
applied
sciences

Article

Synthetic Minority Oversampling Technique for
Optimizing Classification Tasks in Botnet and
Intrusion-Detection-System Datasets

David Gonzalez-Cuautle 1 , Aldo Hernandez-Suarez 1 , Gabriel Sanchez-Perez 1 ,
Linda Karina Toscano-Medina 1 , Jose Portillo-Portillo 1 , Jesus Olivares-Mercado 1 ,
Hector Manuel Perez-Meana 1,∗ and Ana Lucila Sandoval-Orozco 2

1 Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico;
dgonzalezc1701@alumno.ipn.mx (D.G.-C.); alhernandezsu@ipn.mx (A.H.-S.); gasanchezp@ipn.mx (G.S.-P.);
likatome@gmail.com (L.K.T.-M.); jportillop@ipn.mx (J.P.-P.); jolivares@ipn.mx (J.O.-M.)

2 Departament of Electrical Engineering Faculty of Technology University of Brasilia (UnB), Campus
Universitario Darcy Ribeiro, Brasilia CEP 70910-900, Brazil; asandoval@redes.ubn.br

* Correspondence: hmperezm@ipn.mx; Tel.: +52-55-5624-2000

Received: 8 December 2019; Accepted: 17 January 2020; Published: 22 January 2020
����������
�������

Abstract: Presently, security is a hot research topic due to the impact in daily information
infrastructure. Machine-learning solutions have been improving classical detection practices,
but detection tasks employ irregular amounts of data since the number of instances that represent one
or several malicious samples can significantly vary. In highly unbalanced data, classification models
regularly have high precision with respect to the majority class, while minority classes are considered
noise due to the lack of information that they provide. Well-known datasets used for malware-based
analyses like botnet attacks and Intrusion Detection Systems (IDS) mainly comprise logs, records,
or network-traffic captures that do not provide an ideal source of evidence as a result of obtaining raw
data. As an example, the numbers of abnormal and constant connections generated by either botnets
or intruders within a network are considerably smaller than those from benign applications. In most
cases, inadequate dataset design may lead to the downgrade of a learning algorithm, resulting in
overfitting and poor classification rates. To address these problems, we propose a resampling method,
the Synthetic Minority Oversampling Technique (SMOTE) with a grid-search algorithm optimization
procedure. This work demonstrates classification-result improvements for botnet and IDS datasets by
merging synthetically generated balanced data and tuning different supervised-learning algorithms.

Keywords: imbalanced data; datasets; botnet detection; synthetic minority oversampling technique;
machine learning; predictive models.

1. Introduction

Because of the rapid expansion of devices and applications offering services over the Internet,
malicious actors have taken advantage of these connectivity resources to perform illegal activities like
bot-based malware crafting. A botnet is a network of compromised computers that run a malicious
program called a bot or agent [1]. The infected network is remotely controlled by a botmaster in charge
of controlling the entire infrastructure through a Command and Control server (C and C), where all
information from various network protocols, like HyperText Transfer Protocol (HTTP) and Internet
Relay Chat (IRC), is stored. The involvement in botnet spreading is attributable to diverse motivations,
varying from information leakage, spamming, phishing, and targeted Distributed Denial of Service
(DDoS) attacks. A strain of botnet malware can eventually have harsh impact due that leads to great
privacy, technological, and monetary losses.

Appl. Sci. 2020, 10, 794; doi:10.3390/app10030794 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7939-795X
https://orcid.org/0000-0002-4867-2717
https://orcid.org/0000-0002-4735-205X
https://orcid.org/0000-0002-9555-4705
https://orcid.org/0000-0001-8863-7804
https://orcid.org/0000-0002-0337-5364
https://orcid.org/0000-0002-7786-2050
https://orcid.org/0000-0002-2846-9017
http://dx.doi.org/10.3390/app10030794
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/3/794?type=check_update&version=2

Appl. Sci. 2020, 10, 794 2 of 19

Botnets and instruction attacks are packaged with more sophisticated techniques to camouflage
themselves within a network, thereby emulating network traffic generated by benign applications,
using strong encryption schemes through the HTTPS protocol [2] and unusual responses between C
and C servers that are further accentuated with the constant injection of random and noisy network
packets. Beside this, improper configurations in various networks devices can also lead to a potential
malware infection [3]. As a result, infected hosts can be undetectable by network-security appliances
such as firewalls, honeynets, Network Intruder Detection Systems (NIDS), Intruder Prevention Systems
(IPS), and Intrusion Detection Systems(IDS).

Most physical and logical devices afford solutions on the basis of prebuilt signatures, anomaly
based detection mechanics, or heuristic-based behavioral tests, proven to not be as effective due to
many pitfalls leading to high false-positives ratios. An example of prominent detection failures is the
constant updating processes that delay the identification of new threats, a lack of anomaly based rules
for unknown samples, and behavioral tests that partially disclose malicious behaviors often mistaken
as benign traffic.

On this basis, Machine-Learning (ML)-based solutions offer a sufficiently broad perspective on
the early detection of a botnet attack. In this way, robust classification models can discover hidden
malicious patterns in network flows, reveal notorious taxonomies, uncover particular attack dynamics,
and distinguish unique features; important tasks that prebuilt security appliances may fail to assess [4].
However, for real-time botnet and IDS ML-based detection environments, data acquisition plays
a major role, since the trade-off between dataset quality, quantity, and complexity reinforce the
discriminative power of the chosen algorithms to effectively solve the initial formulation, thus reducing
misclassification rates and increasing the trustworthiness of the implementation—a crucial step for
protecting critical assets [5].

Although there are many publicly available datasets for botnets and IDSs resembling real
scenarios [6–8], some drawbacks have been identified regarding the attributes of network captures
(traffic redundancy), attack diversity, labeling-procedure reliability, and data dimensionality,
more specifically, the compensation between the number of benign and malicious samples [9].
In supervised ML-based problems, when a certain number of classes are not equally distributed,
the data are said to be unbalanced, impacting the algorithm capabilities to aptly learn from the samples
of the predominant class, following to a degradation of classification performance. Considering [9,10],
the credibility of an ML-based cyber–physical system depends on the predictive abilities of intelligent
agents trained with a wide range of adversarial behavioral patterns, able to protect workloads against
malicious activities. Indeed, data distribution has a great effect on the efficiency of different ML
models [11,12]; thus, it is important to establish data-level strategies in the preprocessing and training
stages. To deal with unbalanced datasets, two methods can be applied: resampling, which balances
data by sample aggregation or deletion, and unbalanced learning [13] that seeks to improve the
detection rate of minority classes. Data resampling can be performed in the following ways:

• Oversampling: samples from minority classes are duplicated until the amount is compensated
with those from majority classes.

• Undersampling: samples belonging to majority classes are downsized at random until
compensation with respect to the minority class is reached.

• Hybrid sampling: a superset is created with samples replicated from minority classes up to the
same volume of the majority-class samples.

Even though previous research has implemented various resampling techniques, this work focuses
on a novel approach named Synthetic Minority Oversampling Technique (SMOTE), a combination of
oversampling, undersampling, and K-Nearest Neighbor (KNN) procedures to create a balanced set
by virtue of synthetic generation [14,15]. KNN randomly selects k-nearest neighbors according to the
magnitude of a majority class towards a minority class, emerging with new synthetic samples between
the minority class and its nearest neighbors.

