
applied  
sciences

Article

Enhanced Phase Retrieval Method Based on Random
Phase Modulation

Fanxing Li 1,2, Wei Yan 2,* , Fupin Peng 1,2, Simo Wang 1,2 and Jialin Du 1,2

1 The School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of
Sciences, Beijing 100049, China; lifanxing15@mails.ucas.edu.cn (F.L.); pengfuping16@mails.ucas.ac.cn (F.P.);
wangsimo18@mails.ucas.ac.cn (S.W); dujialin18@mails.ucas.ac.cn (J.D.)

2 Institute of Optics and Electronics, Chinese Academy of Science, Chengdu 610209, China
* Correspondence: yanwei@ioe.ac.cn

Received: 17 January 2020; Accepted: 3 February 2020; Published: 10 February 2020
����������
�������

Abstract: The phase retrieval method based on random phase modulation can wipe out any ambiguity
and stagnation problem in reconstruction. However, the two existing reconstruction algorithms for
the random phase modulation method are suffering from problems. The serial algorithm from the
spread-spectrum phase retrieval method can realize rapid convergence but has poor noise immunity.
Although there is a parallel framework that can suppress noise, the convergence speed is slow.
Here, we propose a random phase modulation phase retrieval method based on a serial–parallel
cascaded reconstruction framework to simultaneously achieve quality imaging and rapid convergence.
The proposed serial–parallel cascaded method uses the phased result from the serial algorithm to serve
as the initialization of the subsequent parallel process. Simulations and experiments demonstrate
that the superiorities of both serial and parallel algorithms are fetched by the proposed serial–parallel
cascaded method. In the end, we analyze the effect of iteration numbers from the serial process on
the reconstruction performance to find the optimal allocation scope of iteration numbers.
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1. Introduction

The profile and inner structure of an object lie in the complex field scattered from the object.
However, current detectors are only sensitive to amplitude, leaving the phase information unrecorded.
The problem that remains to be solved is how to get the phase information of a wavefront, because of the
lack of apparatus with a response frequency faster than the wave frequency. Interferometric imaging
approaches use a known reference wave to hide the phase information in the interference pattern
produced by the reference and target wavefront [1,2]. However, the existence of extra reference light
increases the complexity and disturbance of the system [3]. Beam-propagation-based approaches are
another powerful tool to reconstruct the complex amplitude of sample. The simple experimental
set-up makes this technique capable of robustness to external influence and suitability for various
wavelengths [4]. The beam-propagation-based methods utilize variants of iterative phase retrieval
techniques which originate from the Gerchberg–Saxton (GS) algorithm to recover the complete
wavefront [5]. The iterative phase retrieval works via numerical propagation of the light field back
and forth between the recording plane and the object plane. The iterative methods which require only
a single measurement always suffer from low convergence speed and much sensitivity to the initial
value [6–8]. Although successful reconstruction could be obtained with these methods, the difficulties
encountered in obtaining a tight support constraint limit the application scope.

To overcome these restrictions, multi-image phase retrieval techniques that use different kinds
of diversities in data collection were proposed [9–21]. Methods to generate multiple-diversity
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intensity measurements include, among others, illumination area overlap [9,10], multiple recording
distance [11–14], multiple wavelength [15], and illumination beam tilting [16,17]. Except for the multiple
wavelength method, the other three types of methods require employing mechanical platforms, which
inevitably lead to low acquisition speed and cause potential mechanical error. The method which uses
varied wavelength to offer diversities may lead to stagnation and ambiguity in the iterative process
due to the lack of intensity variation when the wavelength changes are relatively small. In fact, random
phase modulation can provide effective diversity to realize quality imaging results in multi-image
phase retrieval methods. Since the “uniqueness” of the random phase can break any symmetry that
may exist in the object field, it allows for wiping out any ambiguity and stagnation problem [22,23].
Furthermore, variable modulation can be implemented using a spatial light modulator (SLM); thus,
data acquisition speed is improved and mechanical error is avoided. The spread-spectrum phase
retrieval (SSPR) method can realize rapid convergence rate by using random phase modulation and
a serial reconstructed framework [20,21]. However, the introduction of random phase modulation
and a coherent light source brings noise, and the SSPR accumulates noise as the iteration progresses
since the serial reconstruction algorithm has no noise suppression operation. A parallel reconstructed
framework proposed in Reference [19] can be used in the random phase modulation method to enhance
the noise immunity and robustness, due to the existence of an average operation in every iteration.
Nevertheless, the parallel reconstructed algorithm suffers from slow convergence speed.

