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Abstract: This study proposes real-time haze removal from a single image using normalised
pixel-wise dark-channel prior (DCP). DCP assumes that at least one RGB colour channel within
most local patches in a haze-free image has a low-intensity value. Since the spatial resolution of the
transmission map depends on the patch size and it loses the detailed structure with large patch sizes,
original work refines the transmission map using an image-matting technique. However, it requires
high computational cost and is not adequate for real-time application. To solve these problems, we use
normalised pixel-wise haze estimation without losing the detailed structure of the transmission map.
This study also proposes robust atmospheric-light estimation using a coarse-to-fine search strategy
and down-sampled haze estimation for acceleration. Experiments with actual and simulated haze
images showed that the proposed method achieves real-time results of visually and quantitatively
acceptable quality compared with other conventional methods of haze removal.

Keywords: haze removal; dark channel; atmospheric-light estimation; coarse-to-fine search strategy

1. Introduction

In recent years, self-driving vehicles, underwater robots, and remote sensing have attracted
attention; such applications employ fast and robust image-recognition techniques. However, images
of outdoor or underwater scenes have poor image quality because of haze (Figure 1a), thus affecting
image recognition. To solve this problem, many haze removal techniques were proposed, and these
techniques can be classified into non-learning-based and learning-based approaches.

Non-learning-based approaches use multiple haze images [1], depth information [2] and prior
knowledge from a single haze image [3–5]. Methods employing prior knowledge maximise contrast
within the local patch [3], assuming that surface shading and transmission are locally uncorrelated [4],
and statistically observe that at least one RGB colour channel within most local patches in a haze-free
image has a low-intensity value [5]. Median and guided-image filters [6,7] are used for accelerating
haze removal; however, these methods could not achieve real-time processing (defined as 20 fps for
our calculations herein). Learning-based approaches employ random forest [8], colour-attenuation
and prior-based brightness-saturation relation [9] and deep learning [10,11]. These methods can
achieve accurate and fast haze removal compared with conventional non-learning-based approaches.
In deep-learning-based methods, large-scale pairs of haze images and corresponding haze-free images
must be prepared and their relation must be trained. Image pairs of haze and haze-free images cannot
be existed simultaneously in actual situation; therefore, haze images are generated from haze-free
images by employing haze-observation model [10] and depth information from the corresponding
haze-free images [11]. The haze-removal accuracy of deep-learning-based methods depends on the
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dataset and preparing large datasets is cumbersome. Deep-learning-based methods [10,11] are faster
than conventional methods [5,6]; however, computational times of 1.5 s [10] and 0.61 s [11] are required
for haze removal of a 640× 480 image using 3.4 GHz CPU without GPU acceleration; these methods
also could not achieve real-time processing.

This study proposes a real-time haze-removal method using a normalised pixel-wise dark-channel
prior (DCP) to enable real-time application (Figure 1b,c). This paper is an extended version of [12].
Contributions of the proposed method are as follows:

(a) Normalised pixel-wise DCP
Original patch-wise DCP method requires high computational cost to refine the transmission
map using an image-matting technique. In this paper, we propose a normalised pixel-wise DCP
method with no need for refinement of transmission map compared with the patch-wise method.

(b) Accelerating haze removal via down-sampling
We estimate the transmission map and atmospheric light using down-sampled haze image for
acceleration. This idea is inspired by [13].

(c) Robust atmospheric-light estimation
To reduce the computational time and improve robustness, we propose a coarse-to-fine search
strategy for atmospheric-light estimation.

The remainder of this paper is organized as follows. In Section 2, we introduces He et al.’s
method [5] in detail because it forms the basis of the proposed method. Section 3 provides the
description of proposed method. The experimental results and discussion are reported in Section 4,
and conclusion is drawn in Section 5.

Figure 1. Examples of original haze image and proposed haze-removal image and transmission map
(γ = 0.5).

2. Traditional Dark Channel Prior

This section describes DCP [5], which is the basis of the proposed method. The haze-observation
model [1,5] is represented by

I(x) = t(x)J(x) + (1− t(x))A, (1)

where I(x) is the observed RGB colour vector of haze image at coordinate x, J(x) is the ideal
haze-free image at coordinate x, A is the atmospheric light, t(x) is the value of transmission map
at coordinate x. To solve the haze-removal problem, some prior knowledge such as DCP must be
applied. The transmission map derivation (Section 2.1), atmospheric-light estimation (Section 2.2) and
haze-removal image creation (Section 2.3) are explained as follows.

