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Abstract: Data mining is a technological and scientific field that, over the years, has been gaining
more importance in many areas, attracting scientists, developers, and researchers around the world.
The reason for this enthusiasm derives from the remarkable benefits of its usefulness, such as the
exploitation of large databases and the use of the information extracted from them in an intelligent
way through the analysis and discovery of knowledge. This document provides a review of the
predictive data mining techniques used for the diagnosis and detection of faults in electric equipment,
which constitutes the pillar of any industrialized country. Starting from the year 2000 to the present,
a revision of the methods used in the tasks of classification and regression for the diagnosis of electric
equipment is carried out. Current research on data mining techniques is also listed and discussed
according to the results obtained by different authors.
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1. Introduction

Over the past few years, the number and diversity of electrical equipment, such as motors,
transformers, generators, electric vehicles, and energy transmission and distribution systems, among
many others, are getting bigger [1–6]. Their exponential growth is due to the need of people to perform
a number of different activities, ranging from industrial processes to everyday activities such as
charging the cell phone battery or starting the car to go to work. Due to their paramount importance in
any facet of society, their safety and correct operation is vital, even more so when considering that a
failure in one of its components can produce (1) high economical losses derived from its partial or
total repair, (2) degradation and poor quality on its performance, (3) outages in the production process,
(4) damages to other equipment, and (5) conditions that put in risk the physical integrity of people,
among others.

In this regard, the application and development of new techniques and methods to monitor the
condition of electric machines and systems are important topics of research. In general, a condition
monitoring strategy consists of the following steps (see Figure 1): Data collection through different
types of sensors, data processing and feature extraction, and data analysis for condition assessment.
The latter can be seen as the process of exploring, finding, selecting, and using specific data to solve the
given problem, e.g., a diagnosis problem; however, it is not an easy and straightforward process since
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the data analyst has to deal with different volumes and varieties of data, as well as redundant and
unneeded data, which can compromise and difficult the solution of the assigned task; in fact, the reality
is that, in many cases, only a small part of the dataset is used because its volume is simply too large
to be used and processed effectively. One solution to this problem has been the use of data mining
(DM) techniques. DM is one of the fastest growing fields at both the computational and industrial
levels. Its main characteristic involves the search of patterns through the handling of different sets
of data to discover the available knowledge. Kantardzic [7] calls DM to the process of applying
a computer-based methodology for discovering knowledge from data. Although DM is based on
computational algorithms, best results can be obtained by balancing the knowledge of human experts
about the problem under study with the advantages and operating modes of different algorithms [4].
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In general, DM functionalities can be divided into two categories: Predictive and descriptive.
The former is used to construct models that allow the prediction of unknown or future values, whereas
the latter is in charge of finding new information that allows the description of the dataset. In this regard,
the prediction functionalities become the most suitable option to perform the condition monitoring
since a new and unknown equipment condition can be determined or predicted from a specific input
information. Therefore, this manuscript is aimed at reviewing the classification and regression tasks
that fall within the predictive category of DM, as well as hybrid techniques that combine more than
one prediction method. Specifically, classification techniques attempt to find a function or model that
distinguishes or predicts the class of unknown data by analyzing a data training set [8]. The regression
analysis is used for numerical prediction, i.e., to predict missing or new numerical data values [8].

In the literature, two main groups of research works related to DM and electric equipment
are found. On the one hand, there are different reviews about DM applications, e.g., diagnosis in
health [9–11], marketing [12], industrial [13,14], climatological [15], and financial [16] issues, among
others. On the other hand, there are also reviews related to diagnosis methods for specific machines
such as transformers [17–19], estimation strategies in electric vehicles [20], mathematical models used
to study induction motors in defective conditions [21], or, in a more general sense, methodologies of
fault classification in transmission systems [22,23] and distribution of energy [24]. There is also the
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work of Hare et al. [25], where they present a study of modern diagnosis methods in smart micro grids.
Although there are specialized reviews on topics of either DM or electric equipment and systems,
none of these works have been specifically focused on reviewing the research that has been carried
out about the applications of DM techniques for condition monitoring of electric equipment and
systems, which is very important in order to highlight the algorithms that have been used in specific
equipment but can be applied to other machines since the application core is similar. In this regard,
this manuscript provides a review of DM techniques focused particularly on the tasks of classification
and regression within the category of predictive analysis applied to various electric machines and
systems such as transformers, electric vehicles, heating, ventilation, and air conditioning (HVAC)
systems, airplane, automotive, three-phase and multi-phase induction motors, centrifugal pumps,
generators, distribution systems, and transmission lines, among others.

