as
much as possible by reducing computation and storage.
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The remainder of the paper is organized as follows. In Section 2, the previous work based on
system calls are reviewed, while Section 3 describes the proposed method. In Section 4, experiments and
evaluations are presented. Section 5 gives some conclusions.

2. Previous Work

Anomaly detection can be studied by system call sequence from different angles. These methods
focus primarily on data processing, data representation and other feature selections derived from
system call sequences. In this section, some methods of anomaly-based IDSs based on system call will
be discussed.

As the original data of system call traces is large, preprocessing and feature selection methods
contribute to obtaining typical features and avoiding the influence of irrelevant and redundant features
on detection rate and processing cost [7,8]. Methods commonly used for natural language processing
are used to preprocess system call traces. The n-gram method is used to construct the system call
databases of normal behavior by a sliding window with a single length or multiple lengths [9,10].
Aron Laszka et al. [11,12] investigated and claimed that the optimal n-gram is 6-gram in UNM dataset
and 7-gram in ADFA-LD dataset. Suaad et al. [13] continued to prove that 6-gram and 10-gram
have the advantage of time efficiency and detection rate respectively in a dataset collected from a
virtual machine. Feature selection methods reduce redundancy and irrelevance by selecting interesting
features. These methods facilitate the reduction of computation time and storage requirements,
understanding data out noise and avoiding the over-fitting problem, increasing the accuracy rate.
Feature selection can be divided into th wrapper approach [14], filter approach [15] and hybrid
approach [16] according to the correlation of algorithms. This depends on the feedback represented by
the accuracy rate; the wrapper approach implements the selection of best features. The filter approach
evaluates the attributes of a learning algorithm by using the statistical learning data. The wrapper
approach gets better classification performance than filter approach at the expense of expensive
computation. The filter approach is better suited to handle high dimensional data than the wrapper
approach. A hybrid approach was produced by combining the advantages and disadvantages of the
filter approach and wrapper approach.

The enumerating sequences-based [17–19] methods are simple and efficient to implement by
removing system call parameters. During database construction stage, normal behaviors are represented
by short system sequences. During the monitoring stage, the short sequences of testing data are
obtained and tested. The enumerating sequences-based methods need constructing, updating and
maintainance of the normal database for each individual program [20,21]. The Murmurhash [22–24] is
utilized with the Bloom-filter-based method to ensure that it has the advantage over STIDE in terms
of memory occupation, searching speed and privacy preservation. Although the Bloom-filter-based
method shows simplicity and effectiveness, it has the limitation of false positives.

The system call sequence can be represented as a vector. Qing et al. extracted a minimized set
of rules to define a normal behavior and detected anomaly behavior based on a rough set [25,26].
Pandit predefined workflow and added a knowledge base of workflow [27–29]. A search engine is
then applied to discover the hidden knowledge [30]. The drawback of a rule-based approach [31–33],
since these rules are derived from small-scale datasets, is that the rules are constantly updated.
Matej et al. [34] presented a new tool data collection system for Windows PC. Different from previously
distributed data collection systems, this system uses less resources based on host and client structures.
The system shows good performance in the real test environment. However, it is just a preliminary
stage and is going to be a lot of work. IDS plays an important role in the network. Qiuhua et al. [35]
proved a classification algorithm based on data clustering and data reduction by mini batch K-Means
algorithm in the training stage and sorting cluster in the detection stage. Experiments indicated that
the computational complexity was reduced significantly and the accuracy maintained high. However,
the implementation of this classification method is complex.
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In recent years, neural networks have made remarkable achievements in computer vision [36–38]
and natural language processing [39–41]. Researchers have also tried to use neural networks to
process system call sequences [42–46]. AnRAD [47] performs probabilistic inference by self-structuring
confabulation network. Their network continuously refines their knowledge base and is capable of fast
incremental learning. Sheraz et al. [48] implemented intrusion detection in a real environment based
on a convolutional neural network. In order to accelerate the training process, multiple GPUs must be
deployed on a physical host. The challenge of solutions based on a neural network is pricey and space
consuming due to the increasing amount of data.

Ambusaidi et al. [49] proved that their method contributes more critical features for the least square
support vector machine to achieve a better detection rate and lower computation cost. Gideon [50]
applied a semantic structure to system calls. This approach facilitates the representation of software
behavior and obtains excellent results in UNM dataset and KD98 dataset. Wael et al. [51] presented
a heterogeneous detector which consisted of sequence time-delay embedding, hidden Markov
model [52–54] and a one-class support machine. In addition to satisfactory results, the heterogeneous
detector also exhibits the reliability. Michael et al. [55] detected features of the system in the hypervisor.
The experiments demonstrated that their detection accuracy achieves 90% whilst the method has
the detecting ability of DoS attacks. The algorithms based on frequency can be realized at a lower
computation cost by reducing the dimension of the frequency vectors [56]. SVM is sensitive to noises
and outliers [57–60]. FSVM is based on fuzzy theory to reduce the influence of noises or outliers on
the classification hyperplane [61–66]. Lin et al. [67] proposed a method based on the relation between
samples and their cluster center. Zhang et al. [68] proposed a new FSVM method after considering the
imperfection of a distance-based algorithm. However, the above methods also reduce the effect of SVs
on the hyperplane when reducing the influence of noises or outliers on the hyperplane.

