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Abstract: In an age overflowing with information, the task of converting unstructured data into
structured data are a vital task of great need. Currently, most relation extraction modules are
more focused on the extraction of local mention-level relations—usually from short volumes of
text. However, in most cases, the most vital and important relations are those that are described in
length and detail. In this research, we propose GREG: A Global level Relation Extractor model using
knowledge graph embeddings for document-level inputs. The model uses vector representations of
mention-level ‘local’ relation’s to construct knowledge graphs that can represent the input document.
The knowledge graph is then used to predict global level relations from documents or large bodies
of text. The proposed model is largely divided into two modules which are synchronized during
their training. Thus, each of the model’s modules is designed to deal with local relations and
global relations separately. This allows the model to avoid the problem of struggling against
loss of information due to too much information crunched into smaller sized representations
when attempting global level relation extraction. Through evaluation, we have shown that the
proposed model yields high performances in both predicting global level relations and local level
relations consistently.

Keywords: relation extraction; knowledge graph; meta learning; text summarization; natural
language processing; machine learning

1. Introduction

Several machine learning applications, such as Natural Language Processing, are rapidly
increasing its reliance on deep learning due to their high accuracy, performance, and adaptability [1].
Which resulted in the importance and volume of data to grow exponentially. However, most types
of raw data remain in an unstructured format, making it difficult to interpret while displaying low
coherency. Thus, converting unstructured information to structured information is a vital process
within the field [2]. However, to do this process manually demands huge amounts of time and cost,
and therefore the need to automate this process has arisen.

One of the most popular methods of converting unstructured data into a structured format
is by relation extraction. To perform relation extraction, identification must be performed for
each entity within the data. This is then followed by identifying whether each pair of entities
are semantically related. Finally, through analysis, the identified semantic relations are classified
accordingly. While several previous attempts performed toward smaller sets of text data have shown
promising results, performances against larger sets of data tend to suffer. This shortcoming is especially
easy to spot when having to identify global mention-level relations. Global mention-level relations
are relations that stretch among long contexts, usually described through the course of many other
intermediate sub-relations [3,4]. This kind of short-sightedness may also affect the accuracy of local
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relation extractions as well, since the model may misinterpret ambiguous relations or even omit them
entirely if there are types of relations that only become coherent when viewed on a more global scale
such as metaphors or sarcasm.

In this article, we propose a relation extraction method that focuses on extracting global relations
by utilizing knowledge graph construction and processing. The model largely consists of two parts:
a context-aware long short-term memory(LSTM) [5] based relation extraction module and a knowledge
graph constructor module that produces knowledge graphs from the given document. By constructing
a knowledge graph from the input document, the constructed knowledge graph is used to extract the
input document’s global relations through graph embedding. To do this, both modules go through
a synchronization process. We achieved this by training the two modules in an alternating fashion.
This allows the proposed model to extract and classify local relations while concerning its possible
global relations. For this research, we have constructed a new set of data consisted of 10,470 lines of
documented Korean text of history [6] for this task. The dataset was constructed purely through human
annotations and contains the information of both local relations per each sentence and knowledge
graphs that represents each document.

The following article will consist of the following: Section 2 to show previous or related methods
as well as introduce what our improvements are. Section 3 will contain details of our proposed model’s
structure and process and how it was trained. In Section 4, we shall introduce our newly constructed
dataset as well as comparisons from other models and analyze the results in detail, proving the viability
of our proposed model. Finally, we shall summarize this article and speculate future works in Section 5.

2. Related Works

2.1. Relation Extraction

Relation Extraction can largely be divided into two types: global level relation extraction and
mention-level relation extraction [7], while the former deals with ‘global’ level relations that span
across multiple relations and large bodies of text, and mention-level ‘local’ relations are smaller scale
relations expressed directly within short sentences.

The best example that shows the difference between the two can be shown by syllogism. Given two
sentences “All cars have wheels.’ and “A truck is a car”, a local relation extraction will only be able to
extract the information (Car, possess, Wheel) and (Truck, is, Car). Thus, it will never be able to extract
and represent what the two sentences combined mean: “A truck has wheels”. On the other hand,
global relation extraction would consider these global level relations and would be able to extract the
information (Truck, Possess, Wheel).

