
applied
sciences

Article

A Heterogeneous Ensemble Learning Framework
for Spam Detection in Social Networks with
Imbalanced Data

Chensu Zhao 1,2,3 , Yang Xin 1,2,*, Xuefeng Li 1,2 , Yixian Yang 1,2 and Yuling Chen 2

1 National Engineering Laboratory for Disaster Backup and Recovery, Information Security Center,
School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
zhao-cs@bupt.edu.cn (C.Z.); lxf3710@bupt.edu.cn (X.L.); yxyang@bupt.edu.cn (Y.Y.)

2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guizhou 550025, China;
ylchen3@gzu.edu.cn

3 School of Information and Engineering, Shandong Yingcai University, Jinan 250104, China
* Correspondence: yangxin@bupt.edu.cn

Received: 24 December 2019; Accepted: 29 January 2020; Published: 31 January 2020
����������
�������

Abstract: The popularity of social networks provides people with many conveniences, but their rapid
growth has also attracted many attackers. In recent years, the malicious behavior of social network
spammers has seriously threatened the information security of ordinary users. To reduce this threat,
many researchers have mined the behavior characteristics of spammers and have obtained good
results by applying machine learning algorithms to identify spammers in social networks. However,
most of these studies overlook class imbalance situations that exist in real world data. In this paper,
we propose a heterogeneous stacking-based ensemble learning framework to ameliorate the impact
of class imbalance on spam detection in social networks. The proposed framework consists of two
main components, a base module and a combining module. In the base module, we adopt six
different base classifiers and utilize this classifier diversity to construct new ensemble input members.
In the combination module, we introduce cost sensitive learning into deep neural network training.
By setting different costs for misclassification and dynamically adjusting the weights of the prediction
results of the base classifiers, we can integrate the input members and aggregate the classification
results. The experimental results show that our framework effectively improves the spam detection
rate on imbalanced datasets.

Keywords: online social networks; spam detection; class imbalance; ensemble learning; cost-sensitive
learning

1. Introduction

With the emergence of social networks, information patterns and service modes have also changed
significantly. Social networks provide a communication platform by which users can establish, expand,
and maintain various interpersonal relationships. Popular applications such as Twitter, Facebook,
Weibo, etc. are all social networks. However, the rapid expansion in the number of users of social
networks has also brought about a significant increase in the number of attacks [1]. Spammers distribute
false advertising, pornography, phishing, and other malicious information via social networks. These
malicious behaviors result in privacy disclosures, destroy normal network order, threaten social
network reputation systems, and increase network loads, which cause significant harm to normal
users. Currently, spammers in social networks have diverse, complex, and intelligent characteristics.
A comparison with traditional spam spread by e-mail shows that social network spam is more deceptive,
more difficult to identify, and poses a greater threat to ordinary users. Considering deception as an

Appl. Sci. 2020, 10, 936; doi:10.3390/app10030936 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7401-6310
https://orcid.org/0000-0001-9671-2616
http://dx.doi.org/10.3390/app10030936
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/10/3/936?type=check_update&version=4

Appl. Sci. 2020, 10, 936 2 of 18

example, the click-through rate of spam pages on Twitter is 0.13%, whereas with the click-through rate
of e-mail spam ranges from only 0.0003% to 0.0006% [2]. Therefore, spam detection in social network
platforms is important and valuable to many aspects of network environment security, including user
privacy protection, public opinion analysis, etc.

To maintain social network security by detecting spam, early researchers have used blacklists
and crowdsourced information to detect and filter abnormal accounts [2,3]. However, it has been
shown that more than 90% of users click a malicious link before it is blocked by blacklisting [4].
Simultaneously, these methods are time-consuming because of the need for personal participation in
active information recognition. To provide better detection methods, many scholars have proposed
graph analysis-based methods [5–7] which extract features from social graph structures using node
similarity based on following and follower relationships. However, attackers can forge the connection
relationship of spammers by using artificial intelligence technology to imitate the social relationships of
normal users, making it difficult to detect such malicious accounts effectively [1]. The current research
focuses on machine learning methods, which train machine learning models by extracting content and
behavior characteristics and other related information [8–10]. These methods are based on data mining
and analysis of large numbers of data samples. Thus, the data processing quality directly affects the
detection effect.

However, most of the previous research of spam detection in social networks has focused on feature
extraction, which improves classification performance by combining various features or extracting
more features of social network accounts to train classifiers, but overlooks the class imbalance problem
in real-world data [11]. From management science to engineering, imbalanced learning is a wide
range of research fields [12,13]. As shown in Figure 1, class imbalance means that the number of
samples in different categories varies greatly; the majority class (non-spam) has much more samples
than the minority class (spam) when a class imbalance problem occurs in the training data, the
algorithm typically provides classification results biased toward the majority class due to the increasing
prior probability.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 18

Twitter is 0.13%, whereas with the click-through rate of e-mail spam ranges from only 0.0003% to
0.0006% [2]. Therefore, spam detection in social network platforms is important and valuable to
many aspects of network environment security, including user privacy protection, public opinion
analysis, etc.

To maintain social network security by detecting spam, early researchers have used blacklists
and crowdsourced information to detect and filter abnormal accounts [2,3]. However, it has been
shown that more than 90% of users click a malicious link before it is blocked by blacklisting [4].
Simultaneously, these methods are time-consuming because of the need for personal participation in
active information recognition. To provide better detection methods, many scholars have proposed
graph analysis-based methods [5–7] which extract features from social graph structures using node
similarity based on following and follower relationships. However, attackers can forge the
connection relationship of spammers by using artificial intelligence technology to imitate the social
relationships of normal users, making it difficult to detect such malicious accounts effectively [1].
The current research focuses on machine learning methods, which train machine learning models by
extracting content and behavior characteristics and other related information [8–10]. These methods
are based on data mining and analysis of large numbers of data samples. Thus, the data processing
quality directly affects the detection effect.

However, most of the previous research of spam detection in social networks has focused on
feature extraction, which improves classification performance by combining various features or
extracting more features of social network accounts to train classifiers, but overlooks the class
imbalance problem in real-world data [11]. From management science to engineering, imbalanced
learning is a wide range of research fields [12,13]. As shown in Figure 1, class imbalance means that
the number of samples in different categories varies greatly; the majority class (non-spam) has much
more samples than the minority class (spam) when a class imbalance problem occurs in the training
data, the algorithm typically provides classification results biased toward the majority class due to
the increasing prior probability.

Figure 1. Class imbalance distribution.

In binary classification problems, we often encounter serious imbalances in the proportions of
positive and negative samples; such imbalances can reach 50:1. If a classifier is trained to make
predictions directly on such imbalanced data, the recall rate of the minority class is extremely low.
This is because the traditional classifiers aim to reduce the overall classification accuracy by treating
all samples equally, which results in a higher classification accuracy for the majority class and a
lower classification accuracy for the minority class. For example, in a case where the class ratio is
50:1 positive to negative samples, classifier accuracy can reach 98% even if all the negative samples
are misclassified as positive samples; however, the true identification rate for the negative samples is
zero. In addition, as long as the majority class can be correctly identified, even if the minority class is
largely misclassified, the accuracy metric still obtains a high score, which misleads assessments. As a
result, instances belonging to a minority class are more likely to be misclassified than those

Figure 1. Class imbalance distribution.

In binary classification problems, we often encounter serious imbalances in the proportions of
positive and negative samples; such imbalances can reach 50:1. If a classifier is trained to make
predictions directly on such imbalanced data, the recall rate of the minority class is extremely low. This
is because the traditional classifiers aim to reduce the overall classification accuracy by treating all
samples equally, which results in a higher classification accuracy for the majority class and a lower
classification accuracy for the minority class. For example, in a case where the class ratio is 50:1
positive to negative samples, classifier accuracy can reach 98% even if all the negative samples are
misclassified as positive samples; however, the true identification rate for the negative samples is zero.
In addition, as long as the majority class can be correctly identified, even if the minority class is largely

Appl. Sci. 2020, 10, 936 3 of 18

misclassified, the accuracy metric still obtains a high score, which misleads assessments. As a result,
instances belonging to a minority class are more likely to be misclassified than those belonging to a
majority class. This undesirable effect makes it very difficult to predict different classes accurately.