3. Methodology Based on SVDD

Due to human error, random error and other factors in the data collection process, the sample set
contains a small number of noise samples. Noise samples have a great influence on the construction of
the optimal classification hyperplane, which makes it deviate from the optimal position, reduces the
normalization ability of the classifier, and affects the classification effect. FSVM assigns different weight
coefficients to different samples. The purpose is to make each sample have a different effect on the
optimal classification hyperplane.

Figure 1 shows the overview of our algorithm. The algorithm consists of three steps. The first step
is to obtain the positive and negative minimum hyperspheres based on the training data and SVDD.
By finding the minimum volume hypersphere containing a sample set, the target samples are included
in the hypersphere as much as possible, and the non-target samples are excluded from the hypersphere.
The second step is to calculate the distance between the samples and the hyperplanes. The sample
position is determined by distance and radius difference. In the third step, different samples inside
and outside the hyperspheres are represented by different functions. Our algorithm is described in
detail below.

Figure 1. The overview of the proposed algorithm.

3.1. Analysis

The definition of fuzzy membership function is the key of FSVM algorithm. There are many
definitions of fuzzy membership functions, but there are no general guidelines. Traditional fuzzy
membership functions based on the distance between the sample and its cluster center are not effective
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to distinguish noises or outliers from SVs. Sometimes the distance is not the only criterion for judging
whether it is normal. As shown in Figure 2, point A on the left, in Figure 2a, has a high probability
of being a valid sample. Point A on the right, in Figure 2b, has a high probability of being a noise
or outlier. It is not enough to just rely on linear functions of distance. The relative position relation
between samples should be considered. That is, fuzzy membership function must consider the affinity
between samples.

Figure 2. The difference of the affinity among samples at two different classes.

As shown in Figure 3, the distance between B and the cluster center is not the same as the distance
between C and the cluster center. Since these two points have the same distance to the classification
hyperplane, they contribute the same to the hyperplane. Compared with point B and point C, point D
is further away from the cluster center, but closer to the classification hyperplane. Point D is the point
that contributes the most to the hyperplane. So we have to take that into account when we design
membership functions.

Figure 3. The membership function design based on the position of samples and the hypersphere.

The optimal classification hyperplane and its nearby support vectors are far away from the cluster
center. The closer the sample is to the cluster center, the greater the weight coefficient. The noises and
SVs distributed on the boundary are far from the cluster center. They are all given less weight coefficients.
This is quite different from the objective situation. SVs should be given greater weight coefficients.

The optimal hyperplane of standard SVM is determined by SVs. The geometric principle of SVM
is to use two hyperplanes with maximum spacing to separate the training samples as far as possible in
the original space or feature space. Therefore, using the hyperplane in class to replace the center can
better approximate the actual situation.

The solution of the optimal classification hyperplane of SVM is usually converted to solving
quadratic programming problem. However, the solving complexity of the quadratic programming
problem will increase significantly with the sample increase. When the sample size is large,
the traditional fuzzy support vector machine needs large memory to store and calculate the kernel
function matrix. Therefore, by selecting the boundary vector containing SVs in advance, the number
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of training samples and the number of quadratic programming solutions can be reduced. This has
practical significance for improving training speed and accuracy.

3.2. Support Vector Data Description

The task of one-class classification is to distinguish the target sample from non-target samples.
The boundary has to be constructed by a hypersphere around the target samples. By finding the
minimum volume hypersphere containing the sample set, the target samples are included in the
hypersphere as much as possible, and the non-target samples are excluded from the hypersphere.

For ease of description, ϕ: Rn
→ H represents the mapping of the input space to the

high-dimensional space. Assume T = {xi, i=1, 2, · · · , l} contains l data objects, and the hypersphere
is described by center a and radius R. The minimum hypersphere can be obtained by solving the
following quadratic programming (1).

min
R, α, ξ

R2 + C
l∑

i=1
ξi

s.t. ||ϕ(xi) − a|| 2 ≤ R2 + ξi
ξi ≥ 0, i = 1, 2, . . . , l

(1)

where ||·|| is the Euclidean distance, ξi is slack variables, and C is the trade-off between the volume
of the hypersphere and the errors. Lagrangian multipliers αi and βi are introduced to construct a
Lagrangian function. The Lagrangian function is constructed as shown in Equation (2).