The rest of this manuscript is prepared as follows. Section 2 deals with the classification,
regression, and hybrid techniques used for the detection of faults and the diagnosis of electrical systems.
In Section 3, recent research works on these topics and the latest contributions on DM techniques
that can be explored in fault diagnosis methodologies are presented. Finally, Section 4 shows the
conclusions of this work.

2. Predictive Model

DM tasks can be conducted through prediction and description models [7,8] (see Figure 2a).
In general, the prediction models are constructed through the learning of known data classes, whereas
the description models arise from the findings obtained in a dataset [8]. In this regard, predictive DM
techniques are the straightforward option to perform the diagnosis of equipment and systems since
their different operating conditions can be learned and determined by a prediction model. In this model
(see Figure 2b), its learning is carried out by means of the analysis of a data training set (input data
with known outputs) and then used to predict the unknown output (class or value) of new input data.
According to the nature of data (discrete or continuous), the prediction model can be used to perform
either classification or regression functionalities [7] (see Figure 2a). A classification procedure consists
of the assignment of an object (unknown class) into one of several predefined classes (predicted class)
according to its properties or features. In a different way, a regression procedure involves the modeling
of continuous functions to determine new numerical values (predicted values) according to specific
inputs. Classification and regression techniques used for fault detection in electric equipment and
systems are presented in the following sections.
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2.1. Classification-Based Methods

In a condition monitoring context, a classification model can be constructed from a given system
and used to provide warnings and predict certain failures in early stages. In this regard, researchers
around the world have proposed and used different classification methods in machine learning, pattern
recognition, and statistics to perform faults diagnosis.