In this study, we propose a beam-propagation-based phase retrieval method based on random
phase modulation and a serial–parallel cascaded reconstruction framework, which can suppress the
noise generated during the imaging process while realizing rapid convergence. In the proposed method,
we use the serial algorithm from SSPR to generate an initial guess of the parallel reconstruction algorithm.
Since an acceptable initial guess is obtained from a few iterations of the serial framework, the needed
iteration number of the whole reconstruction process is reduced, such that the convergence rate
is improved. The noise immunity and stability of the method are enhanced by the subsequent
iterations of the parallel algorithm. Accordingly, the serial–parallel concatenation framework
can realize a rapid convergence rate and quality imaging results in noisy environments. In this
work, the validity of the proposed method is confirmed both theoretically and experimentally.
Then, we analyze the impact of different allocation schemes with iteration numbers of serial processes
on the reconstruction performance.

2. Methods

In the beam-propagation-based random phase modulated methods, the variable random phase
modulations are produced by an SLM which is inserted between the object plane and the recording
plane, as displayed in Figure 1. The diffraction pattern Im, which is modulated by the random phase
ϕm, is collected by a charge-coupled device (CCD), where m = 1, 2, . . . , M, and M is the number of
measurement intensities. The distance between the object and SLM plane is denoted as Z1, and that
between the SLM and CCD plane is Z2.
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The algorithm architectures of the serial and parallel frameworks are outlined in Figure 2a,b,
respectively. The iterations of the two algorithms begin with the plane before SLM, denoted by Un,
which contains the diffraction information of the targeted object, where n is the iteration number.
Additionally, UN is the result after N iterations, and the reconstructed object field is calculated by
propagation UN back to the object plane, which is realized by the angular spectrum propagation
operator D−1

Z1, where the subscript is the diffractive distance.
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Figure 2. Figure 2. Reconstruction framework of serial and parallel algorithms: (a) the serial framework;
(b) the parallel framework. Numbers in the yellow circles indicate the update times of Un in one iteration.

In every iteration of the serial framework, Un is sequentially refined by M pairs of modulated
random phases ϕ1,ϕ2, . . . ,ϕM and the corresponding recoded intensities I1, I2, . . . , IM. As the numbers
in yellow circles shown in Figure 2a, the updates of Un from the first pair of data I1 andϕ1 to the last pair
of IM and ϕM perform M times in one iteration. Accordingly, the serial framework holds the ability of
rapid convergence. Nevertheless, the stability is affected since every update uses only one pair of data.
In addition, the noise immunity of the serial method is poor, because there is no anti-noise action in the
reconstruction process. More importantly, the introduction of SLM brings about random modulation
noise, the use of a coherent light source generates speckle noise, and dark current noise exists in the
CCD. As a result, the quality of the reconstructed results decreases in practical application. In the
parallel framework, the average of the refined results obtained by all the pairs of the measurements
and the corresponding random phases separately is used to update Un. Thus, the robustness and noise
immunity are improved. The average operation has the ability to work as a low-pass filter to suppress
noise. However, the convergence speed of the parallel framework is reduced since the Un is updated
only once in every iteration, as the number in the yellow circle shown in Figure 2b.

The refinement procedure of Un using the m-th pair of random phase ϕm and the corresponding
intensity Im is illustrated in Figure 3. The refinement procedure proceeds with the following steps:

1. Un is modulated by the random phase ϕm, yielding a modulated field Un exp( jϕm);
2. The modulated field is numerically propagated into the recording plane by the angular spectrum

propagation operator DZ2;
3. The measurement intensity Im is used to replace the magnitude of the calculated distribution of

recording plane;
4. After the replacement, the field is propagated back to the SLM plane by D−1

Z2;
5. The random phase modulation in step (1) is removed to generate a refined estimation of Un.