L(R, a, ξ, α, β) = R2 + C
l∑

i=1

ξi −

l∑
i=1

αi
[
R2 + ξi − ||ϕ(xi) − a|| 2

]
−

l∑
i=1

βiξi (2)

The center a and radius R can be obtained from the solution to the dual problem and the solution
to KKT conditions. a and R are calculated according to Formulas (3) and (4) respectively.

a =
l∑

i=1

α∗iϕ(xi) (3)

R2 = ||ϕ
(
x j

)
− a|| 2 = K

(
x j, x j

)
− 2Σl

i=1α
∗

i K
(
xi, x j

)
+ Σl

i=1Σl
j=1α

∗

iα
∗

jK
(
xi, x j

)
(4)

According to (5), if the Euclidean distance between the point ϕ(x) and center a is less than radius
R then it is normal. Conversely, it is the noise point when the Euclidean distance is greater than
radius R.

||ϕ(x) − a|| 2 = K(x, x) − 2Σl
i=1α

∗

i K(xi, x) + Σl
i=1Σl

j=1α
∗

iα
∗

jK
(
xi, x j

)
≤ R (5)

3.3. Design Fuzzy Membership Function

According to the basic principle of the support vector machine, the optimal classification
hyperplane is determined by the support vectors. If each class of the two classification problems is
considered as a convex set, then these support vectors lie on the relative boundary of the two convex
sets far away from the center of the two classes.

Given T = {(xi, yi), i = 1, 2, · · · , l} contains l data objects. If l+ and l− respectively represent the
number of positive samples x+i , i = 1, 2, · · · , l+ and the number of negative samples x−i , i = 1, 2, · · · , l−,
then l+ + l−= l.

If a+ and a− respectively represent the minimum hypersphere center of positive samples and the
minimum hypersphere center of negative samples, R+ and R− respectively represent the minimum
hypersphere radius of positive samples and minimum hypersphere radius of negative samples, then a+

and a− are always located in the geometric center, if the normal vector of the hyperplane is established
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by the maximum sum of the distance [69] from two centers to the hyperplane. As shown in Figure 4,
in order to maximize the sum of the distances, it should satisfy d=||a+

−A||+||a−−B||≤||a+
−O||+||a−−O||

= ||a+
−a−||. That is, the distance is maximized d=||a+

−a−|| when hyperplane and vector a+
−a− are

perpendicular to each other.

Figure 4. Maximize the sum of the distances.

For the given data, the relative positions of the two hyperspheres can be intersected, tangent and
separated. The two separate cases and tangent case can be classified as one case. Although in
the case of intersection, the radial basis kernel function can always choose parameters to make
the two hyperspheres separated, this will cause an overfitting phenomenon. Therefore, our paper
summarizes the above three cases as two cases of separation and intersection.

As shown in the Figures 5 and 6, the normal vector to the hyperplane is w = a+
− a− according to

the principle of maximum distance. These two hyperplanes that go through a+ and a− with a normal
vector of a normal vector of w are H+: wT(x−a+) = 0 and H-: wT(x−a−) = 0.

Figure 5. The case of separation.

Figure 6. The case of intersection.
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The optimal classification hyperplane is only determined by the SVs. Therefore, samples can
be screened in advance, and those samples that may become support vectors can be selected to be
trained as new training samples, which will simplify the computation of quadratic programming and
improve the training speed. The optimal classification hyperplane lies between positive and negative
hypersphere centers. Then, positive and negative samples between H+ and H− can be selected as the
new training sample set. As shown in the above two figures, the shaded parts inside the hyperspheres
are the normal sample, in which the positive class is represented by orange slashes, while the negative
class is represented by blue slashes. The samples with “+” and “*” in the new training sample set
located outside the hypersphere represent noises or outliers respectively.

If l+new and l−new are the number of positive and negative samples in the new sample set, then the
distance between the samples and the hyperplane in each class is calculated according to (6). D

(
x+i

)
=
|>wT(x−a+)|

||w || , i = 1, 2, · · · , l+new

D
(
x−i

)
=
|wT(x−a−)|
||w || , i = 1, 2, · · · , l−new

(6)

where wT(x−a+) = 0 and H−: wT(x−a−) = 0 are the two hyperplanes that go through a+ and a−; w =
a+
− a− is the normal vector to the hyperplane.