2.1. Estimation of Transmission Map

Medium transmission t(x) [1,5] is expressed by

t(x) = e−βd(x), (2)
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where β is the scattering coefficient of the atmosphere and d(x) is the depth at coordinate x. He
et al. [5] used DCP, indicating that at least one RGB colour channel within most local patch has a
low-intensity value

DC (J(x)) = min
y∈Ω(x)

(
min

c∈{r,g,b}
(Jc(y))

)
, (3)

where Jc(y) is a colour channel of haze-free image J(y) at coordinate y and DC is the dark-channel
operator which extracts a mimimum RGB colour channel in a local patch Ω(x) centered at coordinate
x. From Equations (1) and (3) can be rewritten as

DC
(

I(x)
A

)
= t̃(x)DC

(
J(x)
A

)
+ (1− t̃(x)) , (4)

where t̃(x) is the coarse transmission map based on patch and the argument I(x)/A and J(x)/A are to
be element-wise division. If Ω(x) is set to large patch size (e.g., 15× 15), DC(J(x)/A) should tend to
be zero. Finally, the transmission t̃(x) can be estimated by Equation (5).

t̃(x) = 1−ωDC
(

I(x)
A

)
. (5)

where ω is the haze removal rate which is considered to the human perception for depth scene (0.95 in
the He et al. [5]). Since t̃(x) is calculated by each large patch to satisfy the DCP, t̃(x) is not smooth in
edge region and the spatial resolution is lost. To solve the problem, He et al. [5] refined the transmission
map t̃(x) using image-matting processing [14] as post-processing. However, such processing requires
high computational cost and several tens of seconds to execute the haze-removal method.

2.2. Estimation of Atmospheric Light

Atmospheric light A comprises pixels of the observed image for which t(x) = 0 in Equation (1);
there is no direct light and the distance is infinity in Equation (2). In the outdoor image, this generally
represents the intensity of the sky region. To estimate atmospheric light A, the highest luminance
value is considered in the haze image I [3]. If an image contains a white object, the atmospheric light A
is misestimated, and optimum atmospheric light A is estimated using dark-channel value [5]. Initially
He et al. [5] determined the top 0.1% brightest pixels in the dark-channel image, and chose the highest
intensity pixels from those same pixels in haze image I. Although this approach is useful because it can
estimate atmospheric light A by ignoring small white object, the size is limited below the patch size.

2.3. Estimation of Haze-Removal Image

Haze removal can be calculated by modifying Equation (1) as follows:

J(x) =
I(x)−A

max (t(x), t0)
+ A, (6)

where t(x) is the refined transmission map from patch-based transmission map t̃(x), A is atmospheric
light and t0 is a parameter that is set to 0.1 to avoid division by a small value.

3. Proposed Method

Computer vision tasks, such as self-driving vehicles, under-water robots and remote sensing,
employ real-time haze removal to realise fast and robust image recognition. In this section, a real-time
and highly accurate haze-removal algorithm is proposed.
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3.1. Normalized Pixel-Wise Dark Channel Prior

In the DCP, the spatial resolution of the transmission map t(x) worsens along object edges
because of calculating spatial minimisation in a dark-channel image. Therefore, He et al. [5] refined
the transmission map via image-matting processing [14]. However, image-matting processing requires
a high computational cost and is not acceptable for real-time application. Therefore, they proposed a
guided-image filter [7] as a fast image-matting technique. Other researchers also proposed a pixel-wise
DCP [15–17] and a method combining original patch-wise DCP in a flat region and pixel-wise DCP
around the edge region [18]. Although pixel-wise DCP can estimate the transmission map t(x) without
selecting a minimum value spatially, the result tends to be darker than the haze image (Figure 2b).
The histogram of medium transmission t(x) in Figure 3 shows that the pixel-wise DCP without
normalisation shifts to the left side compared with the histogram of the original patch-wise DCP
(He et al. [5]). This is why the DC(J(x)/A) of Equation (4) cannot be zero by setting the patch size
to 1× 1 instead of 15× 15. Therefore, in the proposed method, the DC(J(x)/A) of Equation (4) has a
small value; the value of (DCJ(x)) is defined by multiplying normalised dark channel of haze image I,
which ranges from 0 to 1 and the ratio γ in Equation (8).