Appl. Sci. 2020, 10, 794 3 of 19

Even though data adjustments are important to increase the sensitivity of the classification
models, it is important to consider a level of complexity in relation to algorithm performance. In [16],
the authors suggested that a key factor for an ideal level is by considering inherent hyperparameters in
which algorithms are constrained. In ML, hyperparameters are internal configuration variables used
to improve skills at the learning phase, helping to make better generalization of the input information.
The conventional scope for hyperparameter tuning is known as the grid search, a brute-force-like
procedure that divides hyperparameters into regular grids exploiting the training models until the
best grid point for minimizing the cost function is found.

In contrast with other state-of-the-art experiments, in this work we developed a deep inspection
of botnet- and IDS-related datasets, tackling the unbalancing issues that cause irregular learning rates,
and optimizing the training criteria of a set of supervised-learning algorithms, producing strengthened
models that can transform data points into actionable knowledge. To achieve this goal, data acquisition
must meet the following considerations [17]:

• Information ought to be from crude network flows as a main source of malicious-packet delivery;
• incorporation of a considerable collection of bot-based malware attacks obtained through

environments closest to near-real contexts;
• data should cover requirements from operating cycles found in production deployments (working

hours); and
• the proportion of more benign traffic packets must outnumber that of malicious ones since,

in near-real-time conditions, only a slight portion of packets arise from infected sources.

This article is organized as follows. Section 2 provides an overview of several works related to
botnet and intruder detection, the used algorithms, and the proposed balancing techniques for dealing
with unbalanced datasets. Section 3 describes the proposed methodology for the following steps:
data acquisition and examination, balancing minority-class samples via SMOTE, feature extraction
and selection and grid search (hyperparameter tuning) techniques for a proposed algorithm portfolio.
Section 4 details the obtained experiment results. Section 6 exemplifies the results discussion Finally,
Section 5 concludes this work.

2. Related Work

A network comprising bot-based malware and persistent intrusion attacks can cause extensive
harm in a short period of time if cybersecurity consultants are not ceaselessly aware of what is
going through their endpoints. Inspecting botnets and IDS network captures is not a trivial task;
classical defensive tactics include honey-based detection, a helpful tool when computational resources
are limited, and evasive rules can be quickly written from specific honeynets qualified to analyze
malicious entries. Honey-based sensing is prone to be bypassed by advanced cyber-attacks, directly
affecting scalability and practical responses from the net. IDS-based detection is mostly achieved by
security policies triggered by the real-time monitoring of network activity; nevertheless, this kind
of recognition cannot properly dissect the anomalous characteristics of malicious attacks, failing to
perform persuasive mitigation [18]. As a consequence, botnet and IDS data analysis has attracted
alternative areas of research, for instance, ML-based solutions. Prominent ML approaches facilitated
the disclosure of underlying patterns of traffic flows, pointing out the importance of feature engineering
(feature extraction and selection) and evaluating malicious traces with different assessments to reach
higher accuracy in real implementations [19]. The authors in [20] addressed botnet and IDS detection
relying on two notable ML ramifications, Supervised (SL) and Unsupervised Learning (UL). SL aims to
acquire knowledge by mapping malicious and benign samples into a predefined set of labels, learning
from intrinsic features and producing a classification model ready to predict incoming samples [21].
In contrast, UL employs a more rigorous exploration of similar patterns on underlying structures
without labeling or categorizing samples, allowing the in-depth scrutiny of similarities between

Appl. Sci. 2020, 10, 794 4 of 19

different kinds of samples. The methodology of the present work is arranged by SL techniques,
and related works are further described [22].

Because of the increasing number of types and characteristics of botnet and IDS records,
classification remains a challenging research topic. According to the input metrics detailed in [23],
malicious network flows can be outlined in four principal categories (Login, Inputs, Downloads and
Geo-location), depending on specific missions for attackers. In general, well-known SL algorithms,
including Logistic Regression (LG) [24], Support Vector Machine (SVM) [25], Artificial Neural
Networks (ANN) [26], Decision Trees (DT) [27], Random Forest (RF) [27], Bayesian Networks (BN) [28],
and Deep Learning (DL) Networks [29] have been fitted to overcome different menaces that directly
depend on the conditions, circumstances, and settings in which botnet and IDS attacks are monitored
and framed. Remarkable evidence is taken from IRC connections, P2P bots, DNS queries, anomalous
traffic footprints, blacklisted IP addresses, irregular or malformed packet lengths, and abnormal
intervals of multiple requests and responses over various network protocols [22]. Even so, some
authors [30] agreed that given the nature of raw traffic flows, data are susceptible to balancing
deficiencies between benign and malicious samples [31]. In an extensive set of trials, the authors in [32]
considered that oversampling techniques are preferable over undersampling controls, since the resizing
of large network flows can produce significant improvements in accuracy–sensitivity inter-relations,
also highlighting SMOTE as the most suitable algorithm to conduct data-balancing measures.

In [15], a portion of malicious footprints were resampled via SMOTE, and tests proved that
classification performance can be reinforced with the introduction of some level of noise to compensate
for the merge of newly crafted observations. Similarly, in [33], random sampling fixed an offset
between the number of minority classes by random generation, enabling a better detection ratio.
The authors in [34] discussed that the repeated production and mixing of oversampled instances can
create some disturbance in the original data distribution; instead, a series of SMOTE-based adaptations
were adopted:

• Borderline-SMOTE1: only concentrates on edges of the smaller class; then, it crafts, calculates,
and compares new synthetic samples around the distribution of the majority class to reconstruct
the overall distribution of class samples.

• K-means SMOTE: identifies the area of the minority class and creates new instances on the basis
of a seed pattern over the input space.

• Safe-level SMOTE: builds overall distribution upon a sale level of synthetic samples, using the
nearest neighbor of minority instances.

• C-SMOTE: establishes a mean value center from the minority class samples as a basis, combining
an interpolation algorithm to create and cluster new synthetic samples.

• CURE-SMOTE: provides synthetic samples by enhancing representative clusters from the original
SMOTE distribution.

In [10], the authors said that malware-based datasets are for the most part constituted by benign
samples, requiring a feasible structure that considers the degree of the belongingness of each minority
class, a decisive factor to properly balance a dataset. As part of the methodology, a set of algorithms
(DT, RF, Naive Bayes-NB, SVM, and AdaBoost-AB) were trough-fed preprocessed inputs under a
fuzzy-theory-based SMOTE technique, reducing misclassification costs to a large extent [35].

The scalability constraints regarding the volume of data adjacent to Big Data (BD) security
appliances, the inherent complexity of data centers work flows [36] and the properties of nonstructured
information [37] are attainable by implementing appropriate preprocessing stages, especially if SL
algorithms only consider overall accuracy without taking into account relative class distribution.
Random Oversampling for Big Data (ROS-Big Data), Random Undersampling for Big Data
(RUS-BigData), and Map Reduce (MR) are some methods responsible for resampling extensive
concentrations of evenly distributed data. As the authors described in [37], such techniques were
applied by unifying a SMOTE variation for BD, obtaining, at its best, a favorable number of synthetic

Appl. Sci. 2020, 10, 794 5 of 19

samples, avoiding some overgeneralization shortcomings to which SL are susceptible when handling a
vast number of observations. Analogously, in [38], SMOTE was optimized by three major adjustments:

• SMOTE-TomekLinks: substantial feature examination is performed on most class samples,
eliminating those that present an unbalancing factor against minority-class samples.

• SMOTE-ENN : aimed to weigh minority-class samples on the edge by employing Nearest Edited
Neighbors (NEN).