One study found that the proportion of spam on Twitter is approximately 3.75% [14], and
approximately 8.7% of the accounts on Facebook are fake accounts created by attackers [1]. In another
study, Grier et al. [2] found that approximately 5% of tweets are spam. On the Microblogging platform,
approximately 10% of users are spammers [15]. Liu et al. [11] reported that when the class imbalance
ratio (IR) in the Twitter dataset increases from two to 20, the spam detection rate drops by 33%, and the
error rate for non-spam drops by 5% because traditional classifiers are biased toward the non-spam
class. When faced with class imbalance problems, it is difficult to obtain satisfactory classification
performances using traditional classification methods [16,17].

In this paper, we propose a two-level heterogeneous stacking-based ensemble learning framework
to address the problem of class imbalance of spam detection in social networks.

First, the framework utilizes various machine learning algorithms as base classifiers to
automatically extract effective features from the original data. These prediction results are combined
into metadata with new features, forming the input data to the next learning stage. Then, a deep neural
network (DNN) is used as a metaclassifier to capture the deep information hidden in the output of
the basic classifiers. In addition, we set the misclassification costs based on cost- sensitive methods
to improve the classification performance. Finally, we compare the proposed method with existing
methods. The experimental results show that our method effectively improves the classification
performance on data with imbalanced classes.

The remainder of this paper is organized as follows: In Section 2, we provide an overview of the
related works; in Section 3, we present the process of the proposed approach in detail; in Section 4,
we report an experiment using a real-world dataset to demonstrate the validity and robustness of our
method; and in Section 5, we conclude the paper and suggests future work directions.

2. Related Works

This section reviews the related works from the following two aspects: Spam detection approaches
and the class imbalance problem.

2.1. Spam Detection Approaches

At present, spam detection is one of the most important challenges for online social network
security. Various types of spam detection methods exist, including crowdsourcing technology,
graph-based techniques, and machine learning techniques. Among these, machine learning currently
plays an important role in spam detection in social networks.

Supervised machine learning algorithms are the most common methods used for spam detection.
Almaatouq et al. [8] trained six different classifiers using content, behavior, and network structure
features and, then, compared their classification performances. Zheng et al. [18] first labeled samples
as spam or non-spam and, then, proposed a classification algorithm based on support vector machines
to detect spammers in Weibo. Recently, many scholars have combined deep learning methods to mine
contextual features at the tweet level. Kudugunta and Ferrara [19] designed a deep neural network
method that considered context based on the long-term short-term memory (LSTM) architecture, which
uses context features extracted from user metadata to detect spambots at the tweet level. Due to the
large numbers of social network users, the work of labeling the massive amounts of posted data is
complex and error prone which is not applicable in practical applications.

In contrast to supervised machine learning, unsupervised machine learning does not rely on
labeled data; instead, it uses unlabeled data to build a learning model. Lee and Kim [20] used
an aggregate hierarchical clustering method to cluster Twitter users that does not need to wait for
occurrences of malicious behavior; it can detect malicious accounts when the account is created. In view
of the emerging group spam behavior, Cresci et al. [21] proposed a method similar to a clustering

Appl. Sci. 2020, 10, 936 4 of 18

algorithm. They generated a corresponding "digital DNA" signature by encoding strings with user
behavior information and used those to determine the spam similarity between account subgroup
sequences. Chavoshi et al. [22] built an unsupervised tool named DeBot by comparing the account
time series extracted from the Twitter flow API to find spambots that send tweets synchronously.
Unsupervised machine learning methods do not need a large set of labeled data, but their accuracy is
usually low as compared with supervised machine learning methods.

Semi-supervised learning is a learning method that combines supervised learning with
unsupervised learning. Li et al. [23] proposed a semi-supervised feature selection method based on
Laplace score to detect spammers on Twitter. Gong et al. [24] applied the semi-supervised learning
to Sybil detection. This method classifies nodes together with information from directed messages
and known node labels. Chen et al. [25] fused comprehensive clues explored from multiple views to
identify spammers and predicted unlabeled instances iteratively based on a small number of labeled
instances in a semi-supervised manner.

Previous studies have shown single classifiers are rarely superior to ensemble learning methods
on any problem. Ensemble learning achieves better classification performances by training multiple
classifiers and, consequently, it usually performs better than single classifiers (also known as base
classifiers) [26]. Ensemble learning includes both homogeneous and heterogeneous ensemble learning
algorithms. Homogeneous ensemble learning relies on multiple classifier instances of a single type,
while heterogeneous ensemble learning uses a variety of different base classifiers to achieve better
performance. For example, Tang et al. [17] proposed an ensemble method using three CS-SVMs with
different parameters as base classifiers, combined with resampling technology, and achieved good
performances for microblog spam detection. Madisetty et al. [27] developed an ensemble method
involving five CNNs and a feature-based model; the metaclassifier used a multilayer neural network
and achieved a good performance on Twitter. Thus, we chose heterogeneous ensemble learning as the
basic framework of spam detection.

2.2. Class Imbalance Problem

Whether in academia or industry, imbalanced learning has attracted increasing attention. In the
real world, this class imbalance problem exists in many application fields, such as anomaly detection,
credit card fraud detection, and fault diagnosis, etc.

Many researchers have made efforts to solve the class imbalance problem and have achieved
various results. These studies are classified into two main categories. One category functions on data
level. These methods create balanced datasets by reducing the majority class (undersampling) or
increasing the minority class (oversampling). The most famous resampling method is SMOTE [28].
By analyzing the characteristics and distribution of the minority class, SMOTE generates new samples
and adds them to the dataset. Although SMOTE increases the number of minority class samples and
improves the classification performance, it takes extra time to generate new samples and the procedure
can generate noise [11]. The undersampling method generates a balanced dataset by reducing the
sampling rate of other class samples. However, the undersampling method causes information loss,
and therefore some studies use a hybrid sampling method. Liu et al. [29] proposed a novel method
named fuzzy logic-based oversampling (FOS) to achieve a class imbalanced distribution through an
information decomposition algorithm based on fuzzy logic [30] and, then, combined this method with
random undersampling and random oversampling and utilized ensemble learning to conduct spam
detection on Twitter [11].

Another way to deal with the class imbalance problem is from the algorithm perspective.
Algorithm-level solutions do not cause changes in data distribution, and therefore they are suitable
for multiple types of imbalanced datasets [31]. The typical algorithm-level method is cost-sensitive
learning. Cost-sensitive learning optimizes an algorithm by considering the cost differences in distinct
misclassification situations and assigns costs to the corresponding types, allowing the algorithm to
achieve better performances on class imbalanced data [31]. Cost-sensitive learning is popular for

Appl. Sci. 2020, 10, 936 5 of 18

addressing unknown varying costs in class imbalance problems at the algorithm level. MetaCost [32] is
a reweighting algorithm proposed by P. Domings in which the basic idea is to use the Bayes risk theory
to reweight instances in the training dataset based on the optimal cost classification. The AdaCost
algorithm [33] is an improvement to the AdaBoost classification algorithm; it obtains the cost-sensitive
classification by reweighting. WSNN [34] is a class imbalance method that uses cost as a weight
distributed to the minority classes to improve the final classification accuracy. Wang et al. [35]
embedded the cost information into a modified cross entropy loss function during prediction to solve
the imbalance and skewness challenge in hospital readmission prediction. Zhang et al. [36] proposed
an evolutionary cost sensitive deep belief network (ECS-DBN) for imbalanced classification, which
optimizes the misclassification cost based on the training data by using adaptive differential evolution.
Liu et al. [37] decomposed the F-measure optimization into a series of cost-sensitive classification
problems, and investigated the cost-sensitive feature selection by generating and assigning different
costs to each class.

3. Problem Description and Methodology

In this section, first, we describe the problem of class imbalance on spam detection in social
networks. Then, we provide a heterogeneous stacking-based ensemble learning framework to solve
the problem.

3.1. Formulation of The Problem

We first introduce the problem of classification with class imbalance in spam detection on social
networks and, then, extend it to cost-sensitive learning.