DCp

(
I(x)
A

)
= min

c∈{r,g,b}

(
Ic(x)

Ac

)
, (7)

DCJ(x) = γ

min
c∈{r,g,b}

(
Ic(x)

Ac

)
−min

y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

))
max
y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

))
−min

y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

)) , (8)

where DCp is a pixel-wise dark channel operator, Ω is the entire image. The transmission map t(x) of
normalized pixel-wise DCP can be calculated by

t(x) =
1−ωDCp

(
I(x)
A

)
1− DCJ(x)

, (9)

The histogram (Figure 3) of the transmission map t(x) derived by the proposed method shifts towards
the right side compared with the histogram of transmission map without normalisation. As a result,
the histogram of the proposed method gets close to the original patch-wise DCP. Here, if γ is set to be
0, Equation (9) corresponds to the pixel-wise DCP without normalisation (Figure 2b). Furthermore,
setting γ to be a small value (e.g., 0.25) results in a dark image within the yellow dotted rectangle
(Figure 2c), but if γ is set to be a large value (e.g., 0.75), the haze-removal effect diminishes within the
dashed red rectangle (Figure 2e).

Figure 2. Differences among haze-removal images with each normalisation parameter γ.
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Figure 3. Histogram of medium transmission with each method.

3.2. Acceleration by Down-Sampling

In the haze-removal method, it is necessary to calculate the transmission map t(x) for each pixel.
Therefore, the calculation time of haze removal depends on the image size, and thus larger image
sizes have higher associated calculation costs. Fortunately, observation of the transmission map t(x)
indicates that it is characterised by a relatively low frequency except edges between objects, particularly
at different depths. Therefore, we reduced the computation time greatly by down-sampling the input
image. It estimated the transmission map t(x) and atmospheric light A using down-sampled image,
and then the haze-removal image J was estimated by the up-sampled transmission map t(x) using
Equation (6). Figure 4 shows the haze-removal results with different down-sampling ratios. The
down-sampling ratio set to 1/4 achieved visually acceptable results, but when it was set to 1/8 or
1/16, halo effects were generated along edges such as along the sides of trees and leaves within the
dashed red rectangles (second row of Figure 4e,f). Also, significant aliasing occurred along edges of
the bench within the yellow dotted rectangle (third row of Figure 4e,f), and uneven colour occurred in
the enhancement results in second row of Figure 4e,f. We therefore set the down-sampling ratio to 1/4
in all further experiments. Also, we used box filtering in down-sampling and bicubic interpolation
in up-sampling. Too, acceleration by the down-sampling approach helps with noise suppression by
spatial smoothing.

Figure 4. Haze image (first row), different haze-removal images (second row), transmission maps
(third row) and corresponding down-sampling ratios.

3.3. Robust Atmospheric Light Estimation

He et al. [5] estimated atmospheric light A using the original patch-wise DCP, which is a
robust method because it ignores small white objects by using a large patch size (e.g., 15 × 15).
In addition, Liu et al.’s method [19] segments the sky region and uses the average value of that region
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as atmospheric light A. In our proposed method, because the dark-channel image is calculated for each
pixel, white regions (represented by the blue ‘+’ mark in Figure 5) are misinterpreted as atmospheric
light A. On the basis of Figure 5, we found that our proposed method cannot use the He et al. [5]
approach directly. In addition, their method requires extra computation time for sorting the top 0.1%
brightest pixels in the dark channel of haze image I. To solve this problem, we propose a method that
robustly estimates atmospheric light A by using a coarse-to-fine search strategy. Figure 6 shows the
flow of the coarse-to-fine search strategy. In this strategy, initially the resolution of the dark-channel
image is reduced step by step and the position of the largest dark-channel value is obtained at the
lowest resolution; next it recalculates the position of the largest dark-channel value in the second-lowest
resolution and continues to recalculate the position of the largest dark-channel value until the original
image size is attained. In Figure 5, the red ‘×’ mark (coarse-to-fine search strategy) is the correctly
estimated atmospheric light A.