The distance between the samples and the center of the hypersphere is calculated according to (7). d
(
x+i

)
= ||x+i − a+

||, i = 1, 2, · · · , l+new

d
(
x−i

)
= ||x−i − a−||, i = 1, 2, · · · , l−new

(7)

Therefore, membership functions of both positive and negative sample points are constructed
according to (8) and (9).

s+i =


0.6 ∗

D(x+i )
d(x+i )

∗
d(x+i )

R+ + 0.4, d
(
x+i

)
≤ R+, i = 1, 2, · · · , l+new

0.4 ∗

 1
d(x+i )

R+
+

D(x+i )
d(x+i )


P

, d
(
x−i

)
> R−, i = 1, 2, · · · , l+new

(8)

s−i =


0.6 ∗

D(x−i )
d(x−i )

∗
d(x−i )

R− + 0.4, d
(
x−i

)
≤ R−, i = 1, 2, · · · , l−new

0.4 ∗

 1
d(x−i )

R− +
D(x−i )
d(x−i )


P

, d
(
x−i

)
> R−, i = 1, 2, · · · , l−new

(9)

The minimum value of the membership function inside the hypersphere is 0.4, and the maximum
value of the membership function outside the hypersphere is 0.4. The membership value of the sample
increases with the value of the distance between the sample and hyperplane. Given p ≥ 2, the bigger
p, the faster s+i and s−i decay. Similarly, for nonlinear cases, mapping function ϕ(x ) is introduced
by kernel function K(xi, x j) to map data to a high-dimensional space. The normal vector is w =
a+
−a− by a rule for the maximum sum of distance from two hyperspheres’ centers to the separation

hyperplane. The hyperplanes of the two classes with w as the normal vector and going through a+ and
a− respectively are H+: wT(ϕ(x ) − a+) = 0 and H−: wT(ϕ(x ) − a−) = 0. If l+new and l−new are the number
of positive and negative samples in the new sample set, then the distance between the samples and the
hyperplane in each class is calculated according to (10). D

(
ϕ
(
x+i

))
=
|wT(ϕ(x)−a+)|

||w || , ϕ(x) = ϕ
(
x+i

)
, i = 1, 2, · · · , l+new

D
(
ϕ
(
x−i

))
=
|wT(ϕ(x)−a−)|

||w || , ϕ(x) = ϕ
(
x−i

)
, i = 1, 2, · · · , l−new

(10)
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The distance between the sample and its center of the hypersphere in each class is calculated
according to (11).  d

(
ϕ
(
x+i

))
= ||ϕ

(
x+i

)
− a+

||, i = 1, 2, · · · , l+new

d
(
ϕ
(
x−i

))
= ||ϕ

(
x−i

)
− a−||, i = 1, 2, · · · , l−new

(11)

Therefore, membership functions of both positive and negative sample points are constructed
according to (12) and (13).

s+i =


0.6 ∗

D(ϕ(x+i ))
d(ϕ(x+i ))

∗
d(ϕ(x+i ))

R+ + 0.4, d
(
ϕ
(
x+i

))
≤ R+, i = 1, 2, · · · , l+new

0.4 ∗

 1
d(ϕ(x+i ))

R+
+

D(ϕ(x+i ))
d(ϕ(x+i ))


P

, d
(
ϕ
(
x+i

))
> R−, i = 1, 2, · · · , l+new

(12)

s−i =


0.6 ∗

D(ϕ(x−i ))
d(ϕ(x−i ))

∗
d(ϕ(x−i ))

R− + 0.4, d
(
ϕ
(
x−i

))
≤ R−, i = 1, 2, · · · , l−new

0.4 ∗

 1
d(ϕ(x−i ))

R− +
D(ϕ(x−i ))
d(ϕ(x−i ))


P

, d
(
ϕ
(
x−i

))
> R−, i = 1, 2, · · · , l−new

(13)

4. Experimental Evaluation

This section presents the evaluation of our method in terms of detection performance, overhead and
impaction of parameters. In order to test the performance of our algorithm, in addition to comparing
the SVM-based algorithms SVM, FSVM1 [66], FSVM2 [65], and FSVM3 [68], the proposed algorithm is
also compared with other algorithms in this section.

4.1. The Experimental Data

In order to facilitate an experimental performance comparison with similar studies, the system
call datasets UNM_sendmail and UNM_live_lpr published by the New Mexico university are used in
this section [70]. The UNM_sendmail data set consists of 346 normal traces and 25 abnormal traces.
The abnormal data contains sunsendmailcp (sccp) intrusions and decode intrusions, in which the sccp
intrusions enable the local user to obtain the root access by using special command options to make
sendmail attach an e-mail message to a file, and the decode intrusions enable remote users to make
changes to certain files on the local system. Data for UNM_live_lpr data set includes 15 months of
activity and consists of 4298 normal tracks and 1003 abnormal tracks. The abnormal data contains
lprcp symbolic link intrusions that take advantage of the vulnerability of the lpr program to control the
files on the host computer and tamper with the contents of the files.