Appl. Sci. 2020, 10, 950 4 of 24

Recent research on DM has been focused on developing classification techniques capable of
handling datasets with different features, e.g., imbalance of proportionally, and large amounts of data.
In the latter, this capacity is strongly required because, on the one hand, the availability of data is
growing and, on the other hand, their performance can be compromised if limited datasets are analyzed.
In fact, the amount of available data during the training of a neural network (NN) plays an important
issue in its performance. For instance, Taylor et al. [26] contrasted three different techniques: Neural
networks trained by using a hybrid of evolutionary search and backpropagation, neural networks
trained by straightforward backpropagation, and simple predictive rulesets trained by evolutionary
algorithms. Results indicate that evolved NNs outperform backpropagation trained NNs. However,
the results are slightly unsatisfactory from a business viewpoint, obtaining a maximum accuracy of
77.9%, which can be somehow expected due to the small amount of training data, highlighting the
need of additional data to establish a better reference during the pattern recognition task. Fortunately,
there are many works in which the authors also use NNs as the basis of their investigations and
promising results are obtained. In an energy consumption context, Magoulès et al. [27] diagnose
different electrical equipment of an office building, including fans, pumps, cooling equipment, and
chillers. They use a recursive deterministic perceptron NN to distinguish between normal and defective
datasets, where an effectiveness percentage higher than 97% is obtained. Similarly, the use of NNs
for fault detection on induction motors are presented [28–35]. Tallam et al. [28] presented an on-line
diagnostic scheme to alert the engine protection system of an incipient failure. This scheme consists
of a feed-forward NN with a self-organized feature map to display the operating conditions of the
in-test machine. An interesting feature offered by the results is that the method is not sensitive to
unbalanced supply voltages or asymmetries in the machine. Martins et al. [29] use the alpha-beta
stator currents of a three-phase induction motor as input variables to diagnose stator faults. In their
proposal, an unsupervised Hebbian-based NN is used to extract the main components of the stator
current data. Other proposals combine NNs with fuzzy logic systems (FLSs) to detect inter-turn
faults [30,31]. In particular, Ballal et al. [31] developed an ANFIS (Adaptive Neural Fuzzy Inference
System) for the detection of stator inter-turn insulation and bearing wear faults, where five input
parameters, i.e., current, bearing temperature, winding temperature, speed, and the noise of the
machine are used to construct the model. For the inter-turn insulation fault, they obtain an effectiveness
of 94.03% using two inputs and 96.67% using five inputs. For the bearing wear fault, the accuracy
rate with two inputs is 90.5%, and 98.7% with five inputs. These results demonstrate the importance
of an information-rich dataset. In [32–34], several NNs are implemented in field programmable gate
arrays (FPGAs) to diagnose different faults in induction motors. The diagnosis of broken rotor bars
is presented by Zolfaghari et al. [35], where the multi-layer perceptron NN used is able to detect
the faults in the rotor with a classification effectiveness of 98.80%. Furthermore, modular NNs are
used to diagnose transmission lines from the voltage and current signals of their elements (busses,
transmission lines, and transformers). Given its modular nature, the diagnosis can be carried out
by element, by area, or for the entire context of the electrical system [36]. In [37], adaptive linear
neural networks and feed forward neural networks are combined to classify electrical disturbances
that affect the electric equipment. The best classification results are obtained when only a single
disturbance appears; when more disturbances are combined, the effectiveness is reduced, but it is
worth noticing that the effectiveness percentage obtained exceeds 90% for a noiseless condition and
exceeds 77% for a noisy condition in the presence of six combined disturbances. In addition, the overall
methodology takes 46.5 milliseconds per half cycle analyzed. Hare et al. [25] present a survey for fault
diagnostics in smart micro grids, in which they discuss the faults within various components of a
micro network, e.g., photovoltaic panels, wind turbines, conventional generation systems, as well as
cables and transmission lines, etc., where several classification algorithms such as NNs, decision trees,
and FLSs, among others, are presented.
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Regarding the transformers, Rigatos and Siano [38] propose the neural-fuzzy network modeling
and the local statistical approach for the detection of incipient faults in power transformers. Another
technique commonly used for diagnosis of transformers is the decision tree [39–41]. Menezes et al. [39]
and Han et al. [40] used experimental data from a dissolved gas analysis (DGA) to illustrate the
performance of their decision tree-based models. In [39], they present a comparison between the
method based on the algorithm C4.5 and other methods used in DGA. They use only 162 samples
for the analysis, obtaining the following accuracy: 99.38% for the proposed method, 98.15% for the
rules extracted, 88.03% for Duval Triangle, 63.25% for Dornenburg IEC C57.104, and 56.41% for
Rogers IEC C57.104. In [40], a decision-tree C4.5 algorithm obtained an effectiveness of 86% for a
thermoelectric fault in oil-immersed transformer. Samantaray and Dash [41] analyze the current
of a power transformer to discriminate between the current signals generated by the inrush effect
and the ones generated by its internal faults. The processing time of the proposed approach is 0.12s
and provides an accuracy greater than 96%, exceeding the accuracy of the support vector machine
(93.33%). As can be noted, the type of variable to be analyzed by the decision tree-based methods is
not restricted; in fact, the use of vibration signals for the diagnosis of faults in monoblock centrifugal
pumps [42] and motors of internal combustion [43] are also presented. The latter also compares the
classification accuracy obtained by the J48 algorithm, random forest tree algorithm, linear model
tree algorithm, best first tree algorithm, and functional tree algorithm, where the linear model tree
algorithm provides the best results, offering classification accuracy of 100% using statistical features.
In general, it can note that the decision tree algorithms are a practical, economical, and very effective
approach. In addition to these different types of decision trees, the fault tree is another alternative
used for the diagnosis of systems. For example, Volkanovski et al. [44] evaluate the reliability of a
power system for energy delivery by constructing a fault tree structure, which represents the system
configuration and includes all the possible flow routes of interruption of the power supply from the
generators to the loads, including energy transfer limitations, common cause failure of power lines,
energy flows and the capacity of generators, and loads in the power system. Duan and Zhou [45] also
use the fault tree analysis and Bayesian networks for fault detection of a system for oil pressure warning
instructions in an aircraft engine, where a diagnostic decision tree to guide maintenance personnel
to make more efficient decisions when attempting to repair the system is obtained. An advanced
Bayesian non-linear state estimation technique called Unscented Kalman Filtering to detect faults
in HVAC (heating, ventilation, and air conditioning) components is presented by Bonvini et al. [46].
This algorithm can detect common faults in a chiller plant and functional failures caused by problems
in the compressor and occlusions in the valves with a computational performance of 0.25s using Intel
Xeon (R) 2.67 GHz–19 Cores and 0.52s using Intel Core i7 2.8 GHz–1 Core. Another tree-based method
is the tree-structured fault dependence kernel developed by Li et al. [47]. It implements a structured
labeling to include dependency information and describe severity levels in a high-margin learning
framework for fault detection of building cooling systems. It is important to highlight that the testing
accuracy increases or decreases accordingly with the change of training samples. For instance, in [47],
the testing accuracy of the proposed strategy boosted from 69.64% (six training samples) to 99.12%
(180 training samples). That is, accumulating more training data is beneficial for the fault detection
and diagnosis.