• Borderline -SMOTE2: majority-class instances are oversampled, taking as reference their edge
and inner-weighting factors.

Filtering and selecting inherent parameters in winch SL algorithms may be constrained are
important steps to strengthen classification models. In order to construct a robust methodology for
classifying botnets and IDS data covering a full domain, it is important to establish a medium to choose
settings that maximize the full potential of the selected algorithm. Positions and quantization levels can
be determined by a well-known optimization technique known as grid search (GS), in which all regions
of a defined space are searched, exhausting all possible combinations of values enclosed in a parameter.
Little is known about improvements done to ML-based detection systems by optimizing a pool of
algorithms. In early works [39], a support vector machine was tested by various kernel functions to
detect massive intruder behaviors; furthermore, in [40], a first attempt using GS demonstrated that
several algorithms can enhance predictive competencies for a series of malware families.

3. Proposed Methodology

The workflow of the proposed methodology is depicted in Figure 1. First, in the Data Acquisition
block, a comprehensive search for datasets related to botnet and IDS traffic flows is conducted by
collecting those that resemble real backgrounds, but with balancing issues. Furthermore, in the Feature
Examination and Labeling block, datasets are subjected to an examination process aiming to exploit
features that are considered useful by most authors in several state-of-the-art approaches [41–44].
Once data are normalized into a set of unique features, each sample is labeled as benign or malicious
depending on the structure stated from the original data. During the Synthetic Minority Oversampling
block, the percentage of minority-class samples from the training set are inspected to serve as a basis to
oversample the data via synthetic production, resulting in a fully balanced training set. Subsequently,
datasets are merged and split into training and testing sets. Therefore, in the Feature Extraction
and Selection block, the balanced training set is preprocessed using Principal Component Analysis
(PCA) [45] as the algorithm to extract and select the most informative and relevant features in a
new dimensional subspace. In the Supervised Machine-Learning Classification Algorithms block,
a portfolio of widely used algorithms is proposed to train the fully balanced set, thus enhancing the
classification ratio through grid search, exhaustively tuning preconceived hyperparameters. Finally,
the resulting classification models are evaluated by scoring the classification outcomes (predictions)
from a testing set in terms of the following performance metrics: Accuracy, Recall, and F1-Score.

Figure 1. Workflow of proposed methodology.

Appl. Sci. 2020, 10, 794 6 of 19

3.1. Data Acquisition

The significant number of threats against network-based information services and the resilience of
critical infrastructures constantly overlap. Profiling suspicious activities and taking prompt actions to
evade or mitigate the possibility of an impact on security are a still big challenge. In an effort to provide
robust and acute-sensing ML-based implementation, a meaningful portion of features must be directly
reflected on the size and diversity of the collected observations. SL algorithms aim to make sense of the
information provided by an external source; in this regard, a proper collection of samples is required
to generalize the most important aspects to which data are exposed. In particular, a dataset extracted
from real networks must reflect the innate behavior of adversaries attempting an attack. Therefore, it is
not affordable to simulate the attack surface using simulated or mathematical models that can directly
influence the usual state of the environment [17,44]. In this work, data acquisition was performed by
examining specific datasets that reported new threats, authentic botnet and intruder footprints, regular
traffic generated by benign applications alongside genuine network packets mirroring working-hour
scenarios. The datasets used to accomplish the proposed methodology are described below:

• ISCX-Bot-2014: Provided by The Canadian Institute for Cybersecurity in which 16 different
types of botnets are reported. These are, Neris, Rbot, Menti, Sogou, Murlo, Virut, NSIS, Zeus,
SMTP Spam, UDP Storm, Tbot, Zero Access, Weasel, Smoke Bot, Zeus Control (C and C), and ISCX
IRC bot. A total size of 5.3 GB of packet captures is formed by benign and malicious network traffic.
As advised, 43.92% of overall network captures were identified as potentially malware-based.
ISCX-Bot-2014 was built upon the consolidation of three main collections:

1. ISOT dataset [46]: integrates various projects, particularly the Honeynet Project [47],
Ericsson Research [48], and Lawrence Berkeley National Laboratory Research [49],
each containing malicious traces from well-identified botnets like Flow Storm and Zeus.
As for non-malicious connections, sources primarily came from game packages, HTTP traffic,
and P2P applications.

2. ISCX 2012 IDS Dataset [50]: crafted to be realistic, i.e., to include benign (HTTP, SMTP, SSH,
IMAP, POP3, and FTP) and malicious (Botnet ISCX IRC) traffic produced by real devices.

3. Malware Capture Facility Project [51]: the design of this dataset aims to generate and capture
various traces of botnets, and it incorporates eight different kind of botnets (Neris, Rbot,
Virut, NSIS, Menti, Sogou, and Murlo).

• CIDDS-001 - Coburg Intrusion Detection: provided by the University of Coburg in Germany, it was
designed to gather real evidence of network intruders on the basis of anomaly-detection records
and logs. Data mostly comprise network flows from small-business environments, including
several email clients between rogue web-based modules and abnormal responses from multiple
attacks, such as ping scanning, port scanning, brute force, and DoS.

3.2. Data Examination and Class Labeling

In Section 3.1 datasets were briefly introduced. As part of the initial examination of useful
features, each dataset was explored for statistics regarding its composition. Because network traffic
is mostly assembled in Packet Capture (PCAP) formats, the tool employed to dissect and replay the
packets was Tshark [52], broadly used traffic-analyzer software. Then, data were submitted into a
controlled sandboxed environment where malicious traces were monitored in depth. With regard to
the ISCX-Bot-2014 dataset, Table 1 provides the percentage of different botnet flows captured on-the-fly.

Appl. Sci. 2020, 10, 794 7 of 19

Table 1. Distribution of different botnets used in dataset.

Botnet Type Flow Portion

Neris IRC 25,967 (5.67%)
Rbot IRC 83 (0.018%)
Menti IRC 2878 (0.62%)
Sogou HTTP 89 (0.019%)
Murlo IRC 4881 (1.06%)
Virut HTTP 58,576 (12.80%)
NSIS P2P 757 (0.165%)
Zeus P2P 502 (0.109%)
SMTP Spam P2P 21,633 (4.72%)
UDP Storm P2P 44,062 (9.63%)
Tbot IRC 1296 (0.283%)
Zero Access P2P 1011 (0.221%)
Weasel P2P 42,313 (9.25%)
Smoke Bot P2P 78 (0.017%)
Zeus Control (C and C) P2P 31 (0.006%)
ISCX IRC bot P2P 1816 (0.387%)

By large-scale observing the replay of the ISCX-Bot-2014 dataset, suspicious connections were
identified in accordance with incoming and outgoing connections from IP addresses mapped to
anomalous behaviors. The report is depicted in Table 2.

Table 2. List of malicious IPs on ISCX-Bot-2014 dataset.