Assume that given a dataset S =
{
(xn, yn)

}
(n = 1, . . . , N) with N data samples, xn represents the

n-th sample instance belonging to the input space, and yn indicates the label of xn and belongs to
the label set Y = {1, . . . , K}. The goal of classification is to train a classifier f : X→ Y to minimize the
expected error of the classifier on the training set.

However, class imbalance is a common problem in many classification applications. Because a
conventional classifier uses the same cost to classify all the considered classes, it is highly susceptible
to skewed class distributions. In spam detection on social networks, Liu et al. [11] found that the true
positive rate (spam detection rate) of the positive class decreased significantly (by 33% on average)
when the class imbalance rate (IR) rose from 2 to 20. In particular, when the class imbalance rate is 20,
the average detection rate dropped to 34%, which means that spam detection misses more than 66%
of spam.

To solve the class imbalance problem, we use cost-sensitive learning in our ensemble learning
framework. Cost-sensitive learning extends conventional classification techniques to the classification
of imbalanced data by assigning different costs to each class, which punishes each class of errors
differently based on the assigned costs. The training goal after applying the cost-sensitive learning is
to find a classifier f : X→ Y that minimizes the expected risk.

3.2. The Proposed Ensemble Learning Framework

In this subsection, we describe the proposed heterogeneous stacking-based ensemble learning
framework for spam detection in social networks. The existing empirical results have shown that
ensemble learning tends to perform better when there are significant differences among the ensemble
models, and the stacked model composed of several learning stages is the most popular ensemble
learning approach. Thus, to solve the class imbalance problem in spam detection, we propose a novel
framework that has a two-level structure, i.e., a base module and a combining module. Our proposed
framework is shown in Figure 2, which illustrates the process to stack models using the base and
combining modules.

Appl. Sci. 2020, 10, 936 6 of 18
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

Figure 2. Heterogeneous stacking-based ensemble learning framework.

3.2.1. Base Module

In our framework, the task of the base module is to utilize the training set to train the base
classifiers, then, the metadata generated by these basic classifiers is used to train the metaclassifier.

In heterogeneous stacking-based ensemble learning, selection of the base classifier is crucial to
model performance because each classifier has its own advantages. It is generally believed that
measuring the diversity of the underlying individual classifiers is a key factor in good integration.
To obtain discriminatory metadata for classification, the base classifiers should be as diverse and as
complementary as possible. The goal of this paper is to solve the spam problem detection for social
networks, which is regarded as a binary classification problem. Therefore, we employ the following
six different base classifiers to form the base module of our framework: The support vector machine
(SVM) [38], CART [39], Gaussian Naive Bayes (GNB) [40], K-nearest neighbors (KNN) [41], random
forest (RF) [42], and linear regression (LR) [43]. All these algorithms are good for solving various
binary classification problems from their own point of view.

This stacked ensemble learning approach uses the prediction results of the base classifiers as the
input of the combining module. However, we cannot directly use the complete dataset to train and
test the base classifiers and send the prediction results to the combining module for training. Because
the potential model would have "seen" the test set, a risk of overfitting exists when the same data is
input for prediction, which tends to have a large impact on model validation.

The metadata generation methods of the stacking model include bootstrap, bagging, and
cross-validation. As shown in Figure 2, in this study, we selected the K -fold cross-validation
method.

First, we partition the original dataset into a training set trainD and a test set testD . During the

K -fold cross-validation procedure, trainD is split into K disjoint subsets of the same size; each
subset is called a fold and maintains the same class scale as the original dataset. Each
cross-validation consists of executing the training phase on trainD and the testing phase on testD .
We take one classifier (1,...,)nC N as an example, where N represents the number of base

classifiers. At the training stage, we use one subset as a validation set validD and use the remaining
subsets as training sets. We repeat this procedure K times, and all the prediction results on the

Figure 2. Heterogeneous stacking-based ensemble learning framework.

3.2.1. Base Module

In our framework, the task of the base module is to utilize the training set to train the base
classifiers, then, the metadata generated by these basic classifiers is used to train the metaclassifier.

In heterogeneous stacking-based ensemble learning, selection of the base classifier is crucial
to model performance because each classifier has its own advantages. It is generally believed that
measuring the diversity of the underlying individual classifiers is a key factor in good integration.
To obtain discriminatory metadata for classification, the base classifiers should be as diverse and as
complementary as possible. The goal of this paper is to solve the spam problem detection for social
networks, which is regarded as a binary classification problem. Therefore, we employ the following
six different base classifiers to form the base module of our framework: The support vector machine
(SVM) [38], CART [39], Gaussian Naive Bayes (GNB) [40], K-nearest neighbors (KNN) [41], random
forest (RF) [42], and linear regression (LR) [43]. All these algorithms are good for solving various
binary classification problems from their own point of view.

This stacked ensemble learning approach uses the prediction results of the base classifiers as the
input of the combining module. However, we cannot directly use the complete dataset to train and test
the base classifiers and send the prediction results to the combining module for training. Because the
potential model would have "seen" the test set, a risk of overfitting exists when the same data is input
for prediction, which tends to have a large impact on model validation.

The metadata generation methods of the stacking model include bootstrap, bagging, and
cross-validation. As shown in Figure 2, in this study, we selected the K-fold cross-validation method.

First, we partition the original dataset into a training set Dtrain and a test set Dtest. During the
K-fold cross-validation procedure, Dtrain is split into K disjoint subsets of the same size; each subset is
called a fold and maintains the same class scale as the original dataset. Each cross-validation consists of
executing the training phase on Dtrain and the testing phase on Dtest. We take one classifier Cn(1, . . . , N)

as an example, where N represents the number of base classifiers. At the training stage, we use one
subset as a validation set Dvalid and use the remaining subsets as training sets. We repeat this procedure
K times, and all the prediction results on the validation sets are merged into a prediction matrix

Appl. Sci. 2020, 10, 936 7 of 18

Pn(n = 1, . . . , N). At the test stage, we apply Cn to generate a classification matrix. After repeating this
procedure K times, we obtain K classification matrices and average them by rows to generate a matrix
An(n = 1, . . . , N). The above entire procedure is repeated for the N classifiers, and all the prediction
matrices Pn are combined into a new training set P, and all the An are averaged to obtain a new test
set A. Through this method, the generated metadata can be guaranteed to be test results rather than
results obtained by overfitting the training samples. In our method, the number of fold (K) is chosen as
10, which is considering the size of the real dataset and combined with other research experience.

In the base module of this framework, we first train the different base classifiers to generate
metadata with new features. Then, we input the resulting metadata to the combination module to
train the metaclassifier.

3.2.2. Combining Module

Under the concept of stack generalization, the output of the ensemble serves as the inputs
to the metaclassifier, which learns a mapping between the metadata and the real class labels [44].
Metaclassifier selection is also important in ensemble learning, and appropriate data-combining
strategies can improve the final classification capabilities. In this paper, we apply a cost-sensitive
learning-improved deep neural network (DNN) as a metaclassifier for class imbalance tasks.

DNN models have strong learning ability and can extract higher-level features via their deep
network structures. Therefore, using a DNN in the ensemble strategy has unique advantages for
finding hidden information in metadata. Although DNNs have been successfully applied in many
fields because of their powerful data mining ability, few studies have used a DNN to solve typical class
imbalance problems in the social networking spam detection field.

As shown in Figure 3, the DNN model consists of an input layer, hidden layer(s), and an output
layer. The input layer accepts information from the external world into the network. The hidden layer(s)
extract multilevel input features to partition the different types of data linearly. Each hidden layer
h(h ∈ {1, . . . , H}) has a set of parameters θh = {Wh, bh}, where Wh is a fully connected weight matrix,
and bh is a bias vector. The output layer is responsible for computing and transmitting information
from the network to the outside world.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18

validation sets are merged into a prediction matrix (1,...,)nP n N= . At the test stage, we apply nC
to generate a classification matrix. After repeating this procedure K times, we obtain K
classification matrices and average them by rows to generate a matrix (1,...,)nA n N= . The above

entire procedure is repeated for the N classifiers, and all the prediction matrices nP are combined

into a new training set P , and all the nA are averaged to obtain a new test set A . Through this
method, the generated metadata can be guaranteed to be test results rather than results obtained by
overfitting the training samples. In our method, the number of fold (K) is chosen as 10, which is
considering the size of the real dataset and combined with other research experience.