Other classification method that has been widely used is the FLS. In general, it uses
knowledge-based reasoning to construct logical rules and, thus, diagnose faults. In this type of
algorithms, the designer knowledge about the in-test equipment, e.g., operating conditions, nominal
parameters, overall performance, etc., plays a fundamental role. In [48], an FLS is designed to diagnose
stator winding faults in induction motors. Similar results are obtained under noisy and noiseless
conditions. Therefore, FLS is a good option because there is no general and accurate analytical model
that describes completely the induction motor under fault conditions, leaving the open doors to
uncertainties or noisy conditions. Amezquita-Sanchez et al. [49] present two FLSs to detect broken rotor
bars (BRB) in both regimes of operating conditions, i.e., transient and stationary. The combination of
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fractal dimension analysis and FL system demonstrated to be highly effective on identifying half-BRB,
one BRB, and two BRB, as well as healthy condition, since an effectiveness of 95% and 100% for start-up
transient and steady state is obtained. For transformers, Islam et al. [50] present the diagnosis of
several transformer faults using dissolved gas in oil analysis (DGA) and an FLS for its interpretation.
An overview of different FLSs for DGA is presented in [51], where it is indicated that there is not a
single technique that can enable the detection of the full range of faults, therefore the combination
of different methods has to be explored as a promising solution. Although promising results have
been obtained using FLSs, a relatively high superiority of an adaptive neuro fuzzy inference system for
DGA is presented in [52], obtaining an accuracy of 98% for all the 100 fault cases under study, while FL
obtained 95%. Regarding other electric systems an equipment, the fault diagnosis of the power system
using fuzzy logic is presented in [53]. An online monitoring system of voltage variations in electric
systems is presented in [54], where an FLS is used to diagnose and classify instantaneously, i.e., sample
to sample, the severity of the electric variation. Their proposal is a suitable tool for analyzing stored
data; furthermore, it provides phase information unlike the conventional root mean square technique;
moreover, it gives results sample to sample, which is better for nonstationary signals. Lauro et al. [55]
diagnose a fan coil electric and Zio et al. [56] classify the faults of a steam generator of a pressurized
water reactor. In the latter, a fuzzy clustering-based classification model is transformed into a fuzzy
logic inference model, allowing its direct interpretation and inspection; also, improvements in the
obtaining of the model are presented to allow the treatment of more complicated scenarios.