Botnet IP Addresses Ranges

IRC 192.168.2.112 -> 131.202.243.84
192.168.5.122 -> 198.164.30.2

192.168.2.110 -> 192.168.5.122
192.168.4.118 -> 192.168.5.122
192.168.2.113 -> 192.168.5.122
192.168.1.103 -> 192.168.5.122
192.168.4.120 -> 192.168.5.122
192.168.2.112 -> 192.168.2.110
192.168.2.112 -> 192.168.4.120
192.168.2.112 -> 192.168.1.103
192.168.2.112 -> 192.168.2.113
192.168.2.112 -> 192.168.4.118
192.168.2.112 -> 192.168.2.109
192.168.2.112 -> 192.168.2.105
192.168.1.105 -> 192.168.5.122

Neris 147.32.84.180
RBot 147.32.84.170
Menti 147.32.84.150
Sogou 147.32.84.140
Murlo 147.32.84.130
Virut 147.32.84.160
IRCbot and black hole1 10.0.2.15
Black hole 2 192.168.106.141
Black hole 3 192.168.106.131
Tbot 172.16.253.130, 172.16.253.131

172.16.253.129, 172.16.253.240
Weasel Botmaster IP: 74.78.117.238

Bot IP: 158.65.110.24
Zeus (zeus samples 1, 2 and 3, bin_zeus) 192.168.3.35, 192.168.3.25

192.168.3.65, 172.29.0.116
Osx_trojan 172.29.0.109
Zero access (zero access 1 and 2) 172.16.253.132, 192.168.248.165
Smoke bot 10.37.130.4

Appl. Sci. 2020, 10, 794 8 of 19

With the information presented above and by scrutinizing ISCX-Bot-2014 author specifications,
useful features were determined in terms of the abnormal presence of packets during the request and
responses from malicious sources, as shown in Table 3.

Table 3. Features examined in ISCX-Bot-2014 dataset.

Feature Description

1 Src_ip Source IP Address
2 Src_port Source Port
3 Dst_ip Destination IP Address
4 Dst_port Destination Port
5 Out_packets Number of output packets
6 Out_bytes Output byte number
7 Income_packets Number of input packets
8 Income_bytes Number of input bytes
9 Total_packets Total number of transmitted packets
10 Total_bytes Total number of transmitted bytes
11 Duration Flow duration

The CIDDS-001 dataset is presented in plain-text format and was provided by prebuilt attributes.
However, some values were missing or had insufficient information, yielding a large amount of noise.
Manual inspection preceded to normalize the number of features and delete disproportional samples.
Table 4 details each feature after the removal of noisy elements.

Table 4. Features used in CIDDS-001 dataset.

Feature Description

1 Src ip Source IP Address
2 Src port Source Port
3 Dest ip Destination IP Address
4 Dest port Destination Port
5 Duration Duration of the flow
6 Bytes Number of transmitted bytes
7 Packets Number of transmitted packets
8 Class Class label (normal, attacker, victim, suspicious, or unknown)

Consequently, samples tagged with discrete or numerous categorical values were standardized
into malicious and benign classes. For the CIDDS-001 dataset, a total of 49,554 samples were labeled as
benign and 105,530 as malicious, while in ISCX-Bot-2014 benign samples were over 119,287, and 56,572
were malicious.

3.3. Synthetic Minority Oversampling

After feature examination, the number of benign samples was greater than that of malicious
ones, a condition described on Sections 1 and 2 upon which flows generated by botnets or intrusion
attacks can be masked within the network. As a consequence, the aforementioned security appliances
were unable to correctly record their activity, leading to insufficient proof of malicious activity. As an
example, benign traces clearly prevailed in a great part of the observations owing to large connections
between safe client-server architectures. Conversely, the malicious ones were not frequently spotted,
requiring more thorough inspection. This is explained by unusual botnets and C and C conversations,
odd targeted attacks exploiting some vulnerability, passive scanning, unfamiliar Denial of Service
attempts, and brute-force attacks that are rarely experienced. Eventually, this problem sometimes
causes ML-based sensors to deteriorate in learning potential, tending to mislead the detection of
suspicious objects. To tackle the absence of malicious patterns, this works pursued to resample

Appl. Sci. 2020, 10, 794 9 of 19

previously studied datasets by applying SMOTE; in this section, we describe the steps considered
develop the technique.

Consider each dataset as representation of n samples X ∈ Rn×m mapped with yi ∈ {1, 2, . . . , C}
labels. The unbalanced subsets are defined as Xmin ⊂ X for minority-class samples and Xmaj ⊂ Xtrain
for majority observations, respectively; so, Xmin ∪ Xmaj = X; ∀Xmin < Xmaj. Depending upon the
amount of oversampling based on the extent of Xmaj, synthetic data are generated by pointing to
a space of similar features between instances belonging to xi ∈ Xmin from a certain neighborhood.
Then, k-nearest neighbors are computed by considering the smallest Euclidean distance between the
neighbor and the rest of Xmin instances; the closest k neighbors serve as reference points to create new
in-between samples. The interpolation of those observations is described in Equation (1):

Xsyn = X + (Xk − X) · e, (1)

where Xk ∈ Xmin is one of K-nearest neighbors (k = 1, 2, 3, . . . , K) from selected samples xi, e is a
random number belonging to the range of [0, 1] that represent the number of instances between xi and
Xk, and Xsyn is the new synthetic sample. In this way, SMOTE balanced both datasets as follows:

• CIDDS-001: comprised 248,134 samples, where 50% corresponded to benign and the rest
to malicious.

• ISCX-Bot-2014: comprised 133,226 samples, where 50% corresponded to benign and the rest to
M malicious,

Finally, datasets were divided into training Xtrain and test Xtest subsets with a random split of
samples of 80% of the overall data for training purposes and 20% for testing the resulting models.

3.4. Feature Extraction and Selection

As indicated in the literature [53–57], it is essential to strengthen evidence provided by the
features described on each dataset as this positively influences SL training routines by capturing
maximum variability of the inputs and expanding the capacity of inference to the resulting models.
If at some point ISCX-Bot-2014 and CIDDS-001 features produce correlation effects, this downgrades
the computation of the algorithm. With the incorporation of dimensionality reduction, features that
produce wrong variability are discarded, and the remaining inputs are represented in a new subspace
of lower dimension based on their variability. In this proposal, Xtrain was preprocessed via Principal
Component Analysis (PCA) [45], a dimensionality reduction used to describe features in a new set of
noncorrelated variables.

Principal component z1 is defined as the linear combination of the original features with maximum
variation. Values in this first component are represented in Equation (2):

z1 = Oa1, (2)

where n is the number of samples, O is the matrix of observations with zero mean, and a1 is the vector
that maximizes variance var(z), as formulated in Equation (2).

1
n

z′1z1 =
1
n

a1
′O′Oa1 = a1

′Sa1, (3)

where S is the matrix of variances and covariances from the observations. In order to solve Equation (3),
constraint a1

′a1 = 1 must be established using a Lagrange multiplier:

M = a1
′Sa1 −ω(a1

′a1 − 1); (4)

Appl. Sci. 2020, 10, 794 10 of 19

maximizing Equation (4) implies deriving it with respect to the components of a1 until zero:

∂M
∂a1

= 2Sa1 − 2ωa1 = 0 (5)

Equation (5) results in Sa1 = ωa1, where a1 is an eigenvector of S, and ω the
corresponding eigenvalue.

Ultimately, a new subspace is given by the two main components for both datasets, representing
new variables with 89% of captured relevance for ISCX-Bot-2014 and 94% for CIDDS-001.

3.5. Supervised Machine-Learning Algorithms

An algorithm portfolio was constructed by a set of supervised machine-learning algorithms; then,
each algorithm is trained using identical set Xtrain. Therefore, the resulting classification models are
subjected to rigorous evaluation against test set Xtest with different performance metrics; the model
with the best score can be selected as a candidate to solve the initial classification problem. In order to
build a portfolio, the following assumption must summarize the proposed goal:

Assumption 1. There must be a set of algorithms a ∈ A with a P classification problem that makes it easier to
identify given a selection process S, in which each algorithm can be optimally performed given set of features f
on the same environment [58].