Currently, most relation extraction modules that yield high performances usually only deal with
‘local relations’. However, when representing a large amount of text such as a document, representations
only through local relations are thoroughly limited. Considering the fact that the most valuable
information within documents is those that have been described in detail and are spanned across
the document, the importance of global level relation extraction is not something to be looked over
so lightly.

However, the task itself is nowhere near simple. The main cause that prevents current
state-of-the-art local relation extraction methods to properly perform global relation extraction is
due to the bottleneck problem [8]. With so much information to process for a singular relation, the loss
of information is inevitable—thus hindering the model’s capability to properly judge the relation or
capture it at all. On the other hand, if the model is focused only on extracting global relations, then,
in an attempt to avoid the bottleneck problem [8], its performance against local relation extraction
drops due to the sparsity of information [9]. Previous attempts on global relation extraction have
tried several different methods to tackle this problem. For instance, Gerber et al. [10] attempted this
by simply using co-references to gain access to other sentences without actually having to model
them or Quirk et al. [11] who applied distant supervision to general global relation extraction as well.
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One of the more recent approaches includes Peng et al. [3] attempting global relation extraction by
continuously retaining the entity representations learned from the entire text as input, allowing the
extracted information from the whole text to be easily extended to other sentences as well.

In this research, we propose a divide and conquer approach to the task. By using two separate
modules to perform local relation extraction and global relation extraction separately, we entirely avoid
the stated bottleneck problem [8] and the following dilemma. As global relations can largely be seen
as an amalgamation of multiple local relations linked together, the proposed model aims to extract
local relations through the first module and converts them into a knowledge graph. The constructed
knowledge graph is then analyzed to extract global relations.

2.2. Knowledge Graph Embedding

Knowledge graphs, also known as ontologies, are a form of structured data represented through
the entities and relations it is composed of [12]. As one of the most simple yet effective forms of
representations, its compositions shares many traits with that of relation extractions, since they are
both used to represent unstructured data in a structured form. However, a major difference between
the two methods does exist: where the results from relation extractions are a one-shot instance that
represents only a small portion of information, the result and representations from a knowledge graph
constructor are expected to have consistency for every relation, context, and node it represents. This is
because a knowledge graph represents a large portion of information in a structured fashion [13].
Thus, every representation from knowledge graphs must not be ambiguous regarding how they are
presented, demanding consistency. This property is what allows knowledge graphs to be a reliable
form of representation when representing large amounts of data—thus making them a viable option
when trying to embed certain domains or documents in fields such as natural language processing [14],
multimodal processing [15], etc. Inspired by this, the proposed model utilizes knowledge graph
embeddings for the extraction of global relations from documents. The knowledge graph is constructed
through local relations with its nodes as entities, links as relation classes, and each node’s context as
the vector representation of each entity and relation. Through the synchronization process, the resulted
knowledge graph from the constructor is trained to retain their consistency in representations of both
local and global relations while also containing accurate relation extraction information as well.

3. Model

The proposed model largely consists of two synchronized modules. While the first module is
loosely based around a context-aware LSTM based relation extraction module that was proposed by
Sorokin et al. [16], the second module is a knowledge graph constructor module with the given input
as tuples of entities and their relations. The synchronization process is achieved by alternating the two
modules during training.

The overall process of the module is as shown in Figure 1. The given text is first preprocessed
to be divided into sentences which are then passed to a named entity recognition module [17,18] to
identify the entities within the given text. After the identification, the relation extraction module is
used to extract local relations from the identified entities within each sentence. Once all relations are
extracted, they are used to create a knowledge graph of entities via knowledge graph constructor
module. Through this constructor module, the loose relations of entities that are stretched within large
bodies of texts are grouped, allowing for extracting global scale relations. To do this, the knowledge
graph constructor is assigned to find entities that may act as possible hubs or bridges between other
entities. In addition, by acknowledging the type of relations that are between the candidate entities as
separate vectors, it will identify if the amalgamation of these vectors does indicate a relation. Once an
amalgamation is required, the constructor classifies the global relation based on cosine vector similarity.