Table 1 shows a summary for the above reviewed works, where the used techniques and
conventional applications, along with the physical variables that have been analyzed by them, are
presented. As can be observed, NNs, decision trees, and FLSs are the most commonly used methods
for fault detection. Although NNs can be more suitable for fault detection from a generalization
viewpoint, decision trees have been preferred in many cases because of the clarity in their interpretation
(human friendly) and their low computation burden, which are desirable features in online condition
monitoring systems. Also, if the amount of data is limited, a simple decision tree can be used; yet,
other aspects of such small dataset have to be taken into account, for instance: redundancy of data,
data imbalance, information contained, data type (continuous or discrete), range, time dependency, etc.
Regarding the physical variable measured from the in-test equipment, the current signals show to be a
powerful and representative source of information for fault detection; although promising results are
obtained, the combination of multiple physical variables, e.g., current and vibrations signals, should
be explored in order to improve the reliability of new classification schemes and expand the number of
fault conditions that can be determined by a single classification algorithm, exploiting the information
that each signal can provide, e.g., current signals can provide information to diagnose electrical faults
and vibration signals can provide information to diagnose mechanical faults.

Table 1. Classification methods and their applications.

Classification Methods Equipment Under test Physical Variable Used as
Information Source

� NNs and rule sets [26]
� Recursive deterministic perceptron NN [27]
� Feedforward NN [28]
� Hebbian NN [29]
� B-spline membership fuzzy NN [30]
� ANFIS [31,52]
� Feed forward NN [32–34]
� Multi-layer NN [35]
� Modular NNs [36]
� Adaptive linear NN and feed forward NN [37]
� Neural-fuzzy network and statistical analysis [38]

� Refrigeration systems
� Electric equipment (fan, coil,

pump, and chiller)
� Stator winding of an

induction motor
� Bearings in induction motors
� Broken rotor bars
� Electric transmission lines
� Transformer

� Temperature
� Energy consumption
� Voltage
� Data from DGA
� Current
� Vibrations
� Speed
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Table 1. Cont.

Classification Methods Equipment Under test Physical Variable Used as
Information Source

� Decision tree: C4.5 algorithm [39,40,42]
� Decision tree: CART algorithm [41]
� Decision trees: J48 algorithm, best first algorithm,

random forest algorithm, functional algorithm,
and linear model algorithm (a comparison) [43]

� Fault tree analysis [44]
� Fault tree analysis and Bayesian networks [45]

� Transformer
� Monoblock

centrifugal pump
� Internal combustion engine
� Power system
� System of oil pressure

warning instructions in
aircraft engines

� Data from DGA
� Current
� Vibration
� Power flows

� Bayesian non-linear state estimation technique
(detection based on a threshold value) [46]

� Tree-structured fault dependence kernel [47]

� Chiller plant
� Building cooling system

� Pressure
� Temperature

� Fuzzy logic system [48–51,53,54]
� Fuzzy sets and fuzzy logic [55]
� Fuzzy decision tree [56]

� Induction motor
� Transformer
� Power systems
� Fan coil electric consumption
� Steam generator of a

pressurized water reactor

� Current
� Voltage
� Electric power
� Temperature
� Pressure
� Flow

2.2. Regression-Based Methods

In general, the use of regression techniques consists of numerical prediction, i.e., a methodology
to generate a methatical function or model to predict missing or new numerical data values; but it
also covers the identification of distribution trends based on the available data. For the latter,
the support vector machine (SVM) has been widely used since a regression function is found from the
training dataset.