To solve S, the following criteria were taken into account:

• Define supervised classification algorithms to use in a specific context;
• optimize each algorithm by means of hyperparameter tuning;
• evaluate each algorithm in isolation from its performance metrics;
• evaluate each algorithm in parallel in the same environment; and
• compare the performance of each algorithm with those used in the literature.

As mentioned in Section 2, the set of algorithms reported in the state of the art [59–63] for botnet
and Intruder detection [64] were selected to construct the algorithm portfolio:

• K-Nearest-Neighbor (KNN);
• Support Vector Machine (SVM);
• Logistic Regression (LR);
• Decision Trees (DT); and
• Random Forest (RF).

3.6. Grid Search

Grid Search (GS) or hyperparameter search [16] is the process of iterating a set of hyperparameters
λ contained in a machine-learning algorithm a ∈ A to identify optimal subset λ∗ that maximizes the
performance of resulting model M and minimize loss function L(Xtrain, M). Equation (6) computes
the main idea behind grid search.

λ∗ = argminλ{L(a, Xtrain, λ)}
= argminλ{F(L(a, Xtrain, λ))} , (6)

where L indicates the loss function, Xtrain is the training set, a is the chosen algorithm, λ is the set of
hyperparameters to be optimized, and F is an objective function aimed to test the performance of new
set of tuned hyperparameters λ∗.

Table 5 indicates used hyperparameters λ in algorithm portfolio A and their corresponding values.

Appl. Sci. 2020, 10, 794 11 of 19

Table 5. Algorithms with their inherent hyperparameters and values.

Algorithm (a) λ Values /Ranges

KNN

Algorithm used to compute nearest neighbors

No. of neighbors to use
Weight function used in prediction

Ball tree,
KD tree,
Brute Force
{1, 50}
Uniform,
By distance

SVM

Penalty parameter C of error term
Decision function of shape

Kernel type to be used in algorithm

{0.0001, 0.001, 0.01, 0.1}
One-vs-one,
One-vs-rest
Polynomial,
Linear,
RBF

LR

Inverse of regularization strength of term C
Norm used in penalization function

Algorithm to use in optimization problem

{0.0001, 0.001, 0.01, 0.1}
`1,
`2
Linear
LBFGS *,
SAG †,
SAGA ‡

DT

Maximum tree depth
No. of features to consider for best split
Strategy used to choose split at each node

{1, 30}
{1, 100}
Sqrt,
Log2
Best,
Random

RF

Use bootstrap samples when building trees
Function to measure split quality
Max tree depth
No. of features to consider for best split
Min. no. of samples required to be at
leaf node
Min. no. of samples required to split
internal node
No. of trees in forest

True, False
Entropy, GINI §

{1, 30}
{1, 30}

{1, 30}

{1, 30}
{1, 10}

* Limited-memory BFGS; † Stochastic Average Gradient; ‡ Fast Incremental Gradient Method; § GINI Index.

4. Experiment Results

This section presents the experiment results using finest hyperparameters λ∗ of each classification
model resulting from A. Xtrain was submitted to an isolated trial-validation test using K-fold
cross-validation (10 folds per trial) [65]. This provided better generalization in the learning process,
monitoring the average results of each trial. Then, the final models were scored using each testing
set Xtest for the balanced ISCX-Bot-2014 and CIDDS datasets in terms of the following performance
metrics: Accuracy, Recall, and F1-score. In order to compare the results of the improvements of the
proposed methodology (SMOTE + GS), ISCX-Bot-2014 and CIDDS-001 were tested with the same
algorithm portfolio but without any balancing or hyperparameter0optimization techniques. Tables 6–9
show the performance scores of each dataset.

Appl. Sci. 2020, 10, 794 12 of 19

Table 6. Unbalanced CIDDS-001 scores.

Algorithm Precision Recall F1-Score

KNN 0.9949 0.9968 0.9958
SVM 0.8648 0.8968 0.8762
LR 0.7002 0.7012 0.7049
DT 0.9958 0.9928 0.9906
RF 0.9970 0.9922 0.9915

Table 7. Unbalanced ISCX-Bot-2014 scores.

Algorithm Precision Recall F1-Score

KNN 0.9936 0.9954 0.9915
SVM 0.7832 0.7907 0.7826
LR 0.6861 0.6944 0.6895
DT 0.9947 0.9929 0.9932
RF 0.9930 0.9951 0.9947

Table 8. CIDDS-001 (SMOTE + GS) scores.

Algorithm Precision Recall F1-Score Best Hyperparameter/Value

KNN 0.9812 0.9817 0.9815 Algorithm used to compute nearest neighbors: Ball tree
No. of neighbors to use: 4
Weight function used in prediction: By distance

SVM 0.8961 0.9344 0.9091 Penalty parameter C of error term: 0.001
Decision function of shape: One-vs-one
Kernel type to be used in the algorithm: Linear

LR 0.7208 0.7188 0.7196 Inverse of regularization strength of term C: 0.0001
Norm used in penalization function: `1
Algorithm to use in optimization problem: Linear

DT 0.9816 0.9836 0.9826 Maximum tree depth: 9
No. of features to consider for best split: 12
Strategy used to choose split at each node: Best

RF 0.9814 0.9833 0.9823 Use bootstrap samples when building trees: False
Function to measure split quality: GINI
Max tree depth: 9
No. of features to consider for best split: 12
Min. no. of samples required to be at leaf node: 2
Min. no. of samples required to split internal node: 9
No. of trees in forest: 1

Appl. Sci. 2020, 10, 794 13 of 19

Table 9. ISCX-Bot-2014 (SMOTE + GS) scores.

Algorithm Precision Recall F1-Score Best Hyperparameter Value

KNN 0.9677 0.9676 0.9676 Algorithm used to compute nearest neighbors: Ball tree
No. of neighbors to use: 4
Weight function used in prediction: by distance

SVM 0.8152 0.8261 0.8117 Penalty parameter C of error term: 0.01
Decision function of shape: One-vs-one
Kernel type to be used in the algorithm: Linear

LR 0.7836 0.7789 0.7816 Inverse of regularization strength of term C: 0.0001
Norm used in penalization function: `1
Algorithm to use in optimization problem: LBFGS

DT 0.9797 0.9800 0.9799 Maximum tree depth: 9
No. of features to consider for best split: 12
Strategy used to choose split at each node: Best

RF 0.9796 0.9799 0.9798 Use bootstrap samples when building trees: False
Function to measure split quality: GINI
Max tree depth: 9
No. of features to consider for best split: 7
Min. no. of samples required to be at leaf node: 2
Min. no. of samples required to split internal node: 9
No. of trees in forest: 1

The efficiency of each model was determined by Receiver Operating Characteristic Area Under
the Curve, which measures performance by indicating the ability of the model to distinguish classes;
the higher the AUC is, the better the prediction of the model. Figures 2 and 3 depict each tuned
classification model.

Figure 2. Receiver Operating Characteristic (ROC) for balanced subset CIDDS-001.

Appl. Sci. 2020, 10, 794 14 of 19

Figure 3. Receiver Operating Characteristic (ROC) for balanced subset ISCX-Bot-2014.