In the base module of this framework, we first train the different base classifiers to generate
metadata with new features. Then, we input the resulting metadata to the combination module to
train the metaclassifier.

3.2.2. Combining Module

Under the concept of stack generalization, the output of the ensemble serves as the inputs to the
metaclassifier, which learns a mapping between the metadata and the real class labels [44].
Metaclassifier selection is also important in ensemble learning, and appropriate data-combining
strategies can improve the final classification capabilities. In this paper, we apply a cost-sensitive
learning-improved deep neural network (DNN) as a metaclassifier for class imbalance tasks.

DNN models have strong learning ability and can extract higher-level features via their deep
network structures. Therefore, using a DNN in the ensemble strategy has unique advantages for
finding hidden information in metadata. Although DNNs have been successfully applied in many
fields because of their powerful data mining ability, few studies have used a DNN to solve typical
class imbalance problems in the social networking spam detection field.

As shown in Figure 3, the DNN model consists of an input layer, hidden layer(s), and an output
layer. The input layer accepts information from the external world into the network. The hidden
layer(s) extract multilevel input features to partition the different types of data linearly. Each hidden
layer ({1,..., })h h H∈ has a set of parameters { , }h h hW bθ = , where hW is a fully connected

weight matrix, and hb is a bias vector. The output layer is responsible for computing and
transmitting information from the network to the outside world.

Figure 3. Schematic of the deep neuron networks. Figure 3. Schematic of the deep neuron networks.

The DNN process includes two phases, forward propagation and backpropagation (BP). Forward
propagation transmits the input signal to the output layer and produces classification error. BP iteratively

Appl. Sci. 2020, 10, 936 8 of 18

adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight and offset of
the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x, the H hidden layers of the DNN describe a complex feature
transform function by computing:

F(x) = S(Wh·S(W(h−1)· . . . ·S(W1·x + b1) + . . .+ b(h−1)) + bh) (1)

where Wh and bh, respectively, represent the weight matrix and bias vector in each hidden layer
h(h ∈ {1, . . . , H}) denoted as θh = {Wh, bh}, x is the input feature vector from the previous layer, and S(z)
denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer has
two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer after
feature conversion. In the output layer, the j-th neuron is responsible for estimating the probability
that a given sample x belongs to class j:

ypred =
exp(F(x)W(j)

out + b(j)
out)∑2

k=1 exp(F(x)W(k)
out + b(k)out)

(2)

where W(j)
out and bias b(j)

out represent the weights and bias of the j-th neuron in the output layer, respectively.
Under class imbalance, the goal of the standard machine learning method is to minimize the

number of false predictions, but because the loss function uses the same misclassification cost for all the
considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because under
class imbalance, the loss function is easily minimized by focusing on the majority class and largely
ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class imbalance
problem of spam detection on social networks, we formalize it as a cost-sensitive classification problem.
It assumes that an asymmetric misclassification cost exists between classes, defined in the form of a
cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

Predicted Positive Predicted Negative

True positive

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, p)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q)
True negative

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, p)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, q)

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table 1.
A cost

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q) is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q) belonging to the minority class is higher than that
belonging to the majority class

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, p). Using feedback from the base classifier performances, we use
the misclassification ratio of the minority class in the base modules as the misclassification cost of the
positive samples and set the misclassification cost of the majority class to one. The diagonal elements
of the cost matrix, such as

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, p) and

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, q), represent correct predictions, and the misclassification
cost is equal to zero

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, p) =

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, q) = 0 [32].
According to the minimum expected cost principle, the goal of cost sensitive classification is to

train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
R(p

∣∣∣x) with a sample x(x ∈ X) and i as the output classification can be expressed as follows:

Appl. Sci. 2020, 10, 936 9 of 18

R(p|x) =
K∑

q=1

P(q
∣∣∣x)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q) (3)

where P(q
∣∣∣x) represents the posterior probability that a given sample x will be classified as class q in a

dataset of K classes.
On the basis of the Bayesian decision theory, an ideal classifier makes a final decision by calculating

the expected risk of each sample classification and predicts the label that achieves the minimum
expected risk:

argmin
p

R(p|x) = argmin
p

E[

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

] (4)

For a sample x(i) and its corresponding label y(i), the empirical risk can be expressed as:

∧

Rl = E[l] = l(y(i),
∧

y(i),

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

) (5)

where l(·) represents a loss function, such as mean square error (MSE) or the cross-entropy loss function,
and N is the total number of data samples.

As described in Section 3, the goal of cost-sensitive learning is to minimize the overall cost of the
training dataset (e.g., the Bayesian conditional risk). The misclassification cost can be regarded as a
penalty factor introduced during the classifier training process (or in some cases in the forecasting step)
to improve the importance of classes that are difficult to classify (such as the spam class). By imposing
larger penalties for errors on a given class, we force the classifier training process (intended to minimize
overall cost) to focus on instances from the given distribution.

In this study, we use cost-sensitive modified cross entropy as the loss function during classifier
training. This paper mainly focuses on spam detection, and therefore we pay more attention to the
spam class than to the non-spam class. Thus,

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q) should be larger than

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, p), forcing the error
classification cost for spam samples to be higher. The overall error of the cost-sensitive DNN can be
formulized as follows:

loss = −
1
N

N∑
n=1

[yn ∗ log(P(y = j
∣∣∣x,θ) ∗

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(p, q)) + (1− yn) ∗ log(1− P(y = j|x,θ) ∗

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

The DNN process includes two phases, forward propagation and backpropagation (BP).
Forward propagation transmits the input signal to the output layer and produces classification error.
BP iteratively adjusts the weight and offsets of the hidden layer(s) to the output layer and the weight
and offset of the input layer to the hidden layer(s).

Given a fully connected DNN with H hidden layers, as shown in Figure 3, during forward
propagation, for an input feature vector x , the H hidden layers of the DNN describe a complex
feature transform function by computing:

(1) 1 1 (1)() ((... () ...))h h h hF x S W S W S W x b b b− −= ⋅ ⋅ ⋅ ⋅ + + + + (1)

where hW and hb , respectively, represent the weight matrix and bias vector in each hidden layer

({1,..., })h h H∈ denoted as { , }h h hW bθ = , x is the input feature vector from the previous layer,
and ()S z denotes an activation function, which can be tanh or sigmoid.

Because the problem of spam identification is a binary classification problem, the output layer
has two neurons, and the SoftMax algorithm is used between the hidden layer and the output layer
after feature conversion. In the output layer, the j -th neuron is responsible for estimating the
probability that a given sample x belongs to class j:

() ()

2 () ()
1

exp(())
exp(())

j j
out out

pred k k
out outk

F x W by
F x W b

=

+=
+

(2)

where ()j
outW and bias ()j

outb represent the weights and bias of the j -th neuron in the output layer,
respectively.

Under class imbalance, the goal of the standard machine learning method is to minimize the
number of false predictions, but because the loss function uses the same misclassification cost for all
the considered classes, it is highly susceptible to skewed class distributions [45]. This occurs because
under class imbalance, the loss function is easily minimized by focusing on the majority class and
largely ignoring (or in extreme cases even completely ignoring) the minority class. To solve the class
imbalance problem of spam detection on social networks, we formalize it as a cost-sensitive
classification problem. It assumes that an asymmetric misclassification cost exists between classes,
defined in the form of a cost matrix, as shown in Table 1.

Table 1. Cost matrix for binary classification.

 Predicted positive Predicted negative
True positive (,)p pϒ (,)p qϒ
True negative (,)q pϒ (,)q qϒ

The typical form of cost sensitive learning is to use a cost matrix such as the one shown in Table
1. A cost (,)p qϒ is used to denote the cost of misclassifying an instance belonging to class p into a
different class q. In spam detection, we regard spam as positive samples and non-spam as negative
samples. Therefore, the misclassification cost (,)p qϒ belonging to the minority class is higher than
that belonging to the majority class (,)q pϒ . Using feedback from the base classifier performances,
we use the misclassification ratio of the minority class in the base modules as the misclassification
cost of the positive samples and set the misclassification cost of the majority class to one. The
diagonal elements of the cost matrix, such as (,)p pϒ and (,)q qϒ , represent correct predictions,
and the misclassification cost is equal to zero (,) (,) 0p p q qϒ = ϒ = [32].