Among the available research works, SVMs have been presented in the literature as one of the most
promising methods to diagnose faults in power transformers [57]. Lv et al. [58] and Bacha et al. [59]
implement SVM-based strategies to establish the classification of faults in power transformers by using
the gases available from the DGA. Both works present an interesting performance comparison among
different methods. In [58], five artificial intelligence methods are presented. It is found that the SVM is
the most effective and fastest method, obtaining an accuracy of 100% and a training time less than
1s, NN (92.76% accuracy and 81s training time), expert system (89.34% accuracy and training time
no mentioned), FL (92.32% accuracy and 82s training time), and combined NN and expert system
(93.54% accuracy and 44s training time). In [59], the classification accuracy of FL (86.7%), multi-layer
perceptron (80%), radial basis function (86.7%), and SVM (90%) is presented. In a similar venue, SVMs
are also explored for the detection and localization of faults in transmission lines, where Johnson
and Yadav [60] and Parikh et al. [61] conclude that the SVMs are a highly accurate method for these
tasks. Zhang et al. [62] present a SVM-based methodology for data-based line trip fault prediction in
power systems, where long-term memory networks are used to capture time series characteristics from
multiple sources in large systems. The accuracy of the line trip fault prediction can reach about 97%.
SVMs have been also employed in the diagnosis of induction motors, e.g., Gangsar and Tiwari [63] carry
out a comparative investigation to predict mechanical and electrical faults in induction motors from
the analysis of vibration and current signals and the use of multiclass SVM methods. Zhang et al. [64]
propose a method based on the robust local linear embedding algorithm and an SVM for the diagnosis
the gear fault from an experimental setup composed by a motor, a torque transducer/encoder, and a
dynamometer. The diagnosis of fault severity in the stator winding of induction motors using SVM in
regression mode is presented by Das et al. [65]. In their research, they analyze the current signals for
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different levels of short circuit fault, different unbalance conditions in the voltage supply, and different
load levels. In the methodology, they use recursive feature elimination to select the optimum number of
features and an SVM as a load-immune classifier, demonstrating the high capabilities of SVMs. Among
other electric machines where the SVM has been applied, heating, ventilation, and air conditioning
(HVAC) systems [66,67] and the steam generator and pressure boundary of the Chinese CNP300 PWR
(Qinshan I NPP) reactor coolant system [68] are included. For the latter, a specialized SVM module
monitors the subunits of the reactor coolant system and is capable of making fault diagnosis at the
component level. Finally, Lai et al. [69] investigate partial discharge activities for online monitoring of
power equipment. They use back-propagation NN, self-organizing map, and SVM for classification
and comparison, concluding that SVM is the best method in terms of classification accuracy and
processing speed.

Some other approaches related to regression models include Poisson regression, least-square
regression, and logistic regression [70]. Publications such as Jena and Bhalja [71] use a logistic regression
binary classifier for the development of a new fault zone identification scheme for busbar verified
by modeling an existing power generation station in a design software package. The proposed
scheme is able to identify the fault zone with an accuracy of 99% when it is tested on a large dataset
(28,800) by using a small training dataset (9600 cases). In the diagnosis of power systems, Xu and
Chow [72] report the results obtained after using two different techniques, i.e., logistic regression and
artificial NN, for the identification of the cause of faults in the power distribution systems. Logistic
regression is a parametric model that is rarely used in power system fault diagnosis, while artificial
NN is a nonparametric method that has been extensively used in this field. Logistic regression as a
conventional statistical method has formalized models to exhibit the nonlinear relationship between
the independent and dependent variables, while artificial NN can increase its flexibility by including
hidden layers, which is often regarded as a substantial advantage. They conclude that both can be easily
implemented. As seen from the results, artificial NN can achieve higher balanced accuracy than logistic
regression; however, logistic regression is much faster because the artificial NN requires a relatively
long training time and cross-validation requires an even longer computation time. Regarding the linear
regression-base methods, the work of Cha et al. [73] presents the diagnosis and detection of faults in the
main engine of a space shuttle during a stable state. Within the automotive industry, Jiang and Yin [74]
present a new design and implementation approach based on recursive total principle component
regression for efficient data-driven fault detection in automobile cyber-physical systems. Meanwhile,
Bolovinou et al. [75] solve the problem of predicting the distance at which an electric vehicle can
be driven before the energy recharge is required. The fact that the model is online implies that the
prediction is made at any distance traveled from the beginning of the trip, which is achieved from a
regression analysis. Using square linear regressions, Cappiello et al. [76] present a statistical model to
predict the instantaneous emissions and fuel consumption of light-duty vehicles. Yu et al. [77] provide
theoretical support for the prediction of faults in highway electromechanical equipment through a panel
data model-based multi-factor predictive model. This model is characterized by a two-dimensional
multivariate regression analysis based on and individuals and time. Emphasizing the intelligent
diagnosis of faults, the classification and regression tree (CART) is used by Gopinath et al. [78] as a
back-end classifier to diagnose synchronous generators. The statistical characteristics of the frequency
domain are extracted from the current signals of the in-test generators. According to the work
presented by Bangura et al. [79], the hidden patterns and nuances of differences between healthy
performance firms and several fault signatures using time-series DM for the diagnosis of eccentricities
and bar/end-ring connector breakages in polyphase induction motors can be identified. In a more
general scenario, Wang and Jiao [80] propose a method of failure prediction related to quality by
constructing a total principal component regression model, which can divide the space of the variables
into two subspaces, and only one of them will be related to the quality fault.
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Table 2 summarizes the above-reviewed information, where the effectiveness percentage of each
method is also presented; from this information, it is evident that the SVMs are one of the most used
methods for fault detection. Many authors agree that SVMs are more robust than other algorithms and
satisfy the minimization of structural risk; yet, its effectiveness relies on the features and preparation
of data. In addition, they have a high correct identification relationship according to the reported
effectiveness percentages. In several works, SVMs have presented a better performance than NNs.
These works highlight that SVMs reach the global optimum in a more direct way, are less prone to
overfitting, present a smaller computational model, etc. Similar to other algorithms such as NNs, once
the training stage has been carried out, the computational time to perform a SVM-based diagnosis
is relatively short, making it a suitable for online and continuous diagnosis of electric equipment.
Although in several works SVMs have presented a low computation cost/time, it cannot be suitably
compared if aspects such as effectiveness reached, overfitting issues, robustness, number of hidden
layers and neurons per layer, number of nodes, model complexity, activation and kernel functions
used, and training algorithms, among others, are not taken into account.