5. Results and Discussion

The experiment results for the botnet and IDS datasets using SMOTE + GS demonstrated
significant improvement for the prediction of malicious samples in highly unbalanced datasets as
compared to what the authors in [66,67] achieved by means of resampling techniques. Indeed, there was
a lack of meticulous inspection with reference to sampling engineering, and an absence of algorithm
evaluation regarding optimization and future assessment. Even though in [66] the performance of
some SL models reached high accuracy rates, it was not explained if some extraordinary scores were
the product of overfitting conditions mainly caused by a balancing factor and the employed type of
resampling. In our approach, it is emphasized that by employing SMOTE and supervising forthcoming
model, K-fold cross-validation overfitting can be significantly avoided; in this way, during the learning
stage, Xtrain was split into a validation set of equal size of training data, making it possible to correctly
verify average accuracy in different trials. As demonstrated in the results, feature extraction and
selection played an important role since manual inspection was not sufficient to exploit the inherent
values of each feature, but is also indispensable for a better outlook on data representations that
maximize variability in a feature space. Moreover, algorithms are by default constrained by inner
parameters, so that in the learning process they must be put through rigorous search to find optimal
values, enhancing a more favorable sensing ratio. To present the improvements of the present work,
similar proceedings are compared in Table 10.

In addition, another significant factor for the improvement of the classification models created
in this work in both datasets was the fact that they were a configuration that was external to the
model and whose value could not be estimated from the learned patterns, but from the performance
of the algorithm in itself during the training stage (Figure 1), helping to improve the classification
performance of the model, i.e., for each iteration of the hyperparameters in each algorithm of the
proposed portfolio, the best were found to be their combinations, strengthening the predictions of each
suggested model, as shown in the table above.

The hyperparameters for the KNN algorithm of the CIDDS-001 dataset with the best performance
used four neighbors because the algorithm that calculates the closest proximity between neighbors
(Ball Tree) and the function weight (Distance) used in the prediction showed that all evaluation metrics
oscillated by 98% in their results. In the case for the SVM, the penalty parameter (C) showed that with a
margin of error of 0.001, a linear kernel and the form-decision function (o-v-r) taking into account the

Appl. Sci. 2020, 10, 794 15 of 19

number of samples and the number of classes for this study, binary classes generated results in 90%
average. For the LR algorithm, penalty rule `1 showed a very efficient regularization force (0.0001)
and, with the help of the LBFGS optimization algorithm, evaluation metrics reached above 70%. With
a depth of nine nodes for the DT, considering the best division for each was 12, in addition to showing
favorable results in the metrics (average of 98%), reduced memory consumption, complexity, and tree
size for the produced classifier model. Finally, in RF, in the same way as in DT, the depth of its nodes
and the best division in the trees were nine and 12, respectively, because it is a DT derivative. By having
a fully balanced dataset, sampling of features to be considered for the best division in each tree was
disabled (Bootstrap = False) so that its construction took into account the whole set. Only two samples
were enough to form a leaf (binary class) inside the tree, achieving results above 98%.

Table 10. Comparative analysis between related works for CIDDS-001 and ISCX-Bot-2014 datasets.

Methodology Dataset Algorithm Accuracy

Verma A. et al. [66] CIDDS-001 KNN 93.87%

SMOTE+GS CIDDS-001 KNN 98.72%

Bijalwan A. et al. [67] ISCX-Bot-2014

KNN
DT
Bagging with KNN
Ada-Boost with DT
Soft voting of KNN and DT

93.87%
93.37%
95.69%
94.78%
96.41%

SMOTE + GS ISCX-Bot-2014

KNN
SVM
LR
DT
RF

98.72%
97.35%
97.89%
98.65%
98.84%

For the hyperparameters of the ISCX-Bot-2014 dataset, the algorithm in KNN (Ball Tree) calculated
that the optimal number of nearest neighbors was four because the function weight (Distance) was
taken into account to determine them, achieving results of more than 96% in its evaluation metrics.
The form-decision function (o-v-r) in SVM, the kernel type (Linear), and the penalty parameter of
0.01 had a positive impact when generating the predictive model, reaching metrics above 80% in
the classification of botnet samples. Evaluations in the performance metrics of the predictive model
with LR were the lowest of all the algorithms of the used portfolio (below 79% in the classification)
despite having good regularization force (0.0001); the penalty rule (`1) affected the results due to the
optimization algorithm used (LBFGS). In DT, in the same way as in the CIDDS-001 dataset, the depth
of the nodes was nine and their best divisions were 12 because this led to the creation of the best tree
with an average performance of 97%. As already mentioned, RF is a derivative of DT, so the depth of
its nodes was 9, while its best divisions were seven, taking into account the function to measure its
quality (GINI) because counting in unique values is favored and therefore better classification (average
of 97%). This being a binary classification problem, leaves were composed of only two samples and a
single tree.

In future work, a real-time ML-based implementation of SMOTE + GS is proposed by
considering the suggestions adopted in [68]. First, a specialized host is indispensable to filter, examine,
and transform network packages into useful features; then, a labeling process must map samples
through a botnet or intruder category and store them in a knowledge-based database. Furthermore,
observations must be trained in an offline fashion for an amount of time; consecutively, an actuator
layer is responsible for establishing the ML module to inspect the communication network and force
to identity the type of transmitted package. Finally, a handler must decide to mitigate the identified
threat, send an alarm to network administrators, or execute a defense mechanism. An important factor
for the reproduction of the proposed in real applications is also to gather samples over a four-week
timespan because, on average, inactive threats exhibit their functionality.

Appl. Sci. 2020, 10, 794 16 of 19

6. Conclusions

Currently, new and sophisticated techniques are developed by malicious actors (intruders) to
evade detection (strong encryption in their transmitted packets, constant injection of packets that
generate noise, and abnormal responses between bots and their C and C) mechanisms within security
appliances, resulting in an important security concern in the fact that embedded solutions base their
strength on limited actions established by signatures, anomaly recognition, and heuristic behaviors,
flawed in adopting an efficient perspective for timely and accurate detection. Instead, ML-based
implementations are being considered to tackle classical applications; however, a limitation occurs
when the construction of datasets is prone to unbalanced information, leading to downgrading the
learning stages of classification algorithms and causing a bad interpretation of malicious patterns.
For this reason, we proposed in this work a data resampling technique known as SMOTE to subject to
two datasets that closely resembled real botnet and IDS information (CIDDS-001 and ISCX-Bot-2014)
and create a fully balanced dataset via synthetic generation. Experiment results proved that by testing
different supervised-learning algorithms via the grid-search hyperparameter-optimization technique
with a balanced training set, the performance of the final classification models could be substantially
improved. As compared with other state-of-the-art approaches with the same set of algorithms,
SMOTE + GS reached better results in terms of accuracy (KNN: 98.72%, SVM: 97.35%, LR:97.89%, DT:
98.65%, and RF:98.84%).

Author Contributions: D.G.-C. developed the conceptualization and the proposed methodology for balancing
the used datasets. A.H.-S. and G.S.-P. developed the computer program to evaluate the performance of the
methodology with balanced datasets. J.O.-M. and L.K.T.-M. performed analysis and the validation of the dataset
balance. J.P.-P., H.M.P.-M., and A.L.S.-O. monitored the results and how efficient the proposed methodology
was. All authors participated in the write-up and review of the article. All authors have read and agreed to the
published version of the manuscript.