According to the minimum expected cost principle, the goal of cost sensitive classification is to
train the classifier so that it classifies training samples into the class that has the minimum expected
cost. Therefore, the classifier we are training provides a class decision for a sample. The expected risk
(|)R p x with a sample ()x x X∈ and i as the output classification can be expressed as follows:

(q, p))] (6)

The backpropagation algorithm is the most common method for optimizing the DNN parameters
and is essentially a gradient descent function. We optimize the loss minimization and parameters
through backpropagation using the minibatch stochastic gradient descent method. Jiang et al. [46]
reported that introducing costs into cross-entropy (CE) losses affects the output but does not change
the gradient formulas.

4. Experiments

This paper focuses mainly on the performance of heterogeneous stacking-based ensemble learning
methods in imbalanced data problems of spam detection on social networks. For comparison purposes,
we perform extensive experiments on a real dataset and conduct performance comparisons between
other algorithms used in social network spam detection and our proposed algorithm. Therefore, in this
section, we first describe the dataset in detail. Section 4.2 describes the metrics used to assess the
results, and we report the experimental design in Section 4.3. Section 4.4 provides a discussion of the
experimental results.

4.1. Experimental Dataset

These experiments were conducted using the dataset collected by Chen et al. [47], which contains
600 million tweets of which 6.5 million are malicious tweets. This dataset was made available to other

Appl. Sci. 2020, 10, 936 10 of 18

researchers studying spam detection. In the dataset, tweets containing malicious URLs were defined
as twitter spam.

Each tweet in the dataset is represented as a feature vector that contains user-based features and
tweet-based features. The 12 lightweight statistical features that can be extracted directly from tweets
are shown in Table 2. Among them, the first six features are user-based features, and the remainder are
tweet-based features.

Table 2. Twitter spam dataset.

Feature Description

account_age The age (days) of an account since its creation until the time of
sending the most recent tweet

no_follower The number of followers of this twitter user
no_following The number of followings/friends of this twitter user

no_userfavourites The number of favorites this twitter user received
no_lists The number of lists this twitter user added

no_tweets The number of tweets this twitter user sent
no_retweets The number of retweets this tweet
no_hashtag The number of hashtags included in this tweet

no_usermention The number of users mentions included in this tweet
no_urls The number of URLs included in this tweet
no_char The number of characters in this tweet

no_digits The number of digits in this tweet

4.2. Evaluation Metrics

The most common metrics used to measure classification performances are accuracy, precision,
recall, and the F1-score. In class imbalance problems, because the accuracy rate does not reflect
the overall situation, we employ the true positive rate (TPR), false positive rate (FPR), precision,
F1-score, and G-mean to measure the performance of the proposed spam detection method. We apply
a confusion matrix to calculate these indicators.

As shown in Table 3, each row represents a class while each column represents the predicted
class. TP, FP, FN and TN represent true positives, false positives, false negatives, and true negatives,
respectively. The performance measures can be calculated as follows:

Table 3. Confusion matrix.

Predicted Spam Predicted Non-Spam

Actual Spam True positive (TP) False negative (FN)
Actual non-spam False positive (FP) True negative (TN)

• True positive rate (TPR)

The true positive rate is known as recall rate, which indicates the ratio of the correct classification
of positive samples.

TPR =
TP

TP + FN
(7)

• False positive rate (FPR)

The false positive rate indicates the ratio that classifies the negative samples into positive samples.
In this paper, FPR represents the proportion of classifying a majority class into a minority class.

FPR =
FP

FP + TN
(8)

Appl. Sci. 2020, 10, 936 11 of 18

• Precision

Precision represents the ratio of correctly predicted positive samples to total predicted
positive samples.

Precision =
TP

TP + FP
(9)

• F1-score

The F1-score is a weighted average of precision and recall. It is an important performance metric
to evaluate the overall performance of our method.

F1− score = 2 ∗
Precision ∗ TPR
Precision + TPR

(10)

• G-mean

G-mean measure is to evaluate the degree of inductive bias according to the ratio of positive
precision to negative precision. The higher G-mean represents that the classifier has better classification
performance in both majority and minority classes.

G−mean =

√
TP

TP + FN
∗

TN
TN + FP

(11)

• Kappa

Kappa is an important index to measure the classification performance on imbalanced datasets,
which represents the proportion of error reduction between classification and completely random
classification. It measures the consistency between classifier and target distribution hypothesis.

Kappa =
po − pe

1− pe
(12)

where
po =

TP + TN
TP + FP + TN + FN

(13)

pe =
(TP + FP) ∗ (TP + FN) + (FN + TN) ∗ (FP + TN)

(TP + FP + TN + FN) ∗ (TP + FP + TN + FN)
(14)

4.3. Experimental Protocol

To facilitate the experiment, we first normalize all the datasets and, then, randomly select a
corresponding proportion of spam and non-spam samples from the dataset according to different class
imbalance ratios as experimental datasets. Finally, for each selected experimental dataset, we randomly
select 50% of the samples of each class as training data and use the rest for testing.

As described in Section 3.2, to ensure the diversity of ensemble learning, six different base
classifiers constitute the base module. To improve the performance and achieve better classification
results, all the optimal parameters for all the base classifiers are determined via a grid search based on
10-fold cross-validation.

In the combining module, we determine the final structure of the network through experiments.
The number of DNN layers is selected from {2,3,4,5}, and the number of nodes in hidden layers is
selected from {16,32,64,128}. Following the experimental protocol, the classification performance
reaches top when we use three hidden layers in the DNN, with 64 hidden units in the first hidden
layer, 32 hidden units in the second layer, and 16 hidden units in the last layer. We adopt a sigmoid
function as the activation function for the hidden layer. We also use dropout to avoid overfitting.

Appl. Sci. 2020, 10, 936 12 of 18

4.4. Results and Discussion

In spam detection in social networks, although the number of spam items is small, their threats
and impacts can be substantial. Therefore, under class imbalance, it is more important to classify the
minority class accurately than the majority class. The main purposes of this experiment are to compare
the proposed method with existing spam classification methods on imbalanced datasets to determine
which detects spammers most accurately and to verify the effectiveness and robustness of the proposed
method when dealing with similar imbalance problems.

Each experiment is repeated 10 times and, then, the average values are calculated and used in the
comparisons to verify the robustness of the proposed method.

4.4.1. Comparisons with Base Classifiers

In this section, we compare the proposed method with four conventional machine learning
algorithms. For simplicity, all the conventional algorithms use their default parameters. We adopt a
class imbalance ratio of 10 as an example. The classification results are given in Table 4 in terms of TPR,
FPR, precision, F1-score, G-mean, and Kappa on the test data.

Table 4. Classification results of different machine learning methods.

Method TPR FPR Precision F1-Score G-Mean Kappa

SVM 0.10 0.01 0.77 0.18 0.31 0.16
CART 0.57 0.05 0.53 0.55 0.74 0.50
KNN 0.47 0.02 0.65 0.55 0.68 0.51
GNB 0.91 0.81 0.1 0.18 0.41 0.02

Our Approach 0.70 0.03 0.70 0.70 0.82 0.67

From Table 4, we can see that the class imbalance problem strongly affects the performances of
the conventional machine learning algorithms. For example, the TPR value of the SVM algorithm is
only 0.10, which indicates that a large number of spam samples (the minority class) are misclassified
as non-spam (the majority class). This also causes the G-mean value of SVM to be only 0.31 and the
Kappa value of SVM to be 0.16. Although the GNB method achieves a performance of 0.91, its false
positive rate reaches 0.81. Therefore, its precision, F1-score and Kappa values, are the lowest. These
results show that a large number of non-spam samples are misclassified as spam samples.