Table 2. Regression-based methods and their applications.

Regression Methods Equipment Under Test Type of Fault Effectiveness
Percentage

� Multilayer SVM [57] � Transformer � Partial discharge
and arcing 100

� Multilayer SVM [58] � Transformer � Discharge and
thermal faults 100

� Multilayer SVM [59] � Transformer � Discharge and
thermal faults 90

� SVM [60]
� High-voltage,

direct current
transmission lines

� Pole-1 to ground,
pole-2 to ground
and pole-1
to pole-2

100

� SVM [61]
� Series

compensated
transmission line

� Line-to-ground,
line-to-line fault
involving ground
and line-to-line

98.703

� LSTM and SVM [62] � Power systems � Data-based line
trip fault 97.7

� Multiclass SVM [63] � Induction motor � Mechanical fault 97.48

� Robust locally linear
embedding algorithm
and SVM [64]

� Motor, torque
transducer/encoder
and dynamometer

� Gear fault 90–100
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Table 2. Cont.

Regression Methods Equipment Under Test Type of Fault Effectiveness
Percentage

� SVM in regression
mode [65]

� Stator winding of
an induction motor

� Stator winding
short circuit faults 95.1, 80.8, and 92.7

� Autoregressive time
series model with
exogenous variables
and SVM [66]

� HVAC systems � Air handling
unit faults 92.3

� Autoregressive time
series model with
exogenous variables
and SVM [67]

� Chillers

� Reduced condenser
and evaporator
water flow,
condenser fouling,
non-condensable in
refrigerant and
refrigerant leak

90.31

� Multiclass SVM [68]

� Steam generator
and pressure
boundary of a
reactor
coolant system

� Incipient faults 100

� Logistic regression [71] � Busbar � Internal and
external faults 99.69

� CART [78] �
Synchronous generators� Inter-turn fault 95.58–98.15

� Time-series data
mining [79]

� Polyphase
induction motors

� Eccentricities and
bar/end-ring
connector breakages

100

2.3. Hybrid Techniques

It is common to find research where the authors decide to use not only predictive techniques,
but also to combine different algorithms that lead them to obtain models or methods that offer better
results, including greater precision and efficiency, as well as better handling of data. This section deals
with those works whose authors use more than one method, combining classification techniques and
regression techniques, as well as other methods that do not belong to the predictive modeling of DM.
The use of hybrid techniques, i.e., techniques that combine different methods, is frequently observed in
the diagnosis of equipment such as motors, transformers, and electric vehicles mainly, as stated below.