The trace consists of a sequence of system calls in chronological order. The meaning of trace varies
from program to program. Each trace file lists pairs of numbers, the first number represents the process
identity (PID) of the execution process, and the second number represents the specific system call (SC).
The child processes forked by the parent process are traced individually. We take UNM_sendmail as
an example to show the specific format of experimental data as follows:

8840 4, 8840 2, 8840 5, 8840 66, 8840 5, · · · , 8840 6
8843 115, 8843 15, 8843 99, 8843 120, 8843 17, · · · , 8843 12,
6545 2, 6545 5, · · · , 6545 2, 6545 2, 6545 2

The data consists of different data units. Each data unit consists of PID and SC. In the experiment,
data is segmented according to the PID number and the SCs after the same PID are arranged together
in chronological order. In the above data, the numbers 8840, 8843 and 6545 are PIDs and the number 4,
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2, 5, 66, . . . , 2 are SCs. The lists of system calls issued by 8840, 8843 and 6545 are denoted as R8840 = (4,
2, 5, 66, 5, . . . , 6), R8843 = (115, 15, 99, 120, . . . , 17) and R6545 = (2, 55, . . . , 2) respectively.

The vector form of a system call sequence composed of the frequency of the short system call
sequences. Given n is the number of traces, m is the total number of short system call sequences.
Then the ith element in the vector is the frequency at which the short system sequence numbered i occurs
in the system call sequence of the process. The vector corresponding to the jth trace, represented by
the frequency of short system call sequence, is denoted by (f 1j,· · · , f mj). That is to say, samples are
represented as (Xj, yj) j = 1,· · · , n, where Xj = (f 1j,· · · , f mj), yj ∈ (+1, −1).

4.2. The Experimental Performance

The experimental data of UNM_live_lpr process were composed of 4298 normal tracks and
1003 abnormal tracks. The 1003 anomaly traces contain LPRCP attacks that control and tamper with
host files. The experimental data for the UNM_sendmail process consisted of 346 normal traces and
25 abnormal traces, including 20 SCCPS that used E-mail to obtain root directory information and
5 decode attacks that remotely modified local files.

False alarm is to judge the normal behavior of the program as abnormal behavior. If LN normal
traces participate in the evaluation, and NFAR normal traces are misjudged as abnormal traces, then the
false alarm rate is equal to NFAR /LN. Detection rate refers to the proportion of detected abnormal
traces in the total number of abnormal traces. If LAN abnormal traces participate in the test and NHR

were detected, then the detection rate is NHR /LAN. The missing rate indicates the proportion of
unrecognized abnormal traces in the total number of abnormal traces. If LAN abnormal traces participate
in the evaluation and NM cannot be detected, then the missing rate is NM /LAN. DR = ρHR∗(1−ρFAR) is
used as the comprehensive detection formula, in which ρHR and ρFAR stands for detection rate and
missing rate respectively.

Gauss kernel k (x, y) = exp (−|| x−y ||2/2σ2) is used in all algorithms during training. σ1 and σ2 can
be selected according to the maximum error rate allowed in the target set. C1 and C2 can be adjusted
according to the equality of upper bound of positive and negative error rate. That is, 1/ l1C1 = 1/ l2C2,
1/ l1≤ C1 ≤ 1, 1/ l2≤ C2 ≤ 1. Grid search method is adopted to select the optimal parameters. The search
range of parameter C is {2−24, 2−23,· · · , 223, 224}. The parameter σ and β both have a search range of
{2−24, 2−23,· · · , 223, 224}. The step length and short sequence length are set to 1 and 6 respectively.

Table 1 summarizes the comparison results of detection performance between our method and
the other eight methods on UNM_live_lp. The detection rate of SVM, FSVM1, FSVM2, FSVM3,
and our algorithm are 61.53%,76.92%, 76.92%, 83.21%, and 84.61% respectively. The missing rates of
SVM, FSVM1, FSVM2, FSVM3, and our algorithm are 38.47%, 23.08%, 23.08%, 16.23%, and 15.39%
respectively. The false alarm rates of SVM, FSVM1, FSVM2, FSVM3, and our algorithm are 10.14%,
9.57%, 8.17%, 6.92%, and 4.51% respectively. In all the algorithms, our algorithm has the highest
detection rate and the lowest false alarm rate and missing rate.

Table 1. Performance comparison on data set UNM_live_lp.

Algorithm Detection Rate (%) Missing Rate (%) False Alarm Rate (%)

SVM 79.88% 20.12% 8.64%
FSVM1 83.71% 16.29% 7.30%
FSVM2 85.56% 14.44% 8.17%
FSVM3 86.20% 13.80% 6.92%

Our algorithm 92.63% 7.37% 6.16%

As shown in Table 1, SVM has the lowest detection rate, 79.88%, among the five algorithms.
Due to the construction of a fuzzy membership function, the other four algorithms treat the different
contributions of different samples in the construction of the objective function differently, which makes
their average detection rate reach 87.03%. FSVM1 algorithm designs a fuzzy membership function
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based on the linear function of the distance between the sample and its cluster center. The larger the
distance is, the smaller the coefficients is. However, this membership design method is sometimes
unable to distinguish abnormal points effectively. The FSVM2 algorithm not only considers the distance
in the FSVM1 algorithm, but also considers the position relation between samples. FSVM2 algorithm
determines the membership function according to the position of the sample and hypersphere.
When the samples are located inside the hypersphere, the membership function is defined by the
linear function of the distance. The coefficient of the sample decreases with the increase of the distance.
When the samples are located outside the hypersphere, these samples are regarded as abnormal
samples. The membership function is represented by different functions. The FSVM3 algorithm,
like the FSVM2 algorithm, takes account of the distance between the sample and its cluster center
and the affinity between samples. The difference between the FSVM3 and FSVM2 is that the FSVM3
algorithm is based on the SVDD algorithm by introducing two different parameters to control the
affinity between positive and negative samples.