Acknowledgments: The authors thank the National Science and Technology Council of Mexico (CONACyT),
the Instituto Politécnico Nacional, and the Grupo de Análisis, Seguridad & Sistemas (GASS) of the Universidad
Complutense de Madrid for the financial support for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hsu, F.H.; Ou, C.W.; Hwang, Y.L.; Chang, Y.C.; Lin, P.C. Detecting web-based botnets using bot
communication traffic features. Secur. Commun. Netw. 2017, 2017, 11.

2. Idhammad, M.; Afdel, K.; Belouch, M. Detection system of HTTP DDoS attacks in a cloud environment
based on information theoretic entropy and random forest. Secur. Commun. Netw. 2018, 2018, 13.

3. Varela-Vaca , Á.J.; Gasca, R.M.; Ceballos, R.; Gómez-López, M.T.; Torres, P.B. CyberSPL: A Framework for
the Verification of Cybersecurity Policy Compliance of System Configurations Using Software Product Lines.
Appl. Sci. 2019, 9, 5364.

4. Sinclair, C.; Pierce, L.; Matzner, S. An application of machine learning to network intrusion detection.
In Proceedings of the 15th Annual Computer Security Applications Conference (ACSAC’99), Scottsdale, AZ,
USA, 6–10 December 1999; pp. 371–377.

5. Gupta, M. Handbook of Research on Emerging Developments in Data Privacy; IGI Global: Hershey, PA, USA,
2014; pp. 438–439.

6. Małowidzki, M.; Berezinski, P.; Mazur, M. Network intrusion detection: Half a kingdom for a good
dataset. In Proceedings of the NATO STO SAS-139 Workshop, Portugal, April 2015. Available online:
https://pdfs.semanticscholar.org/b39e/0f1568d8668d00e4a8bfe1494b5a32a17e17.pdf (accessed on 16 May
2019).

7. Hochschule Coburg. Available online: https://www.hs-coburg.de/fileadmin/hscoburg/WISENT-CIDDS-0
01.zip/ (accessed on 16 May 2019).

8. Canadian Institute for Cybersecurity. Botnet Dataset. Available online: https://www.unb.ca/cic/datasets/
botnet.html (accessed on 15 May 2019).

https://pdfs.semanticscholar.org/b39e/0f1568d8668d00e4a8bfe1494b5a32a17e17.pdf
https://www.hs-coburg.de/fileadmin/hscoburg/WISENT-CIDDS-001.zip/
https://www.hs-coburg.de/fileadmin/hscoburg/WISENT-CIDDS-001.zip/
https://www.unb.ca/cic/datasets/botnet.html
https://www.unb.ca/cic/datasets/botnet.html

Appl. Sci. 2020, 10, 794 17 of 19

9. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset
in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100,
779–796.

10. Xu, Y.; Wu, C.; Zheng, K.; Niu, X.; Yang, Y. Fuzzy–synthetic minority oversampling technique: Oversampling
based on fuzzy set theory for Android malware detection in imbalanced datasets. Int. J. Distrib. Sens. Netw.
2017, 13.

11. Schubach, M.; Re, M.; Robinson, P.N.; Valentini, G. Imbalance-aware machine learning for predicting rare
and common disease-associated non-coding variants. Sci. Rep. 2017, 7, 2959.

12. Pham, T.S.; ; Hoang, T.H. Machine learning techniques for web intrusion detection—A comparison.
In Proceedings of the 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE),
Hanoi, Vietnam, 6–8 October 2016; pp. 291–297.

13. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27.
14. Seo, J.H.; Kim, Y.H. Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for

Intrusion Detection. Comput. Intell. Neurosci. 2018, 2018, 11.
15. Ma, L.; Fan, S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter

optimization based on random forests. BMC Bioinform. 2017, 18, 169.
16. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13,

281–305.
17. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion

detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS), Dublin,
Ireland, 29–30 June 2017; pp. 361–369.

18. Hoang, X.; Nguyen, Q. Botnet detection based on machine learning techniques using DNS query data. Future
Internet 2018, 10, 43.

19. Conti, M.; Dargahi, T.; Dehghantanha, A. Cyber Threat Intelligence: Challenges and Opportunities; Springer:
New York, NY, USA, 2018; pp. 1–6.

20. Stevanovic, M.; Pedersen, J. MMachine Learning for Identifying Botnet Network Traffic; Technical Report;
Networking and Security Section, Department of Electronic Systems, Aalborg University: Aalborg,
Denmark, 2013.

21. Biradar, A.D.; Padmavathi, B. BotHook: A Supervised Machine Learning Approach for Botnet Detection
Using DNS Query Data. In Proceedings of the 2019 IEEE International Conference on Computation,
Communication and Engineering (ICCCE), Fujian, China, 8–10 November 2019.

22. Miller, S.; Busby-Earle, C. The role of machine learning in botnet detection. In Proceedings of the 2016
11th International Conference for Internet Technology and Secured Transactions (ICITST), Barcelona, Spain,
5–7 December 2016; pp. 359–364.

23. Carrasco, A.; Ropero, J.; de Clavijo, P.R.; Benjumea, J.; Luque, A. A Proposal for a New Way of Classifying
Network Security Metrics: Study of the Information Collected through a Honeypot. In Proceedings of
the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
Lisbon, Portugal, 16–20 July 2018; pp. 633–634.

24. Bapat, R.; Mandya, A.; Liu, X.; Abraham, B.; Brown; D.E.; Kang, H.; Veeraraghavan, M. Identifying malicious
botnet traffic using logistic regression. In Proceedings of the 2018 Systems and Information Engineering
Design Symposium (SIEDS), Charlottesville, VA, USA, 27 April 2018; pp. 266–271.

25. Lin, K.C.; Chen, S.Y.; Hung, J.C. Botnet detection using support vector machines with artificial fish swarm
algorithm. J. Appl. Math. 2014, 2014, 9.

26. Letteri, I.; Del Rosso; M.; Caianiello, P.; Cassioli, D. Performance of Botnet Detection by Neural Networks in
Software-Defined Networks. In Proceedings of the Second Italian Conference on Cyber Security (ITASEC),
Milan, Italy, 6–9 February 2018.

27. Bonneton, A.; Migault, D.; Senecal, S.; Kheir, N. Dga bot detection with time series decision trees.
In Proceedings of the 2015 4th International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), Kyoto, Japan, 5 November 2015; pp. 42–53.

28. Dollah, R.F.M.; Faizal, M.A.; Arif, F.; Mas’ud, M.Z.; Xin, L.K. Machine learning for HTTP botnet detection
using classifier algorithms. J. Telecommun. Electron. Comput. Eng. 2018, 10, 27–30.

29. Khan, R.U.; Zhang, X.; Kumar, R.; Sharif, A.; Golilarz, N.A.; Alazab, M. An Adaptive Multi-Layer Botnet
Detection Technique Using Machine Learning Classifiers. Appl. Sci. 2019, 9, 2375.

Appl. Sci. 2020, 10, 794 18 of 19

30. Harun, S.; Bhuiyan, T.H.; Zhang, S.; Medal, H.; Bian, L. Bot Classification for Real-Life Highly
Class-Imbalanced Dataset. In Proceedings of the 2017 IEEE 15th Intl Conf on Dependable, Autonomic
and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/
DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017; pp. 565–572.

31. Le, D.C.; Zincir-Heywood, A.N.; Heywood, M.I. Data analytics on network traffic flows for botnet behaviour
detection. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens,
Greece, 6–9 December 2016; pp. 1–7.

32. Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322.
33. Cho, C.Y.; Shin, E.C.R.; Song, D. Inference and analysis of formal models of botnet command and control

protocols. In Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS),
Chicago, IL, USA, 4–8 October 2010; pp. 426–439.