Figure 5. Effectiveness of coarse-to-fine search strategy. Blue ‘+’ mark is result of atmospheric-light
estimation by pixel-wise dark-channel image without using coarse-to-fine strategy. Red ‘×’ is result of
pixel-wise dark-channel image using coarse-to-fine strategy.

Figure 6. Flow of coarse-to-fine search strategy for estimting atmospheric light A.

4. Results and Discussion

In this section, we compare our method with Tarel et al.’s method [6], He et al.’s method [5] and
Cai et al.’s method [10] for qualitative visual evaluation and quantitative evaluation. Ref. [10] is used
trained network provided by [20]. We used haze and haze-free images downloaded from the Flickr
website [21] (all collected images are public domain or creative commons zero license) and MATLAB
source codes [20,22,23].

Initially, we generated five uniform and nonuniform haze images (Figures 7b and 8c) from the
haze-free image (Figure 7a) by applying Equation (1). In order to do these simulations, we had to set
the transmission map, for which we experimented with setting to uniform and nonuniform medium
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transmissions. In the uniform medium transmission t, it is set to 0.5 directly. On the other hand, in the
nonuniform medium transmission t(x), we set depth by manually segmenting four to five classes
for the each image (Figure 8b) and then fixing the depth for each class; we determined the medium
transmission t(x) by applying Equation (2).

Figure 7. Comparison of proposed method with conventional method using simulated haze images
generated with uniform transmission map (t = 0.5). (a) Original haze-free image, (b) Simulated haze
image, (c) Tarel et al. [6], (d) He et al. [5], (e) Cai et al. [10], (f) Pixel-wise DCP without normalisation,
(g) Proposed method (γ = 0.9).

In the quantitative evaluation, peak-signal-to-noise-ratio (PSNR) and structural similarity
(SSIM) [24] are calculated

MSE =
1

HWK

H−1

∑
i=0

W−1

∑
j=0

K−1

∑
k=0

(G(i, j, k)− J(i, j, k))2 ,

PSNR = 20 log10

(
MAX√

MSE

)
, (10)
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SSIM =
1

HWK

H−1

∑
i=0

W−1

∑
j=0

K−1

∑
k=0

(
2µG(i, j, k)µJ(i, j, k) + C1

)(
µG(i, j, k)2 + µJ(i, j, k)2 + C1

) (
2σGJ(i, j, k) + C2

)(
σG(i, j, k)2 + σJ(i, j, k)2 + C2

) , (11)

where H, W and K are image size as height and width and number of colour channel respectively; G
and J are the ground-truth image and haze-removal result, respectively; MAX is maximum possible
value of ground-truth image; µG and µJ are gaussian weighted averages of G and J, respectively,
within local patch; within local patch, σG and σJ are standard deviations of G and J, respectively, within
local patch; σGJ is a covariance of G and J within local patch; C1 (set to 0.012) and C2 (set to 0.032) are
small constants. Secondly, we compared with proposed method and conventional method to actual
haze image as qualitative visual evaluation. Finally, we show the comparison of computation time by
each method and image size.

In common of qualitative evaluation in results with setting the uniform or the nonuniform
medium transmission, the results of Figures 7 and 8 show that both our proposed method (Figures 7g
and 8h) and He et al.’s method [5] (Figures 7d and 8e) can obtain highly accurate haze-removal
images that are indistinguishable from the original haze-free image. Cai et al.’s method [10] can also
obtain highly accurate haze-removal images in outdoor scene such as cityscape and landscape images
(Figures 7e and 8f). However, Cai et al.’s method [10] cannot remove the haze in underwater scene. The
reason is that underwater images are not included in the training data. The results of pixel-wise DCP
without normalisation (Figures 7f and 8g) are darker than their original haze-free images (Figure 7a).