This indicates that our proposed global relation extraction method is highly dependent on the
output from the local relation extraction. Thus, proper synchronization is essential since both modules
must consider the other while training themselves. As seen in Figure 2, once the initial training of the
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local relation extraction module is finished, a set of documents from the training dataset is divided into
sentences. These sentences are then given as input. This converts the set of documents composed of
sentences into a set of documents composed of local relation triplets. Based on the given local relation
triplets, the knowledge graph constructor module aims to construct a knowledge graph containing
global and local relations accurately.

Figure 1. Overall process of GREG: Global level Relation Extraction with knowledge Graph embedding.

Figure 2. Singular Cycle of Synchronization process: Once the Local Relation Extraction module
is trained, a full document is given as input sentence by sentence. The Local Relation info is then
used to create a Knowledge Graph(KG). The constructed KG is then compared to a ground truth
KG paired with the document. Both KGs are embedded based on the current LR representations.
Any incorrect/missing relations within the constructed KG is stored in an external memory. As the
fine-tuning of the local relation extraction module begins again, whenever a component from the
external memory is detected, any paired vector representations are concatenated to it as well, allowing
it to fine-tune against the incorrect/missing relations as well. The process aims to minimize the error
margin between the two KGs that can be measured by graph edit distance.

Initially, the skeleton of the knowledge graph is constructed by using the sum of the local relation
triplets. As common nodes between the triplets are used to link each entity, the skeleton knowledge
graph contains all the local relation information from the given document input. Once the skeleton
knowledge graph is complete, it is then converted into an embedding using the individual vector
representations of local relations. Through these embeddings, we can construct new amalgam vector
representations by combining the vectors that share entities. These amalgams are then sent to a
common classifier used in the local relation extractor module—thus allowing us to identify possible
global relations.

However, for this module to work, the first and second modules must be synchronized. Thus,
every time a knowledge graph is constructed from a document, it is compared to a ground truth
knowledge graph, creating an error margin. The synchronization process aims to readjust the
knowledge graph embedder, relation classifier, and feature extractor to minimize the error margin.
If the synchronization process is successful, the relations will be properly classified regardless of
whether it was a local relation or global relation without any drops in performances.
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3.1. Context-Aware Relation Extraction

The purpose of the first module is aimed to extract and classify local relations within a document.
The overall module can be seen in Figure 3. In addition, to perform local relation extractions without
suffering from a bottleneck issue [8], the input document is to be analyzed sentence by sentence.
Once the document input is preprocessed into smaller sentences, the sentences are then given to a
named entity recognition module to identify any existing entities within the sentence. In this research,
we used two separate methods to extract named entities from the text for this experiment. The first
module is the Stanford CoreNLP toolkit [18] developed by Manning et al. and the second named entity
recognition module is a combined Bidirectional Long Short Term Memory and Convolutional Neural
Network with a Conditional Random Field (Bi-LSTM-CNN-CRF) Korean named entity recognition
module [17] developed by Kim et al. The reason behind using a Korean Named Entity recognition
module is because the document-knowledge graph dataset used for the synchronization process of the
two modules are made in Korean. Thus, to exclusively evaluate the model’s viability on global relation
extraction, the module has been trained to process both languages separately.

Figure 3. Long Short Term Memory(LSTM) based Mention-level ‘Local’ Relation Extraction model.

Given sentence x and its token as x = {x1, x2, x3, ..., xn}, each token within the sentence is to be
embedded into a vector of k dimensions by using matrix W ∈ R|V|×k. Here, |V| Indicates the size of
the vocabulary from the word embedding. For this experiment, we used the 50-dimensional GloVe
embeddings pre-trained on a 6 billion corpus by Pennington et al. [19] for our English module and
a 200-dimensional Korean word embedding constructed from the Korean document dataset of history
for our Korean module [6]. Additionally, the LSTM context-aware module has a layer size of 256 and
the entity marker embeddings as d = 3. Once all the entities are recognized, every two entities from
the same sentence are paired as candidate entities for a possible local relation. As the purpose of this
module is to extract every inch of local relation information, every possible combination of two entities
within a sentence is to be given input to the local relation extraction module.