34. Chowdhary, C.L. Intelligent Systems: Advances in Biometric Systems, Soft Computing, Image Processing, and Data
Analytics; CRC Press: Boca Raton, FL, USA, 2020.

35. Zimmermann, H.J. Fuzzy Set Theory—and Its Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2011.

36. Fernández-Cerero, D.; Varela-Vaca, Á.J.; Fernández-Montes, A.; Gómez-López, M.T.; Alvárez-Bermejo, J.A.
Measuring data-centre workflows complexity through process mining: The Google cluster case. J. Supercomput.
2019, 1–30.

37. Basgall, M.J.; Hasperué, W.; Naiouf, M.; Fernández, A.; Herrera, F. SMOTE-BD: An Exact and Scalable
Oversampling Method for Imbalanced Classification in Big Data. In Proceedings of the VI Jornadas de Cloud
Computing & Big Data (JCC&BD), La Plata, Argentina, 25–29 June 2018.

38. Ramentol, E.; Caballero, Y.; Bello, R.; Herrera, F. SMOTE-RSB*: A hybrid preprocessing approach based
on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory.
Knowl. Inf. Syst. 2012, 11, 245–265.

39. Lei, X.; Zhou, P. An intrusion detection model based on GSSVM Classifier. Inf. Technol. J. 2012, 11, 794–798.
40. Gonzalez-Cuautle, D.; Corral-Salinas, U.Y.; Sanchez-Perez, G.; Perez-Meana, H.; Toscano-Medina K.;

Hernandez-Suarez, A. An Efficient Botnet Detection Methodology using Hyper-Parameter Optimization
Trough Grid-Search Techniques. In Proceedings of the 2019 7th International Workshop on Biometrics and
Forensics (IWBF), Cancun, Mexico, 2–3 May 2019; pp. 1–6.

41. Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and Machine Learning Approaches
for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic. IEEE Sens. Lett. 2019, 3, 1–4.

42. Putman, C.G.J.; Nieuwenhuis, L.J. Business Model of a Botnet. In Proceedings of the 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), Cambridge, UK,
21–23 March 2018; pp. 441–445.

43. Beigi, E.B.; Jazi, H.H.; Stakhanova, N.; Ghorbani, A.A. Towards effective feature selection in machine
learning-based botnet detection approaches. In Proceedings of the Communications and Network Security
(CNS), 2014 IEEE Conference, San Francisco, CA, USA, 29–31 October 2014; pp. 247–255.

44. Ring, M.; Wunderlich, S.; Gruedl, D.; Landes, D.; Hotho, A. Creation of Flow-Based Data Sets for Intrusion
Detection. J. Inf. Warf. 2017, 16, 40–53.

45. Howley, T.; Madden, M.G.; O’Connell, M.L.; Ryder, A.G. The effect of principal component analysis on
machine learning accuracy with high dimensional spectral. In Proceedings of the International Conference
on Innovative Techniques and Applications of Artificial Intelligence Data, Cambridge, UK, 12–14 December
2005; pp. 209–222.

46. Zhao, D.; Traore, I.; Sayed, B.; Lu, W.; Saad, S.; Ghorbani, A.; Garant, D. Botnet detection based on traffic
behavior analysis and flow intervals. Comput. Secur. 2013, 39, 2–16.

47. Honeynet. Available online: https://www.honeynet.org/ (accessed on 15 May 2019).
48. Szabó, G.; Orincsay, D.; Malomsoky, S.; Szabó, I. On the validation of traffic classification algorithms.

In Proceedings of the International Conference on Passive and Active Network Measurement, Berlin,
Germany, 26–27 March 2018; pp. 72–81.

49. Lawrence Berkeley National Laboratory and icsi, lbnl/icsi Enterprise Tracing Project. lbnl Enterprise Trace
Repository. 2005. Available online: http://www.icir.org/enterprise-tracing/ (accessed on 15 May 2019).

https://www.honeynet.org/
http://www.icir.org/enterprise-tracing/

Appl. Sci. 2020, 10, 794 19 of 19

50. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357–374.

51. Malware Capture Facility Project. Available online: https://mcfp.weebly.com/ (accessed on 15 May 2019).
52. Tshark. Available online: https://www.wireshark.org/docs/man-pages/tshark.html (accessed on 10 May 2019).
53. Marnerides, A.K.; Watson, M.R.; Shirazi, N.; Mauthe, A.; Hutchison, D. Malware analysis in cloud computing:

Network and system characteristics. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps),
Atlanta, GA, USA, 9–14 December 2013; pp. 482–487.

54. Watson, M.R.; Marnerides, A.K.; Mauthe, A.; Hutchison, D. Malware detection in cloud computing
infrastructures. IEEE Trans. Dependable Secur. Comput. 2015, 13, 192–205.

55. Marnerides, A.K.; Mauthe, A.U. Analysis and characterisation of botnet scan traffic. In Proceedings of the
2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA,
15–18 February 2016; pp. 1–7.

56. Venkatesh, G.K.; Nadarajan, R.A. HTTP botnet detection using adaptive learning rate multilayer
feed-forward neural network. In Proceedings of the IFIP International Workshop on Information Security
Theory and Practice, Egham, UK, 20–22 June 2012; pp. 38–48.

57. Su, S.C.; Chen, Y.R.; Tsai, S.C.; Lin, Y.B. Detecting p2p botnet in software defined networks. Secur. Commun.
Netw. 2018, 2018, 13.

58. Rice, J.R. The Algorithm Selection Problem; Advances in Computers; Elsevier: Amsterdam, The Netherlands,
1976; Volume 15, pp. 65–118.

59. Liao, Y.; Vemuri, V.R. Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 2002, 21,
439–448.

60. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
61. Caesarendra, W.; Widodo, A.; Yang, B.S. Application of relevance vector machine and logistic regression for

machine degradation assessment. Mech. Syst Signal. Process. 2010, 24, 1161–1171.
62. Rokach, L.; Maimon, O.Z. Data Mining With Decision Trees: Theory and Applications; World Scientific: Singapore,

2018; Volume 69.
63. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for

data-mining-based unknown malware detection. Inf. Sci. 2013, 231, 64–82.
64. Aviv, A.J.; Haeberlen, A. Challenges in experimenting with botnet detection systems. In Proceedings of the

4th Conference on Cyber Security Experimentation and Test (CSET), San Francisco, CA, USA, 8–12 August
2011; p. 6.

65. Amos, B.; Turner, H.; White, J. Applying machine learning classifiers to dynamic android malware detection
at scale. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing
Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1666–1671.

66. Verma, A.; Ranga, V. Statistical analysis of CIDDS-001 dataset for network intrusion detection systems using
distance-based machine learning. Procedia Comput. Sci. 2018, 125, 709–716.

67. Bijalwan, A.; Chand, N.; Pilli, E.S.; Krishna, C.R. Botnet analysis using ensemble classifier. Perspect. Sci. 2016,
8, 502–504.

68. Thamilarasu, G.; Chawla, S. Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things.
Sensors 2019, 19, 1977.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://mcfp.weebly.com/
https://www.wireshark.org/docs/man-pages/tshark.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Methodology
	Data Acquisition
	Data Examination and Class Labeling
	Synthetic Minority Oversampling
	Feature Extraction and Selection
	Supervised Machine-Learning Algorithms
	Grid Search

	Experiment Results
	Results and Discussion
	Conclusions
	References