In the quantitative evaluation with uniform setting in Table 1, it is apparent that our proposed
method can obtain the highest PSNR and SSIM values compared with conventional methods if
the appropriate value for γ is selected. Here, in the case of uniform medium transmission t,
miny∈Ω(minc∈{r,g,b}(Ic(y)/Ac)) is close to 1− t because miny∈Ω(minc∈{r,g,b}(Jc(y)/Ac)) is close to 0,
and maxy∈Ω(minc∈{r,g,b}(Ic(y)/Ac)) is close to 1 because maxy∈Ω(minc∈{r,g,b}(Jc(y)/Ac)) is close to
1 in Equation (8). As the result, the appropriate value of γ is close to 1 when the ω equals to 1. From
Table 1, the proposed method can obtain the best results when γ is set to a large value. On the other
hand, in the quantitative evaluation with nonuniform setting shown in Table 2, some results from
He et al.’s method [5] achieved better performance than the proposed method. The main reason is
that it is not easy to estimate an appropriate γ in the case of nonuniform medium transmission t(x)
because it depends on the haze scene. How to automatically determine an appropriate value from the
distribution of haze in the scene is our future work.

Table 1. Quantitative evaluation with PSNR and SSIM [24] for simulated haze images generated using
uniform transmission map (t = 0.5). First row is PSNR value, and second row is SSIM value in each cell.

Tarel He Cai Proposed Method (γ)

et al. [6] et al. [5] et al. [10] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cityscape 13.60 20.58 24.86 11.31 12.25 13.31 14.52 15.94 17.64 19.76 22.57 26.75 34.77 32.62
0.842 0.918 0.966 0.623 0.685 0.743 0.796 0.844 0.887 0.925 0.956 0.981 0.996 0.997

crab 10.77 27.22 12.19 15.86 16.86 17.99 19.29 20.80 22.59 24.75 27.32 29.85 30.40 25.78
0.651 0.971 0.705 0.853 0.881 0.905 0.926 0.944 0.958 0.968 0.976 0.979 0.979 0.969

coral reef 10.69 22.45 17.89 16.43 17.31 18.28 19.37 20.60 22.01 23.65 25.56 27.68 29.56 27.56
0.661 0.944 0.825 0.817 0.851 0.881 0.907 0.929 0.946 0.960 0.970 0.976 0.979 0.977

landscape1 11.41 26.76 23.54 14.99 16.03 17.21 18.57 20.18 22.13 24.52 27.45 30.27 30.15 25.06
0.613 0.947 0.895 0.802 0.833 0.860 0.883 0.904 0.922 0.937 0.950 0.959 0.962 0.946

landscape2 12.08 23.73 20.24 14.43 15.40 16.50 17.78 19.30 21.14 23.47 26.59 31.06 35.53 27.88
0.718 0.933 0.884 0.805 0.840 0.870 0.897 0.921 0.941 0.959 0.973 0.982 0.986 0.978
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Figure 8. Comparison of proposed method with conventional method using simulated haze image
generated with nonuniform transmission map. (a) Original haze-free image, (b) Manual segmented
image, (c) Simulated haze image, (d) Tarel et al. [6], (e) He et al. [5], (f) Cai et al. [10], (g) Pixel-wise
DCP without normalisation, (h)Proposed method (γ = 0.5).

We used the paired t-test to verify whether any performance differences between the proposed
method and state-of-the-art methods are statistically significant. The test results are summarized in
Table 3. The statistically significant methods (p < 0.05) are indicated by “Yes” and others are indicated
by “No”. As shown in Table 3, the proposed method outperformed Tarel et al.’s method [6] and
pixel-wise DCP (γ = 0) method in both uniform and nonuniform medium transmission cases. On the
other hand, the proposed method outperformed He et al.’s method [5] and Cai et al.’s method [10]
only in the uniform setting and there are no significant difference in the nonuniform setting.
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Table 2. Quantitative evaluation with PSNR and SSIM [24] for simulated haze images generated using
nonuniform transmission map. First row is PSNR value, and second row is SSIM value in each cell.