For every pair of candidate entities given as inputs, along with the sentence it belongs to, the other
entities within the sentence are temporarily considered as tokens. All tokens are then marked as to
whether they belong to one of the candidate entities, or are independent based on their grammatical
distances. These distances are measured through a part of speech tagging method [20]. A marker
embedding matrix of P ∈ R3×d is randomly initialized of the three marker types: entity 1, entity 2,
and none for independent tokens. Each token’s marker embedding will then be concatenated to the
word embedding with d as the dimension for the position embedding: (Wn, Pn).

By applying the sequence of n token embeddings to a recurrent neural network, the LSTM encoder
converts it to a fixed-sized output vector ov. ov acts as a representation of the relation between the
target entities. The vector ov is then passed to a softmax layer which will calculate which relation
class it most likely belongs to. This can be shown as in Equation (1) with P (r) as the classifier and the
entities marked as e1 and e2, along with the softmax layer fi defined in Equation (2):
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P(r| 〈e1, e2〉 , x; θ) =
exp( fr)

∑nr
i=1 exp( fi)

(1)

fi = wi · ov ⊕ bi (2)

3.2. Knowledge Graph Constructor

However, the info extracted from the relation extraction module are only local relations limited
to sentences. To expand our extraction to global relations, the second module receives the results
from the first module. For each local relation, the two entities involved are considered as coordinates
and are paired together with the relation’s vector representation ov. These local relations and their
representations are each used to construct the skeleton of a knowledge graph and its embedding.

As the initial knowledge graph is only a skeleton constructed from local relations, it does
not contain any global relations as a ground truth knowledge graph would. Considering that the
knowledge graph skeleton’s embedding is composed of O = {v1, v2, v3, . . . , vn}, we hypothesize that
the true knowledge graph embedding should be composed of T = {t1, t2, t3, . . . , tk}. The reason behind
why we ‘hypothesize’ the knowledge graph is because, as we do not know what the values of the true
knowledge graph’s relation vector would be, we cannot get a ground truth embedding of it. Thus,
the purpose of the second module is to ‘recover missing’ embedding components from T by using the
skeleton knowledge graph’s embedding O. These ‘missing’ embedding components are most likely
global relations embeddings. In addition, the once recovered embeddings form knowledge graph
O′ = {v1, v2, v3, . . . , vk} and the newly founded embeddings in O′ are used to extract global relations.

Since global relations can be broken down into multiple intermediate local relations. This can
also mean that the sum of the intermediate relations shall indicate a global relation. For our ideal
ground truth knowledge graph, its embedding should reflect this as well. Thus, the amalgamation of
multiple intermediate local relation vectors should result in an accurate global relation vector within
the knowledge graph’s embedding. For example, if a fixed local relation vector with coordinate (e1, e2)

is represented by va and fixed local relation vector with coordinate (e2, e3) is represented by vb, then the
global relation vector vc of (e1, e3) must be represented as ‖vc‖ ≈ ‖va ⊕ vb‖.

In addition, as each relation is represented as a vector, the vectors are required to represent global
relations with the same consistency shown in local relation classification. Thus, if a global relation
and a local relation are the same class, both vector representations must yield similar classification
results. For example, let’s say that the global relation of

−→
AC is “daughter” and local relation

−→
XY is

also “daughter”. In addition, the given intermediate local relation from
−→
AC is

−→
AB as “son” and

−→
BC as

“sister”. If consistency is to be met, the amalgam representation vectors of
−→
AB⊕−→BC

2 =
−→
AC should yield

the same results as that of
−→
XY when it is classified by the relation classifier from the context-aware

relation extraction module. In addition, as the global relation is classified, it becomes possible to
convert the knowledge graph embedding back into a knowledge graph. Thus, the construction of a
fully intact knowledge graph, including both local and global relations, of the document is finished.