The refinement procedure can be applied to both serial and parallel frameworks.
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The proposed method combines the serial and parallel reconstruction framework to simultaneously
guarantee noise immunity and convergence speed, which can be divided into two steps: (a) using the
serial reconstruction algorithm to obtain an acceptable phase estimation; (b) using the estimation as an
initialization to carry out the iterations of the parallel algorithm. We use a few iterations from the serial
algorithm to replace a large number of iterations from the parallel algorithm in the earlier stage of the
reconstruction process. Subsequently, the robustness and the ability of noise suppression are enhanced
by the parallel framework. Accordingly, the proposed serial–parallel cascaded reconstruction method
can achieve both quality reconstruction results and rapid convergence. The iteration number of the
proposed method is the sum of serial and parallel processes iterations. We use n1 and n2 to denote
the iteration numbers of the serial and parallel processes, respectively, as n1 + n2 = N̂, and N̂ is the
eventual iteration number of the serial–parallel cascaded method.

3. Results

To evaluate the performance of the two existing algorithms and the proposed serial–parallel
cascaded approach, we simulated the reconstruction processes using a two-dimensional complex
object. As shown in Figure 4, images “einstein” and “galaxia” were used for the amplitude and phase
of the simulated object, respectively, with a resolution of 1024 × 1024 pixels. A “distant planet” shown
in the sub-image of Figure 4b is used as a prominent comparison for the reconstructed results. We use
the following parameters: wavelength = 532 nm, pixel size of the recording plane = 5.5 µm, distance
from the object plane to SLM = 100 mm, and distance between SLM and the CCD plane = 150 mm.
In the simulation, four pairs of random phases and the corresponding measurement intensities
are reconstructed.
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Figure 4. The complex amplitude of the simulated object: (a) the amplitude; (b) the phase.

Firstly, we evaluate the convergence speed of the serial, parallel, and the proposed serial–parallel
cascaded methods. In the reconstruction process, the iteration numbers of the three methods were
set to 50, and the iteration number in the cascaded method was allocated as follows: n1 = 5,
n2 = 45. Figure 5a plots relationships between iteration numbers and mean square errors (MSE) of
the reconstructed amplitudes from these three methods. MSE is defined as

MSE =
1

XY

∑
∀x,y

[
∣∣∣On(x, y)

∣∣∣− ∣∣∣Oreal(x, y)
∣∣∣]2, (1)