Tarel He Cai Proposed Method (γ)

et al. [6] et al. [5] et al. [10] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cityscape 13.58 22.74 19.88 12.89 14.35 16.08 18.12 20.46 22.66 23.26 21.60 19.20 16.98 15.06
0.774 0.941 0.904 0.723 0.799 0.859 0.903 0.934 0.953 0.958 0.948 0.920 0.868 0.789

crab 12.10 27.19 12.99 15.29 16.28 17.37 18.59 19.95 21.43 22.97 24.32 25.01 24.64 22.64
0.702 0.970 0.743 0.834 0.863 0.889 0.909 0.926 0.938 0.946 0.951 0.951 0.947 0.933

coral reef 11.74 19.78 18.07 16.25 17.22 18.26 19.38 20.53 21.65 22.58 23.11 23.04 22.38 20.83
0.691 0.925 0.837 0.807 0.846 0.877 0.901 0.918 0.929 0.935 0.937 0.934 0.927 0.914

landscape1 14.02 26.47 25.35 15.29 16.63 18.15 19.88 21.74 23.38 24.01 23.14 21.41 19.53 17.60
0.667 0.936 0.937 0.81 0.852 0.882 0.902 0.916 0.923 0.925 0.919 0.904 0.874 0.824

landscape2 14.63 23.60 18.02 15.97 17.23 18.57 19.88 20.90 21.25 20.74 19.61 18.23 16.84 15.54
0.742 0.920 0.848 0.813 0.857 0.885 0.902 0.912 0.914 0.908 0.893 0.865 0.822 0.761

Table 3. Paired t-test results between proposed method and conventional methods. The statistically
significant methods (p < 0.05) are indicated by “Yes” and others are indicated by “No”.

Tarel He Cai pixel-wise DCP
et al. [6] et al. [5] et al. [10] w/o normalisation(γ = 0 )

uniform Proposed PSNR Yes Yes Yes Yes
method(γ = 0.9) SSIM Yes Yes Yes Yes

non-uniform Proposed PSNR Yes No No Yes
method(γ = 0.5) SSIM Yes No No Yes

Figure 9 shows that our haze-removal method produced good results for processing actual haze
images. Closer qualitative evaluation confirms that the images processed by our proposed method
(Figure 9f) are visually similar to those obtained by He et al.’s method [5] (Figure 9c). We can see that
the results of pixel-wise DCP without normalisation (Figure 9e) are also unnaturally darker than those
obtained by He et al.’s method [5] (Figure 9c) and our proposed method (Figure 9f). Furthermore,
although Tarel et al.’s method [6] obtained clearer haze-removal results in the pumpkin, bridge and
townscape images compared with our proposed method results, our evaluation confirmed that the
colours of the park, bridge and townscape images changed from those of the original haze images.
We also noted the occurrence of halo effects in the train image. In addition, Tarel et al.’s method
cannot work well in the underwater image. Cai et al.’s method [10] (Figure 9d) can remove haze more
naturally than other methods. In particular, it can remove haze uniformly in the sky region and the
colour is more natural. On the other hand, it cannot work well in the underwater image.

Figure 10 shows computation time for each image size for each method, assuming a i7-5557U
(3.1 GHz, 2 cores, 4 threads) without GPU acceleration and main memory size is 16 GB. All methods
are implemented in MATLAB. Using conventional methods, it takes several tens of seconds, and they
cannot achieve real-time calculation. However, our proposed method can achieve real-time calculation
until image size exceeds 1024× 680 pixels.
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Figure 9. Comparison of haze-removal results by our proposed method with conventional methods
applied to actual haze images. (a) Haze image, (b) Tarel et al. [6], (c) He et al. [5], (d) Cai et al. [10],
(e) Pixel-wise DCP without normalisation, (f) Proposed method (γ = 0.5).

Figure 10. Comparison of computation time for each image size and each method.

5. Conclusions

In this paper, we propose a haze-removal method using a normalised pixel-wise DCP method.
We also propose a fast transmission map estimation by down-sampling and robust atmospheric-light
estimation using a coarse-to-fine search strategy. Experimental results show that the proposed method
can achieve haze removal with acceptable accuracy and greater efficiency than can conventional
methods. The advantage of the proposed method is its fast computation with acceptable visual quality
compared with state-of-the-art-methods. On the other hand, its disadvantage is that the user must
set an appropriate γ manually for each different haze scene. How to systematically determine the
appropriate γ value from the distribution of haze in the scene is our future work. In addition, we are
going to apply the method to real applications, such as automatic-driving, underwater-robot and
remotely sensed imaging [25].
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