However, during the early stages of training, this will most likely not be the case. Since amalgams
of local relation vectors will not properly represent global relation when concatenated, to make this
possible, as well as preserve the performance on local relation extraction, it needs to go through the
‘Synchronization process’.

3.3. Synchronization Process

The synchronization process’s main objective is to fine-tune the local relation extraction module’s
classifier by end-to-end fashion. This enables the classifier to properly classify both global relation
embeddings and local relation vector representations consistently. The synchronization process largely
consists of two parts: calculating error margin E for each document and applying feedback to the
classifier. The error margin indicates the difference between the generated knowledge graph from
the knowledge graph constructor and the ground truth knowledge graph from the training dataset.
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To calculate the error margin, we used a toned-down graph edit distance [21] shown in Equation (3),
where the cost of each graph edit operation c(ei) is always 1:

GED(go′ , gT) = min
(e1,e2,...,ek)∈P(go′ ,gT)

k

∑
i=1

c(e) (3)

In Equation (3), go′ indicates the generated knowledge graph while gT is the ground truth
knowledge graph. During this phase, any missing edges (entities) or vertex (relations) in the knowledge
graphs are marked before the next phase begins. Usually, the missing entities from the generated
knowledge graph go′ indicate two possibilities: that the entity was not detected by the NER module
during the preprocessing stage, or that no relations were found connected to it. For the other relation
errors, an external memory is given to store all the entities, local relation representation, and correct
labels in pairs.

In the following feedback phase, the relation classifier from the first module starts fine-tuning.
Then, the fine-tuning will take place to increase the performance of the classifier. However,
to synchronize the classifier’s fine-tuning while training the knowledge graph embeddings from
our Knowledge graph module, we added an anomaly system. When an anomaly occurs, the external
memory is checked to see whether errors involving the current input exist. If an error with the
input class involved is detected, then any other involving relation vector representations that were
paired to it are immediately concatenated to the current input’s relation vector representation—thus
allowing the model not only to fine-tune itself but correct the errors found during the previous phase.
The re-occurrence of whether an anomaly happens is based on each error margin. The higher the error
margin was for each error, the higher it will reoccur during fine-tuning. Once the fine-tuning process
is done, then we return to phase 1 and repeat until the error margins are minimized. For this process,
the individual fine-tuning process of phase 2 was always limited to 200 epochs to avoid any possible
overfitting—allowing the constructed knowledge graph to become close to an ideal knowledge graph
state similar to the ground truth knowledge graph as shown in Figure 4.

Figure 4. Progression of knowledge graph output as the synchronization process takes place. As the
synchronization process progresses, one can see the KGs slowly start to resemble the Ground Truth KG.
As it is impossible to know what the ground truth KGs true embedding is, we hypothesize that the
ideal constructed KG will have similar embeddings to that of the ground truth KG.

4. Experiment and Results

Several training datasets were used for the training of this model: the Wikipedia-Wikidata
sentence-level relation annotations by Sorokin et al. [16], the DocRED dataset from Yuan et al. [4],
and the Korean document dataset of history [6]. The purpose of the presented experiments is as
follows: to compare the performances of the LSTM relation extraction module before and after the
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synchronization process, and compare our proposed model’s overall relation extraction performances
to other models.

4.1. Effects of Synchronization

Our first experiment attempts to confirm whether the synchronization process does or does not
hinder the local relation extraction module’s performance. Thus, we have measured the module’s
performance on different periods during the synchronization process. In Table 1, one can observe that
once the synchronization process begins the performance immediately dropped drastically. This is
most likely due to the fact that, during the initial stages during synchronization, the process alters
the local relation extraction module with no regard to the module’s original purpose. In addition,
notice that, despite the Korean dataset [6] being smaller compared to the DocRED dataset [4], it requires
more time as well as shows a much steeper performance drop in the initial stages of the training.
However, eventually we can observe both incidents returning to their original performance levels
before the module starts overfitting. This indicates that the synchronization process does hinder the
module’s performance in its early stages. However, as the process progresses, the defection towards
the local relation extraction module lessens to a point that it becomes negligible.

Table 1. Performance in the LSTM based Relation Extraction module during the process of
alternated training.