where On is the reconstructed object distribution after the n-th iteration, n = 1, 2, . . . , N, and Oreal
represents the real object. X and Y are the pixel numbers of the image, while x and y are the coordinates
of the object plane. As shown in Figure 5a, the convergence speeds of serial and cascaded methods
were far faster than that of the parallel method. The superiority of the serial algorithm is evidently
manifested, while the first five iterations of the proposed cascaded method were the same as the serial
method, thereby reducing MSE to 0.0015. On the other hand, the parallel method required 58 iterations
to achieve the same value of MSE. To clearly illustrate the effect of different convergence states on the
reconstruction results, the retrieved objects after 50 iterations are displayed in Figure 5b–g. We can see
that the serial and cascaded methods achieve excellent results after 50 iterations. The results of the
parallel framework were affected by noise since there were not enough iterations, and the contrast of
the recovered phase was degraded, as illustrated in the sub-image of Figure 5f.
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Figure 5. The convergence speed curves and the reconstructed objects. (a) The relationship between
iteration number and mean square error (MSE) of the reconstructed amplitude from serial, parallel,
and the proposed cascaded reconstruction algorithms, n1 = 5, N = 50. (b–d) Reconstructed amplitudes
of the three methods after 50 iterations; (e–g) corresponding phases.
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We use polluted measurements to assess the noise immunity of the three methods. The iteration
numbers were set to 80 to further the parallel method’s convergence, and the iteration number allocation
scheme of the cascaded method was n1 = 5, n2 = 75. The noise curves of the three methods are
plotted in Figure 6a, where the mean of the added Gaussian noises was 2% of the average of the four
measured intensities. As the variance of the added noise increased, the MSEs of the reconstructed
amplitudes increased and the imaging quality degraded. Obviously, the degradation speed of the
serial algorithm was faster than that of parallel and cascaded methods. Compared with the cascaded
framework, the anti-noise performance of the parallel method was worse when variances of the added
noise were less than 46%, since the parallel method did not meet complete convergence, even after
80 iterations. Thus, the imaging quality of the parallel method suffered from the degradation of two
aspects: noise and convergence state. When the noise was small, the convergence state played a vital
role. The results of the three methods with noise variance of 30% and a mean of 2% are illustrated
in Figure 6b–g. The amplitude result of the serial method displayed the most serious effect of noise.
Furthermore, the contrast of the recovered phase of the serial method was affected severely, as we
could hardly find the real position of the planet in the sub-image of Figure 6e.
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Figure 6. The curves of anti-noise performance and reconstruction results with polluted intensity;
n1 = 5, N = 80. (a) The relationships between the variances of the added Gaussian noise and MSEs of
reconstructed amplitudes from the serial, parallel, and proposed cascaded reconstruction algorithms;
(b–d) reconstructed amplitudes with polluted intensities of the three methods after 80 iterations, when
the noise variance was 30% and mean was 2%; (e–g) corresponding recovered phases.

The simulation results demonstrate that the parallel framework had a slow convergence rate
and strong noise immunity, while the serial framework had a rapid convergence rate and poor noise
immunity. On the other hand, the cascaded approach inherited the merits of both methods, thereby
realizing rapid convergence while having a good capability of noise immunity.

4. Experiment and Analysis

A lens-free imaging system was used to verify our method, which was composed of four parts:
a coherent plane wave (532 nm), a sample, an SLM (pixel size = 12.5 µm), and a CCD camera (pixel
size = 3.1 µm). A calibration target etched with a resolution testing board was used for the sample.
The distance from the object to the SLM was 100 mm, and that from the SLM to the CCD was 150 mm.
Then, four intensity measurements were sequentially recorded by the CCD as the SLM transformed four
times. As the image sharpness is a significant evaluation criterion of an image, we used the sharpness
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functions of retrieved images for a global quantification of the convergence rate and reconstruction
quality. The sharpness function is defined as follows [24]:

Sn = [
∑
∀x,y

∣∣∣On(x, y)
∣∣∣2]/[∑

∀x,y

∣∣∣On(x, y)
∣∣∣]2, (2)

where Sn is the sharpness of On, and On is the reconstruction result after n loops.
The convergence curves after 600 iterations of the three methods are plotted in Figure 7.

The serial process of the proposed cascaded method executed 35 iterations, with n1 = 35 and
n2 = 565. Although the convergence speed of the serial method was faster than that of the parallel
method, the convergent result of the parallel method was much better than that of the serial method.
Obviously, only the cascaded method achieved rapid convergence and quality results at the same time.
We used the threshold condition

∣∣∣∣∣∣Sn+1
∣∣∣− |Sn|

∣∣∣ ≤ 1−10 to extract the convergent iteration numbers to
quantify the convergence rates. The iteration numbers and the corresponding sharpness are exhibited
in Table 1. Compared with the parallel method, the proposed cascaded method realized the same
quality result with fewer iterations.
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Table 1. Reconstructed performance comparison of the three methods.