Figure 4 presents the classification performance of each method in terms of TPR, FPR, precision,
F1-score, G-mean, and Kappa. The histogram chart illustrates that only the CART method and our
method have stable metrics; the other methods have large fluctuations. For example, the precision of
SVM is 0.77, but its TPR is 0.10, F1-score is 0.18, and its Kappa is 0.16, which means that the method is
highly influenced by the majority class, and the classification results tend toward non-spam. The TPR,
precision, F1-score, and Kappa of CART method show stable performance within the range 0.50–0.57,
but these values are lower than those of our approach.

In comparison to the conventional machine learning algorithms on the same dataset, Table 4 and
Figure 4 show that our approach performs better than other approaches. In particular, the F1-score
value (70%) and Kappa value (67%) of our approach are much higher than those of the other methods.

Appl. Sci. 2020, 10, 936 13 of 18
Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18

Figure 4. Spam detection performance compared with different machine learning algorithms.

In comparison to the conventional machine learning algorithms on the same dataset, Table 4
and Figure 4 show that our approach performs better than other approaches. In particular, the
F1-score value (70%) and Kappa value (67%) of our approach are much higher than those of the
other methods.

4.4.2. Comparisons with Class Imbalance Methods

On the basis of the comparisons in the previous section of our proposed algorithm with
conventional machine learning algorithms, we further compare our algorithm with more advanced
algorithms regarding their abilities to solve the class imbalance problem. Section 2.2 mentions that
ensemble learning can effectively improve the performance when faced with class imbalance
problems. Therefore, we add ensemble learning algorithms that use majority voting as an ensemble
strategy to the comparison. CSDNN is an algorithm based on cost sensitivity learning as discussed
in Section 3.2, while AdaCost, MetaCost, and WSNN are all improved algorithms based on cost
sensitive learning. Table 5 presents a comparison of the above algorithms in terms of TPR, FPR,
precision, F1-score, and Kappa.

Table 5. Classification results of different class imbalance methods.

Method TPR FPR Precision F1-score G-mean Kappa
Ensemble Learning 0.69 0.04 0.63 0.66 0.81 0.62

CSDNN 0.54 0.05 0.52 0.53 0.71 0.48
AdaCost 0.67 0.09 0.41 0.51 0.78 0.45
MetaCost 0.69 0.10 0.40 0.51 0.77 0.45

WSNN 0.63 0.08 0.44 0.52 0.76 0.46
Our approach 0.70 0.03 0.70 0.70 0.82 0.67

As shown in Table 5, the performances of these improved methods are significantly better than
those of the conventional machine learning algorithms. For example, the TPR value in Table 5
fluctuates less than that in Table 4 and the mean value is higher. The same phenomenon occurs for
G-mean, with an average of 0.78 in this experiment, but an average of 0.59 in the previous
experiment. These results show that the methods in this experiment provide improvements when
faced with class imbalance problems.

Figure 4. Spam detection performance compared with different machine learning algorithms.

4.4.2. Comparisons with Class Imbalance Methods

On the basis of the comparisons in the previous section of our proposed algorithm with
conventional machine learning algorithms, we further compare our algorithm with more advanced
algorithms regarding their abilities to solve the class imbalance problem. Section 2.2 mentions that
ensemble learning can effectively improve the performance when faced with class imbalance problems.
Therefore, we add ensemble learning algorithms that use majority voting as an ensemble strategy to
the comparison. CSDNN is an algorithm based on cost sensitivity learning as discussed in Section 3.2,
while AdaCost, MetaCost, and WSNN are all improved algorithms based on cost sensitive learning.
Table 5 presents a comparison of the above algorithms in terms of TPR, FPR, precision, F1-score,
and Kappa.

Table 5. Classification results of different class imbalance methods.

Method TPR FPR Precision F1-Score G-Mean Kappa

Ensemble Learning 0.69 0.04 0.63 0.66 0.81 0.62
CSDNN 0.54 0.05 0.52 0.53 0.71 0.48
AdaCost 0.67 0.09 0.41 0.51 0.78 0.45
MetaCost 0.69 0.10 0.40 0.51 0.77 0.45

WSNN 0.63 0.08 0.44 0.52 0.76 0.46
Our approach 0.70 0.03 0.70 0.70 0.82 0.67

As shown in Table 5, the performances of these improved methods are significantly better than
those of the conventional machine learning algorithms. For example, the TPR value in Table 5 fluctuates
less than that in Table 4 and the mean value is higher. The same phenomenon occurs for G-mean,
with an average of 0.78 in this experiment, but an average of 0.59 in the previous experiment. These
results show that the methods in this experiment provide improvements when faced with class
imbalance problems.

Figure 5 intuitively illustrates an experimental comparison between our proposed method and
the improved methods. Considering the MetaCost method as an example, the TPR of this method is
0.69, which is very close to the 0.70 achieved by our method, but its accuracy, F1-score, and Kappa
are 0.3, 0.19, and 0.22 lower than those of our method. This phenomenon indicates that although
the method obtains a better positive sample recognition rate, it also misclassifies a large number of

Appl. Sci. 2020, 10, 936 14 of 18

negative samples. In the same way, the ensemble learning method achieved good results in this group
of experiments, but its accuracy and F1-score are 7% and 4% lower than that of our method, and its
Kappa is 5% lower. Therefore, our method yields good performances as compared with those of other
improved methods.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18

Figure 5 intuitively illustrates an experimental comparison between our proposed method and
the improved methods. Considering the MetaCost method as an example, the TPR of this method is
0.69, which is very close to the 0.70 achieved by our method, but its accuracy, F1-score, and Kappa
are 0.3, 0.19, and 0.22 lower than those of our method. This phenomenon indicates that although the
method obtains a better positive sample recognition rate, it also misclassifies a large number of
negative samples. In the same way, the ensemble learning method achieved good results in this
group of experiments, but its accuracy and F1-score are 7% and 4% lower than that of our method,
and its Kappa is 5% lower. Therefore, our method yields good performances as compared with those
of other improved methods.

Figure 5. The performance of our proposed method is compared with class imbalance methods.

In addition, it is worth noting that CSDNN, AdaCost, MetaCost, and our method are all
improved by cost-sensitive learning, but our method adopts the integrated learning framework
based on stacking, and the data processing of the basic module effectively improves the
classification performance of the overall algorithm.

4.4.3. Comparisons with Varying Class Imbalance Rates

To verify the robustness of our method, we conducted experiments under five different class
imbalance rates. According to the results of the previous two experiments, CART and ensemble
learning are the next-best methods to our approach. Therefore, this section compares the
performance of the proposed method with these two methods under different class imbalance rates.
In this work, we define the class imbalance rate as follows:

| |
| |
MajorityIR
Minority

=

(15)

where | |Majority and | |Minority are the number of samples belonging to the majority and
minority classes, respectively. Figure 6 compares the average F1-score results of three different
methods at different class imbalance rates (i.e., IR equals 2, 6, 10, 14, and 18).

Figure 5. The performance of our proposed method is compared with class imbalance methods.

In addition, it is worth noting that CSDNN, AdaCost, MetaCost, and our method are all improved
by cost-sensitive learning, but our method adopts the integrated learning framework based on stacking,
and the data processing of the basic module effectively improves the classification performance of the
overall algorithm.

4.4.3. Comparisons with Varying Class Imbalance Rates

To verify the robustness of our method, we conducted experiments under five different class
imbalance rates. According to the results of the previous two experiments, CART and ensemble
learning are the next-best methods to our approach. Therefore, this section compares the performance
of the proposed method with these two methods under different class imbalance rates. In this work,
we define the class imbalance rate as follows:

IR =

∣∣∣ Majority
∣∣∣∣∣∣ Minority
∣∣∣ (15)

where
∣∣∣ Majority

∣∣∣ and
∣∣∣ Minority

∣∣∣ are the number of samples belonging to the majority and minority
classes, respectively. Figure 6 compares the average F1-score results of three different methods at
different class imbalance rates (i.e., IR equals 2, 6, 10, 14, and 18).

Appl. Sci. 2020, 10, 936 15 of 18
Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18

Figure 6. F1-score results in comparison with different class imbalance rates.