Initial
Training

Only

Alternated Training

1st
Epoch

10th
Epoch

50th
Epoch

100th
Epoch

200th
Epoch

500th
Epoch

Korean dataset 95.03% 67.60% 70.78% 84.78% 88.99% 93.64% 93.61%

DocRED dataset 47.83% 29.53% 33.33% 35.55% 42.02% 51.07% 51.05%

4.2. Model Performance Comparison

Our final experiment is comparing our proposed model’s performance to other existing
models. For this, we compared the proposed model’s performance from three different perspectives.
For this experiment, we will measure the module’s capabilities on local relation extraction, global
relation extraction, and overall performance. The following models shall be used for comparison:
an End-to-End Convolutional Neural Network(CNN) based model by Nguyen et al. [22] and the
End-to-End LSTM based model by Miwa et al. [23] shall act as our baseline comparisons. This will
be followed by the context-aware LSTM based relation extraction module by Sorokin et al. [16],
which forms the base for the first part of our module. Additionally, to evaluate our proposed approach
itself, we have also added two variations of our model that use the End-to-End CNN based model [22]
and LSTM based model [23] to act as the first part of our model. Each of the three tasks is tested through
different datasets. The Wikipedia-Wikidata sentence-level relation annotations [16] shall be used for
the local relation extraction task, and the Korean document dataset of history [6] shall be used for the
global relation extraction task. For our measurement of overall performance, we used both the Korean
document dataset of history [6] and DocRED dataset [4] and evaluated their performances separately.
Among the 10,470 lines of documented Korean text of history [6] used for this task, we separated
1201 lines to be used as a test set, and 550 lines to be used as a validation set. Thus, each of these
1751 lines of text was not used as a training set. This is approximately about 7.5% and 3% of the whole
dataset. The total sum of the two consists of 50 documents and corresponding knowledge graphs
out of the entire 503 documents. On the other hand, the DocRED dataset contains 132,375 entities
and 56,354 relational facts annotated on 5053 Wikipedia documents. Additionally, as at least 40.7% of
the relational facts in DocRED are multisentence level relations, it is a perfect dataset to evaluate the
overall performance of this model. Both datasets are human-annotated document-level datasets.
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As seen in Table 2, the LSTM based models tend to exceed the CNN based models. The main
difference seems to come from the fact that the CNN based models tend to perform worse than the
other LSTM based models in general.

Table 2. Performance comparisons on three different levels: Local relations, Global relations, Overall
relations by the use of Precision(P), Recall(R) and F1-score(F1) (%)

CNN LSTM LSTM
Context

GREG var.
(CNN)

GREG var.
(LSTM)

GREG
(Context)

Wikidata
Sentence data

(Local)

P 71.25 75.79 79.62 71.54 74.71 79.03
R 53.91 70.78 80.75 52.83 69.08 78.83
F1 61.37 73.20 80.18 60.78 71.78 78.93

Korean
Document data

(Global)

P 19.40 18.33 38.30 30.48 33.78 51.32
R 31.31 33.19 28.72 44.33 48.34 46.14
F1 23.95 23.61 32.82 36.12 39.77 48.59

Korean
Document data

(Overall)

P 47.98 52.11 53.46 47.73 53.43 54.74
R 40.32 41.31 63.55 40.38 44.91 66.85
F1 43.82 46.09 58.07 43.75 48.40 60.19

DocRED
data

(Overall)

P 50.29 54.69 50.31 50.53 52.29 51.43
R 35.54 47.22 51.89 37.94 46.29 54.41
F1 42.33 50.68 51.09 43.34 49.11 52.88

First, we compare the models’ performances on local relation extraction. Initially, one can see that
the CNN baseline model [22] performs the worst with the LSTM baseline model [23] performing almost
the same. The LSTM Context model [16] is the highest performer with the GREG(Context) following
behind. The performance difference between the LSTM Context model [16] and GREG(Context) on the
local extraction task once again indicates the facts we found in our previous experiment. In addition,
we can suspect this is a universal effect as the performance defection from the synchronization process
seems to apply to the other GREG variants.