The method treats all samples equally during the training process, which makes the contribution
of samples to constructing the optimal classification hyperplane equal. As a result, when training
samples contain abnormal samples, the classification hyperplane obtained is not the optimal hyperplane.
Our algorithm abides by the maximum sum of distance from the hypersphere to hyperplane, replaces the
cluster center with the hyperplane inside the class, and designs the membership function according
to the distance from the sample to the hyperplane inside the hypersphere. Therefore, it can be seen
from the table that with the continuous improvement of the membership function, the detection rate of
the algorithm increases successively. The detection rate changed from 83.71% of FSVM1 algorithm to
85.56% of FSVM2 algorithm, then to 86.20% of WCS-FSVM algorithm, and finally reached 92.63% of
our algorithm.

The formula of comprehensive detection rate is closer to reality. The comprehensive detection rates
of SVM, FSVM1, FSVM2, and FSVM3 are 72.97%, 77.59%, 78.56%, and 80.23% respectively. As show in
Figure 7, our algorithm has the highest comprehensive detection rate, 86.92%, among five algorithms.

Figure 7. Performance comparisons on UNM_live_lpr data set.

At the same time, it is also evident from the data in Table 2 that the detection rate, false alarm rate
and missing rate of UNM_sendmail data are all lower than that of UNM_live_lpr data. The reason
for this is the amount of data. The UNM_sendmail process data consists of 346 normal tracks and
25 abnormal tracks, which is less experimental data than the 4298 normal tracks and 1003 abnormal
tracks of the UNM_live_lpr process. Therefore, there is sufficient data for UNM_live_lpr process
training, which is conducive to pre-extracting relative boundary vectors containing enough support
vectors and ensuring sufficient data parameters. In the experiments of UNM_live_lpr process and
UNM_sendmail process, SVM uses the same error penalty factor for all samples. It will have a negative
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impact on the classification results when the SVM algorithm classifies unbalanced samples. This is the
reason that the SVM always has the lowest detection rate among all algorithms. FSVM1 algorithm,
FSVM2 algorithm, FSVM3 algorithm, and our algorithm are equivalent to using a penalty factor for
each sample to be treated differently. When these algorithms are used to classify the quantity imbalance
samples, good classification results can be obtained. In other words, membership function can be used
to describe error penalty on samples. This is consistent with the conclusion that fuzzy support vector
machine is equivalent to a multi-penalty support vector machine.

Table 2. Performance comparison on data set UNM_sendmail.

Algorithm Detection Rate (%) Missing Rate (%) False Alarm Rate (%)

SVM 61.53% 38.47% 10.14%
FSVM1 76.92% 23.08% 9.57%
FSVM2 76.92% 23.08% 8.17%
FSVM3 83.21% 16.23% 6.92%

Our algorithm 84.61% 15.39% 4.51%

The comprehensive detection rates of SVM algorithm, FSVM1 algorithm, FSVM2 algorithm,
FSVM3 algorithm, and our algorithm on UNM sendmail process data were 55.29%, 69.58%, 70.63%,
77.45%, and 80.79%, respectively. As shown in Figure 8, among the five detection algorithms,
SVM algorithm has the lowest comprehensive detection rate and the weakest detection performance.
The algorithm proposed in this paper has the highest comprehensive detection rate and the
strongest detection performance. The comprehensive detection performance of FSVM1 algorithm,
FSVM2 algorithm and FSVM3 algorithm also varies with the fuzzy membership function, but the
overall trend is consistent with the test results obtained from UNM_live_lpr process data, that is,
the detection performance is improved with the improvement of fuzzy membership function.

Figure 8. Performance comparisons on UNM_sendmail data set.

As shown in Tables 3 and 4, the length of the system call short sequence k has a direct impact on the
detection performance. When k increases from 3 to 5, the detection rate, missing alarm rate and false
alarm rate are increasing. When k is 6, our algorithm obtains the highest detection rate, the lowest false
alarm rate and the lowest missing rate. When k is greater than 6, the detection rate of our algorithm
starts to decrease, and the missing rate and false alarm rate start to increase. On UNM_sendmail data,
the detection rate, false alarm rate, and missing alarm rate of PVFSVM algorithm have the same trend
as on UNM_live_lpr data.
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Table 3. Detection performance of different k on UNM_live_lpr data.