As shown in Figure 6, as the class imbalance rate increases, the F1-score of these three methods
gradually decreases. For the ensemble learning method, when IR = 2, its F1 result is 77%, but its F1
value drops to approximately 55% as the IR increases to 18, causing an overall decline of 22%. The
second method, CART, fell by 20%, i.e., from 71% to 51%. Our method also shows a downward trend
as the imbalance rate increases from 78% when IR = 2 to 67% with IR = 18, but compared with the other
methods, this downward trend is relatively gentle. For example, our method achieves the best F1 value
(78% when IR = 2). As IR increases to 10, our result is 70%, the result of ensemble learning is 66%, and
CART falls to 55%. When the class imbalance rate increases to 18, the F1-score of our method is 67%,
which is only 3% lower than when IR = 10, but CART and ensemble learning methods are 4% and 11%
lower, respectively. Finally, the comparison shows that our method maintains relatively stable overall
performances with different class imbalance rates, and therefore it shows better robustness.

5. Conclusions

In this paper, we proposed a spam detection framework for social networks. Considering the
class imbalance problem in spam detection, the heterogeneous stacking-based ensemble framework
was designed to balance the training process of base classifiers and metaclassifier at the data and
algorithm levels, respectively. First, we used six different learning methods as base classifiers to
improve the learning effect of the base module. Then, we applied a cost-sensitive learning improved
deep neural network to implement the ensemble strategy. The strategy of training the meta-classifier
with the individual errors of classifiers from the previous stage to detect any biased behavior reduced
the impact of imbalanced class distributions on classification performances.

We verified the validity of our method on the real spam dataset of Twitter. The experimental
results show that the proposed method can handle class imbalance well and obtains the best
classification performance among compared approaches.

In the future, we plan to mine deeper hidden feature representations, as well as test classifiers
trained with different dataset features to further improve the spam detection performance on social
networks.

Author Contributions: Conceptualization, C.Z.; methodology, C.Z.; software, X.L. and Y.C.; writing—original
draft, C.Z.; writing—review and editing, Y.X. and Y.Y.

Funding: This research was funded by the “National Key R&D Program of China under grant 2017YFB0802300”,
the “Major Scientific and Technological Special Project of Guizhou Province (20183001)”, and the “Foundation of
Guizhou Provincial Key Laboratory of Public Big Data (2018BDKFJJ008, 2018BDKFJJ020, 2018BDKFJJ021)”.

Figure 6. F1-score results in comparison with different class imbalance rates.

As shown in Figure 6, as the class imbalance rate increases, the F1-score of these three methods
gradually decreases. For the ensemble learning method, when IR = 2, its F1 result is 77%, but its F1
value drops to approximately 55% as the IR increases to 18, causing an overall decline of 22%. The
second method, CART, fell by 20%, i.e., from 71% to 51%. Our method also shows a downward trend
as the imbalance rate increases from 78% when IR = 2 to 67% with IR = 18, but compared with the
other methods, this downward trend is relatively gentle. For example, our method achieves the best F1
value (78% when IR = 2). As IR increases to 10, our result is 70%, the result of ensemble learning is
66%, and CART falls to 55%. When the class imbalance rate increases to 18, the F1-score of our method
is 67%, which is only 3% lower than when IR = 10, but CART and ensemble learning methods are 4%
and 11% lower, respectively. Finally, the comparison shows that our method maintains relatively stable
overall performances with different class imbalance rates, and therefore it shows better robustness.

5. Conclusions

In this paper, we proposed a spam detection framework for social networks. Considering the class
imbalance problem in spam detection, the heterogeneous stacking-based ensemble framework was
designed to balance the training process of base classifiers and metaclassifier at the data and algorithm
levels, respectively. First, we used six different learning methods as base classifiers to improve the
learning effect of the base module. Then, we applied a cost-sensitive learning improved deep neural
network to implement the ensemble strategy. The strategy of training the meta-classifier with the
individual errors of classifiers from the previous stage to detect any biased behavior reduced the
impact of imbalanced class distributions on classification performances.

We verified the validity of our method on the real spam dataset of Twitter. The experimental results
show that the proposed method can handle class imbalance well and obtains the best classification
performance among compared approaches.

In the future, we plan to mine deeper hidden feature representations, as well as test classifiers
trained with different dataset features to further improve the spam detection performance on
social networks.

Author Contributions: Conceptualization, C.Z.; methodology, C.Z.; software, X.L. and Y.C.; writing—original
draft, C.Z.; writing—review and editing, Y.X. and Y.Y. All authors have read and agreed to the published version
of the manuscript.

Appl. Sci. 2020, 10, 936 16 of 18

Funding: This research was funded by the “National Key R&D Program of China under grant 2017YFB0802300”,
the “Major Scientific and Technological Special Project of Guizhou Province (20183001)”, and the “Foundation of
Guizhou Provincial Key Laboratory of Public Big Data (2018BDKFJJ008, 2018BDKFJJ020, 2018BDKFJJ021)”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Adewole, K.S.; Anuar, N.B.; Kamsin, A.; Varathan, K.D.; Razak, S.A. Malicious accounts: Dark of the social
networks. J. Netw. Comput. Appl. 2017, 79, 41–67. [CrossRef]

2. Grier, C.; Thomas, K.; Paxson, V.; Zhang, M. @spam: the underground on 140 characters or less. In Proceedings
of the 17th ACM conference on Computer and communications security - CCS ’10; ACM Press: Chicago, IL, USA,
2010; p. 27.

3. Wang, G.; Mohanlal, M.; Wilson, C.; Wang, X.; Metzger, M.; Zheng, H.; Zhao, B.Y. Social turing tests:
Crowdsourcing sybil detection. In Proceedings of the 20th Network & Distributed System Security Symposium
(NDSS); The Internet Society: San Diego, CA, USA, 2013.

4. Thomas, K.; Grier, C.; Ma, J.; Paxson, V.; Song, D. Design and Evaluation of a Real-Time URL Spam Filtering
Service. In Proceedings of the 2011 IEEE Symposium on Security and Privacy; IEEE: Oakland, CA, USA, 2011;
pp. 447–462.

5. Ghosh, S.; Viswanath, B.; Kooti, F.; Sharma, N.K.; Korlam, G.; Benevenuto, F.; Ganguly, N.; Gummadi, K.P.
Understanding and combating link farming in the twitter social network. In Proceedings of the 21st international
conference on World Wide Web - WWW ’12; ACM Press: Lyon, France, 2012; p. 61.

6. Yang, Z.; Xue, J.; Yang, X.; Wang, X.; Dai, Y. VoteTrust: Leveraging Friend Invitation Graph to Defend against
Social Network Sybils. IEEE Trans. Dependable Secure Comput. 2016, 13, 488–501. [CrossRef]

7. Ahmed, F.; Abulaish, M. An MCL-Based Approach for Spam Profile Detection in Online Social Networks.
In Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and
Communications; IEEE: Liverpool, UK, 2012; pp. 602–608.

8. Almaatouq, A.; Shmueli, E.; Nouh, M.; Alabdulkareem, A.; Singh, V.K.; Alsaleh, M.; Alarifi, A.; Alfaris, A.;
Pentland, A. ‘Sandy’ If it looks like a spammer and behaves like a spammer, it must be a spammer: analysis
and detection of microblogging spam accounts. Int. J. Inf. Secur. 2016, 15, 475–491. [CrossRef]

9. İş, H.; Tuncer, T. Interaction-Based Behavioral Analysis of Twitter Social Network Accounts. Appl. Sci. 2019,
9, 4448. [CrossRef]

10. Hussain, N.; Turab Mirza, H.; Rasool, G.; Hussain, I.; Kaleem, M. Spam Review Detection Techniques:
A Systematic Literature Review. Appl. Sci. 2019, 9, 987. [CrossRef]

11. Liu, S.; Wang, Y.; Zhang, J.; Chen, C.; Xiang, Y. Addressing the class imbalance problem in Twitter spam
detection using ensemble learning. Comput. Secur. 2017, 69, 35–49. [CrossRef]

12. Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data:
Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [CrossRef]

13. Zhou, P.; Hu, X.; Li, P.; Wu, X. Online feature selection for high-dimensional class-imbalanced data.
Knowl.-Based Syst. 2017, 136, 187–199. [CrossRef]

14. Twitter Study. Available online: http://pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-
August-2009.pdf (accessed on 27 October 2019).