Performance Serial Parallel Cascaded

Iteration number 90 425 156
Sharpness (×10−5) 2.0475 2.2706 2.2740

To clearly show the differences in the reconstruction results with different sharpness, the recovery
amplitudes and phases of these three methods are shown in Figure 8a–f. In the reconstructed amplitudes
exhibited in Figure 8a–c, the background noise of the serial algorithm was the most severe, compared
to the other two methods. Moreover, the data captured from white lines in Figure 8a–c are plotted
in Figure 9 to show the detailed distinction of reconstruction quality. Apparently, the contrast of the
serial result was reduced by background noise. The parallel and cascaded methods, which held higher
sharpness, performed better in terms of reconstruction quality.
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The experiments show the availabilities of the proposed cascaded method, which extracted the
superiorities of both serial and parallel methods, thereby achieving quality imaging with fewer iterations.
Nevertheless, there is still an important question to be addressed in the proposed serial–parallel
cascaded reconstruction framework. How does the distribution scheme of iteration numbers affect the
reconstruction performances? In this work, we mainly analyzed the effect of different iteration numbers
of the serial process n1 on the iteration number N̂ required for convergence and the corresponding
reconstruction quality. Furthermore, the threshold condition

∣∣∣∣∣∣Sn+1
∣∣∣− |Sn|

∣∣∣ ≤ 1−10 was used to determine
the iteration convergence.

The relationship between n1 and N̂, the number of iterations required for convergence, is plotted
with a blue solid curve in Figure 10. With the increase in serial process iteration numbers, the number
of iterations required eventually showed a downward trend and increased after encountering a
minimum. When the minimum of N̂ was achieved, n1= 50. In the convergence curve of the serial
method, the point that the iteration number was equal to 50 can be considered a turning point, since
the convergence speed was nearly reduced to 0 after the turning point. The convergence curve of the
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serial method and the corresponding derivative curve are plotted in Figure 11 with a blue solid line
and dotted orange line, respectively, while the positions of the turning points are marked with black
dots. In the proposed serial–parallel cascaded method, when the iteration number of serial process n1

was set to the position of the turning point from the serial convergence curve, the iteration converged
at the fastest speed. When the value of n1 was smaller than the value of the iteration number of the
turning point, more parallel iterations were required later, since the iteration speed of the serial process
was much faster than that of the parallel process. When n1 was greater than the iteration number of
the turning point, any iteration numbers in excess constituted a waste, since the reconstruction quality
hardly continued improving.
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Compared with the convergence speed, the effect of n1 on the reconstruction quality of the
proposed serial–parallel cascaded method was relatively smaller. The dotted orange line in Figure 10
shows the relationship between serial iteration number n1 and the sharpness of the recovered amplitude.
Although experimental errors made the relationship curve oscillatory and noisy, we could still find
that a continuous increase of n1 caused the reconstruction quality to decrease in the convergent
state. In particular, when n1 was greater than the iteration number of the turning point of the serial
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convergence curve, the degradation was even more serious. Therefore, we recommend that a value
before the turning point of the serial method convergence curve should be used to set the iteration
number of the serial process n1. It is worth noting that n1 cannot be too small since an initial result
too far away from convergence would severely increase the number of iterations required for the
subsequent parallel process.

5. Conclusions

In summary, two frameworks were used to reconstruct the beam-propagation-based random
phase modulation method: the serial algorithm from SSPR and the parallel algorithm. Although the
traditional serial algorithm can converge with a small number of iterations, the anti-noise ability is
poor; thus, the reconstruction quality is seriously affected in practical application. On the other hand,
the parallel framework has the ability to suppress noise, but the convergence speed is decreased.
In this work, we proposed a serial–parallel cascaded framework to achieve quality imaging and
rapid convergence of the beam-propagation-based random phase modulated method. The proposed
cascaded framework uses an iterative result from the serial algorithm as initialization of the parallel
algorithm to simultaneously ensure noise immunity and convergence speed. The simulation and
experiment demonstrated the performance of the cascaded method, which inherited the merits of the
serial and parallel methods. Furthermore, we analyzed the impact of the initial result from the serial
process with different iteration numbers on the reconstruction performance to find the optimum number
of iterations of the serial process. The compactness, quick convergence, robustness, and anti-noise
properties grant the proposed serial–parallel cascaded random phase modulation method with good
potential as an effective tool for wavefront detection and lensless imaging techniques.
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