Our Method k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Detection rate 78.30% 83.25% 86.31% 92.63% 88.26% 83.27%
Missing rate 21.70% 16.75% 13.69% 7.37% 11.74% 16.73%

False alarm rate 11.76% 11.32% 10.60% 6.16% 6.30% 7.56%

Table 4. Detection performance of different k on UNM_sendmail data.

Our Method k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Detection rate 77.22% 82.45% 85.37% 84.61% 86.46% 81.37%
Missing rate 22.78% 17.55% 14.63% 15.39% 13.54% 18.63%

False alarm rate 14.67% 12.12% 11.68% 4.51% 6.85% 9.53%

As shown in Figures 9 and 10, if k = 6, the comprehensive detection rates of our algorithm on
UNM_live_lpr and UNM_sendmail are 86.92% and 80.79% respectively, which are higher than the
comprehensive detection rate corresponding to other k values on UNM_live_lpr and UNM_sendmail.
When k increases from 3 to 6, the comprehensive detection rate also increases gradually. When k
increases from 6 to 8, the comprehensive detection rate decreases gradually.

Figure 9. The comprehensive detection rate of different k on UNM_live_lpr data.

Figure 10. The comprehensive detection rate of different k on UNM_sendmail data.
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This is consistent with professor Forrest’s conclusion on the selection of short sequence length,
and professor Wenke Lee’s conclusion from the perspective of information theory that the best system
call short sequence length is 6 or 7. Compared with the value of k of 6, when the value of short
sequence is too small, the timing relation between short sequence patterns is lost. When the short
sequence becomes longer, the short sequence pattern loses local information, no matter what kind
of information loss will make the comprehensive detection performance worse. Therefore, the short
sequence length can only be chosen as 6, which makes the detection performance of our algorithm
reach the optimal level.

Table 5 summarizes the comparison results of detection performance between our method and
the other eight methods on UNM_live_lp. The detection rate of N.bayes, Uniqueness, Hybrid Markov,
Bayes1-step Markov, IPMA, Sequence matching, Compression, Closeness, and our algorithm are
65.11%, 39.1%, 45.6%, 62.6%, 45.05%, 36.7%, 33.9%, 76.5%, and 92.63% respectively. The missing rates of
N.bayes, Uniqueness, Hybrid Markov, Bayes1-step Markov, IPMA, Sequence matching, Compression,
Closeness, and our algorithm are 30.12%, 55.3%, 40.22%, 33.3%, 47.37%, 58.2%, 50.1%, 19.2%, and 7.37%
respectively. The false alarm rates of N.bayes, Uniqueness, Hybrid Markov, Bayes1-step Markov,
IPMA, Sequence matching, Compression, Closeness, and our algorithm are 4.77%, 2.30%, 14.26%, 4.1%,
7.58%, 5.91%, 16%, 4.3%, and 6.16% respectively.

Table 5. Comparison between different algorithms on UNM_live_lp.

Algorithm Detection Rate (%) Missing Rate (%) False Alarm Rate (%)

N.bayes 65.11% 30.12% 4.77%
Uniqueness 39.1% 55.3% 2.30%

Hybrid Markov 45.6% 40.22% 14.26%
Bayes1-step Markov 62.6% 33.3% 4.1%

IPMA 45.05% 47.37% 7.58%
Sequence matching 36.7% 58.2% 5.91%

Compression 33.9% 50.1% 16%
Closeness 76.5% 19.2% 4.3%

Our algorithm 92.63% 7.37% 6.16%

These two methods, Compression method and Sequence Matching method, respectively consider
the detection problem from the aspect of data reversibility and similarity matching degree, and fail to
consider the sequence characteristics between system calls. Therefore, they are the two algorithms with
the worst comprehensive detection performance. The IPMA method and Hybrid Markov method are
complicated due to investigating the transition characteristics of system calls one by one. Although the
ρFAR of IPMA method and Hybrid Markov method are 7.58% and 14.26%, the ρMR is 47.37% and
40.22%. The ρMR of Bayes 1-step Markov method is 33.3% and the ρFAR is 4.1%. The comprehensive
test performance evaluation formula has a high value, so the test performance is good. Since this
method looks the frequency of rare system calls, the ρMR of Uniqueness method is 55.3% and the ρFAR
is 2.3%. However, this requires statistics for all the system calls that are used. N.bayes belongs to
Naive Bayesian method in essence, and it has good noise tolerance and fast calculation, but the false
alarm rate is too high. Therefore, the comprehensive detection performance is good. The closeness
method extracts user behavior patterns from the perspective of combination. It shows good detection
performance under different closeness thresholds, but it ignores the characteristics of attack intensity.
That is, the attacker will complete the attack task in the shortest possible time and try to behave normally
the rest of the time. As show in Figure 11, our algorithm has the highest comprehensive detection
rate 86.92% among five algorithms. In all the algorithms, our algorithm has the highest detection
rate, and the lowest false alarm rate and missing rate. The formula of the comprehensive detection
rate is closer to reality. The comprehensive detection rate of N.bayes, Uniqueness, Hybrid Markov,
Bayes1-step Markov, IPMA, Sequence matching, Compression, Closeness, and our algorithm are 62%,
36.91%, 39.13%, 60.03%, 41.63%, 34.82%, 28.47%, 73.22%, and 86.92% respectively.
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Figure 11. The DR comparation of different algorithms on UNM_live_lp.