15. Jin, Z.; Li, Q.; Zeng, D.; Wang, L. Filtering spam in Weibo using ensemble imbalanced classification and
knowledge expansion. In Proceedings of the 2015 IEEE International Conference on Intelligence and Security
Informatics (ISI); IEEE: Baltimore, MD, USA, 2015; pp. 132–134.

16. Yu, L.; Zhou, R.; Tang, L.; Chen, R. A DBN-based resampling SVM ensemble learning paradigm for credit
classification with imbalanced data. Appl. Soft Comput. 2018, 69, 192–202. [CrossRef]

17. Tang, W.; Ding, Z.; Zhou, M. A Spammer Identification Method for Class Imbalanced Weibo Datasets.
IEEE Access 2019, 7, 29193–29201. [CrossRef]

18. Zheng, X.; Zeng, Z.; Chen, Z.; Yu, Y.; Rong, C. Detecting spammers on social networks. Neurocomputing 2015,
159, 27–34. [CrossRef]

19. Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322. [CrossRef]
20. Lee, S.; Kim, J. WarningBird: A Near Real-Time Detection System for Suspicious URLs in Twitter Stream.

IEEE Trans. Dependable Secure Comput. 2013, 10, 183–195. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.11.030
http://dx.doi.org/10.1109/TDSC.2015.2410792
http://dx.doi.org/10.1007/s10207-016-0321-5
http://dx.doi.org/10.3390/app9204448
http://dx.doi.org/10.3390/app9050987
http://dx.doi.org/10.1016/j.cose.2016.12.004
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1016/j.knosys.2017.09.006
http://pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
http://pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
http://dx.doi.org/10.1016/j.asoc.2018.04.049
http://dx.doi.org/10.1109/ACCESS.2019.2901756
http://dx.doi.org/10.1016/j.neucom.2015.02.047
http://dx.doi.org/10.1016/j.ins.2018.08.019
http://dx.doi.org/10.1109/TDSC.2013.3

Appl. Sci. 2020, 10, 936 17 of 18

21. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. DNA-Inspired Online Behavioral Modeling
and Its Application to Spambot Detection. IEEE Intell. Syst. 2016, 31, 58–64. [CrossRef]

22. Chavoshi, N.; Hamooni, H.; Mueen, A. DeBot: Twitter Bot Detection via Warped Correlation. In Proceedings of
the 2016 IEEE 16th International Conference on Data Mining (ICDM); IEEE: Barcelona, Spain, 2016; pp. 817–822.

23. Li, W.; Gao, M.; Rong, W.; Wen, J.; Xiong, Q.; Ling, B. LSSL-SSD: Social Spammer Detection with Laplacian
Score and Semi-supervised Learning. In Knowledge Science, Engineering and Management; Lehner, F.,
Fteimi, N., Eds.; Springer International Publishing: Cham, Germany, 2016; Volume 9983, pp. 439–450.

24. Gong, N.Z.; Frank, M.; Mittal, P. SybilBelief: A Semi-Supervised Learning Approach for Structure-Based
Sybil Detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 976–987. [CrossRef]

25. Chen, H.; Liu, J.; Lv, Y.; Li, M.H.; Liu, M.; Zheng, Q. Semi-Supervised Clue Fusion for Spammer Detection in
Sina Weibo. Inf. Fusion 2018, 44, 22–32. [CrossRef]

26. Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer: Berlin,
Heidelberg, 2000; Volume 1857, pp. 1–15.

27. Madisetty, S.; Desarkar, M.S. A Neural Network-Based Ensemble Approach for Spam Detection in Twitter.
IEEE Trans. Comput. Soc. Syst. 2018, 5, 973–984. [CrossRef]

28. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling
Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

29. Liu, S.; Zhang, J.; Xiang, Y.; Zhou, W. Fuzzy-Based Information Decomposition for Incomplete and Imbalanced
Data Learning. IEEE Trans. Fuzzy Syst. 2017, 25, 1476–1490. [CrossRef]

30. Liu, S.; Zhang, J.; Wang, Y.; Xiang, Y. Fuzzy-based feature and instance recovery. In Proceedings of the Asian
Conference on Intelligent Information and Database Systems. ACIIDS 2016; Springer: Berlin, Heidelberg, 2016;
pp. 605–615.

31. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
32. Domingos, P. MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining- KDD ’99; ACM Press: San
Diego, CA, US, 1999; pp. 155–164.

33. Fan, W.; Stolfo, S.J.; Zhang, J.; Chan, P.K. AdaCost: Misclassification Cost-sensitive Boosting. Icml 1999, 99,
97–105.

34. Sze-To, A.; Wong, A.K.C. A Weight-Selection Strategy on Training Deep Neural Networks for Imbalanced
Classification. In Image Analysis and Recognition; Karray, F., Campilho, A., Cheriet, F., Eds.; Springer
International Publishing: Cham, Australia, 2017.

35. Wang, H.; Cui, Z.; Chen, Y.; Avidan, M.; Abdallah, A.B.; Kronzer, A. Predicting Hospital Readmission via
Cost-Sensitive Deep Learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1968–1978. [CrossRef]
[PubMed]

36. Zhang, C.; Tan, K.C.; Li, H.; Hong, G.S. A Cost-Sensitive Deep Belief Network for Imbalanced Classification.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 109–122. [CrossRef] [PubMed]

37. Liu, M.; Xu, C.; Luo, Y.; Xu, C.; Wen, Y.; Tao, D. Cost-Sensitive Feature Selection by Optimizing F-Measures.
IEEE Trans. Image Process. 2018, 27, 1323–1335. [CrossRef]

38. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.
TIST 2011, 2, 27. [CrossRef]

39. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge
University Press: Cambridge, UK, 2014; pp. 250–257.

40. John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence; Morgan Kaufmann Publishers: San Mateo, CA,
USA, 1995; pp. 338–345.

41. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66.
[CrossRef]

42. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
43. Wright, R.E. Logistic regression. In Reading and Understanding Multivariate Statistics; American Psychological

Association: Washington, DC, USA, 1995; pp. 217–244.
44. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
45. Aburomman, A.A.; Ibne Reaz, M.B. A novel SVM-kNN-PSO ensemble method for intrusion detection system.

Appl. Soft Comput. 2016, 38, 360–372. [CrossRef]

http://dx.doi.org/10.1109/MIS.2016.29
http://dx.doi.org/10.1109/TIFS.2014.2316975
http://dx.doi.org/10.1016/j.inffus.2017.11.002
http://dx.doi.org/10.1109/TCSS.2018.2878852
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TFUZZ.2017.2754998
http://dx.doi.org/10.1109/TCBB.2018.2827029
http://www.ncbi.nlm.nih.gov/pubmed/29993930
http://dx.doi.org/10.1109/TNNLS.2018.2832648
http://www.ncbi.nlm.nih.gov/pubmed/29993587
http://dx.doi.org/10.1109/TIP.2017.2781298
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/j.asoc.2015.10.011

Appl. Sci. 2020, 10, 936 18 of 18

46. Jiang, X.; Pan, S.; Long, G.; Chang, J.; Jiang, J.; Zhang, C. Cost-sensitive Hybrid Neural Networks for
Heterogeneous and Imbalanced Data. In Proceedings of the 2018 International Joint Conference on Neural
Networks (IJCNN); IEEE: Rio de Janeiro, Brazil, 2018; pp. 1–8.

47. Chen, C.; Zhang, J.; Chen, X.; Xiang, Y.; Zhou, W. 6 million spam tweets: A large ground truth for timely
Twitter spam detection. In Proceedings of the 2015 IEEE International Conference on Communications (ICC); IEEE:
London, UK, 2015; pp. 7065–7070.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Spam Detection Approaches
	Class Imbalance Problem

	Problem Description and Methodology
	Formulation of The Problem
	The Proposed Ensemble Learning Framework
	Base Module
	Combining Module

	Experiments
	Experimental Dataset
	Evaluation Metrics
	Experimental Protocol
	Results and Discussion
	Comparisons with Base Classifiers
	Comparisons with Class Imbalance Methods
	Comparisons with Varying Class Imbalance Rates

	Conclusions
	References