However, this changes drastically when we go to the second task: comparing global extractions.
In this task, each input is given as documents, and only relations that are labeled as ‘global relations’
within the test set are evaluated. Here, we can see our proposed model truly shining. All three GREG
variants show a significantly higher F1 score compared to the other models. Additionally, one can
observe that the GREG variants reflect the performances of their local relation extraction module,
indicating that our proposed approach’s performance is largely affected by how its local relation
extraction module performs on local relation extraction. Thus, we can observe the GREG(Context)
showing the highest performance, followed by variants GREG(LSTM) and GREG(CNN) accordingly,
which matches how the LSTM Context model [16], LSTM baseline model [23], and CNN baseline
model [22] perform. For the baseline models, their low performances are likely caused by the bottleneck
problem [8] triggered by the document sized input.

Finally, we see how each model fares in overall performance. While we used the standard test
set for the DocRED dataset [4] to evaluate the models’ ability to extract relations in various lengths
of input, we used the Korean Documents of History dataset [6] to measure each model’s overall
performance on dealing with document inputs in general. Therefore, when using our Korean dataset,
each model is given a document sized inputs for evaluation. However, while the GREG variants are
only given the document as a single input, the baseline models received the input by both document
and sentence by sentence. This enables a fair overall performance comparison on both local and global
relation extractions. As seen in Table 2, all three GREG models vastly outperform the models they
are based off. Proving the proposed method greatly advances the model’s performance in dealing
with documents. By pure performance, we can observe our original model GREG(Context) showing
the highest performance, followed by the LSTM Context Model [16] and the GREG(LSTM) variant.
We suspect that, despite the latter GREG variants displaying higher performances in global relation
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extraction, the other two GREG variants came up short because the number of local relations vastly
outnumber the number of global relations within each document—thus leading to an overall lower
F1-score in general. This again strengthens our suspicion that our proposed method depends greatly
on which local relation extraction model is used.

Through these evaluations, we presented that our proposed module shows the highest performance
among all others in global relation extraction. Even when we evaluate overall performance, it still
performs better than all the other models by a significant amount. Proving our proposed approach is
an effective way to extract global relations from documents while minimizing the loss of performance
on local relation extractions. The advantage we have over the other models is simple. Other models
struggle to contain and compress as much data as they can, yet attempting to not lose any vital
information during a single process. Our approach allows the model not to suffer from this problem
by taking a divide and conquer approach. Extracting each vital information from a sentence one at a
time enables to not lose any vital information. In addition, when it recreates the gathered summary
into a knowledge graph, it enables the model to recognize all the vital information it needs for global
relation extraction—thus allowing the task to be done without having to bite more than the model
can chew.

5. Conclusions

In a time where data are increasing at an enormous rate, it has become impossible to convert
unstructured text into structured data by human hands. In addition, as the size of unstructured data
along with their number increases, the importance of automating this task is one that will only increase
its value as time passes.

For this article, we have presented a Global level Relation Extraction model with knowledge
graph embedding for document-level inputs. When converting relations within unstructured text
to structured data, we focused on the fact that relations described throughout the document tend to
represent the most vital information within the document [24]. Thus, there have been multiple attempts
to extract such global relations from documents or large bodies of text. However, the re-occurring
problem in this task is the bottleneck problem [8]. Because most models attempt to process the entire
document at once, the model suffers from loss of information. To overcome this dilemma, we have
proposed a divide and conquer approach to avoid this problem entirely by using two separate models
to extract local relations and construct a knowledge graph using the local relations. The knowledge
graph is then embedded into a vector space and used to predict possible global relations within the
document. Thus, for this method to work, we applied a synchronization process to the two modules
so that the constructed knowledge graphs embedding would properly represent the global relation as
well as perform decent local relation extraction.

For our future work, we plan to ease the pressure that comes from inquiring training data. Even for
this task, the pressure from not having sufficient data was immensely heavy, especially when dealing
with large bodies of text. Therefore, we will try to attempt an unsupervised version of our method that
requires little to no data, which we hope will allow us to come closer to fully automating this task in
the near future.
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