Table 6 summarizes the comparison results of detection performance between our method and the
other eight methods on UNM_sendmail. The detection rates of N.bayes, Uniqueness, Hybrid Markov,
Bayes1-step Markov, IPMA, Sequence matching, Compression, Closeness, and our algorithm are
63.88%, 37.4%, 45.3%, 67.3%, 40.63%, 35.9%, 29.7%, 75.2%, and 84.61% respectively. The missing rates of
N.bayes, Uniqueness, Hybrid Markov, Bayes1-step Markov, IPMA, Sequence matching, Compression,
Closeness, and our algorithm are 32.12%, 60.3%, 40.44%, 30.8%, 42.37%, 60.2%, 50.5%, 20.1%, and 15.39%
respectively. The false alarm rates of N.bayes, Uniqueness, Hybrid Markov, Bayes1-step Markov,
IPMA, Sequence matching, Compression, Closeness, and our algorithm are 4%, 2.30%, 14.26%, 1.9%,
17%, 3.9%, 19.8%, 4.7%, and 4.51% respectively.

Table 6. Comparison between different algorithms on UNM_ sendmail.

Algorithm Detection Rate (%) Missing Rate (%) False Alarm Rate (%)

N.bayes 63.88% 32.12% 4.00%
Uniqueness 37.4% 60.3% 2.30%

Hybrid Markov 45.3% 40.44% 14.26%
Bayes1-step Markov 67.3% 30.8% 1.9%

IPMA 40.63% 42.37% 17%
Sequence matching 35.9% 60.2% 3.9%

Compression 29.7% 50.5% 19.8%
Closeness 75.2% 20.1% 4.7%

Our algorithm 84.61% 15.39% 4.51%

Similarly, the Compression method and Sequence Matching method pay attention to reversibility
and similarity matching degree, respectively, and fail to consider the sequence characteristic between
system calls. The IPMA method and Hybrid Markov method are complicated due to investigating
transition characteristics of system calls one by one. Although the ρFAR of IPMA method and Hybrid
Markov method is 17% and 14.26%, the ρMR is 42.37% and 40.44%. The ρMR of Bayes 1-step Markov
method is 30.8%, and the ρFAR is 1.9%. The comprehensive test performance evaluation formula
has a high value, so the test performance is good. Since this method looks at the frequency of rare
system calls, the ρMR of Uniqueness method is 60.3%, and the ρFAR is 2.3%. However, this requires
statistics for all the system calls that are used. N.bayes belongs to Naive Bayesian method in essence,
and it has good noise tolerance and fast calculation, but the false alarm rate is too high. Therefore,
the comprehensive detection performance is good. The closeness method extracts user behavior
patterns from the perspective of combination. It shows good detection performance under specific
closeness thresholds, but it ignores the characteristics of attack intensity. That is, the attacker will
complete the attack task in the shortest possible time and try to behave normally the rest of the time.
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As shown in Figure 12, our algorithm has the highest comprehensive detection rate 86.92% among
five algorithms. In all the algorithms, our algorithm has the highest detection rate, and the lowest
false alarm rate and missing rate. The formula of comprehensive detection rate is closer to reality.
The comprehensive detection rates of N.bayes, Uniqueness, Hybrid Markov, Bayes1-step Markov,
IPMA, Sequence matching, Compression, Closeness, and our algorithm are 61.32%, 36.54%, 38.84%,
60.02%, 33.72%, 34.49%, 23.81%, 71.67%, and 80.79% respectively.

Figure 12. The DR comparation of different algorithms on UNM_sendmail.

5. Conclusions

In order to solve the defects of FSVM. This paper presents a new FSVM algorithm based on SVDD.
In our method, the noises and outliers are identified by a hypersphere with minimum volume while
containing the maximum of the samples. The definition of fuzzy membership considered not only
the position of samples inside the hypersphere, but also the distance between the hyperplane and
samples. For the samples inside the hypersphere, the fuzzy membership function is a linear function
of the distance. The greater the distance is, the greater the coefficient is. For the samples outside the
hypersphere, the fuzzy membership function is an exponential function of the distance. The greater
the distance is, the smaller the coefficient is. Compared with the FSVM based on the relation between
the sample and its cluster center, our algorithm effectively distinguishes the noises or outliers from
samples. The experiments show that our FSVM is more robust than the SVM and FSVM based on the
distance between the sample and its cluster center. Our algorithm is suitable for the data of system call
sequence and can contribute to accurate prediction.
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