In the extensive field of motors, Seera et al. [81] use the hybrid fuzzy min–max (FMM) neural
network and classification and regression tree (CART), which is known as FMM–CART, to perform
rule extraction and data classification in order to detect and classify faults in different motor conditions.
They show the overall accuracy rates of five motor conditions (healthy, broken rotor bars, unbalanced
voltages, eccentricity, and stator winding faults). FMM presented the lowest accuracy, 93.62%, while
CART and FMM–CART achieved 98.11% and 98.25%, respectively, for multiple motor conditions in a
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time of 0.21s, 0.92s, and 0.96s, respectively. Two years later, in 2014, Seera and Lim [82] implement
this hybrid model and conclude that it can produce accurate predictions of motor failures in an online
learning environment. In addition, the results of the model are better than those compared with CART,
FMM, and multi-layer perceptron. At the noisy test, multi-layer perceptron and FMM presented
78.39% and 94.88% accuracy, whereas FMM–CART and CART achieved stable results with 96.54%
and 97.82% accuracy. The multilayer perceptron structure was the most complex with 30 hidden
nodes, whereas FMM produced 12 nodes (hyperboxes). FMM–CART and CART created eight and
six leaves, respectively. The computational time of FMM was only 0.13s. Multilayer perceptron
consumed the longest time (2.08s), whereas FMM–CART and CART used almost 1s. The CART method
combined with adaptive neuro-fuzzy inference system is presented by Tran et al. [83]. They use
current and vibration signals from the induction motor for fault diagnosis; additionally, the hybrid of
back-propagation and least-squares algorithm is used to adjust the parameters of membership functions.
The total classification accuracy was 91.11% and 76.67% for vibration and current signals, respectively.
Other works such as the one presented by Pramesti et al. [84] involve the identification of stator failures
in induction motors using the multinomial logistic regression analysis and the Wavelet Transform
(WT). Júnior et al. [85] use a multiple linear regression modeling technique along with the analysis of
variance and the genetic algorithm optimization to obtain classification models to diagnose three-phase
induction motors under normal and short-circuit conditions. The method presents percentages of hits
greater than 95% in the diagnosis of the normal and incipient short-circuit fault condition, even at
different motor load levels. In addition to the low cost and simplicity, this method does not require
physical access to the machine because the current and voltage can be measured from the motor
control board. Thus, the probability of the occurrence of human accident is reduced significantly.
Unlike several other reported methods for fault diagnosis, the proposed approach requires few data
and only uses simulation data to construct the expert system. Seshadrinath et al. [86] propose an
algorithm based on two parts: In the first one, the optimal size of the structure of the Probabilistic
Neural Network (PNN) is determined, using an orthogonal least-squares regression algorithm. In the
second part, the fusion of a Bayesian classifier is recommended as an effective solution to diagnose
incipient interturn fault in the machine. To track the health status of a degraded system and predict
the remaining service life of a turbofan engine, Zhou et al. [87] propose a method that combines the
echo state kernel recursive least-squares algorithm and a Bayesian technique, which demonstrates an
excellent performance with respect to long-term prediction.

To obtain an effective diagnosis of faults in automotive systems, intelligent monitoring schemes
of the vehicle’s condition are needed. In this regard, Choi et al. [88] develop three new approaches
for fusion of classifiers in order to reduce the error rate. These approaches are: Joint optimization
of the fusion center and individual classifiers, class-specific Bayesian fusion, and dynamic fusion,
demonstrating that the proposed techniques surpass the individual classifiers such as PNN, k-Nearest
Neighbor (kNN), or principal components analysis. A fault detection scheme for applications in the
automotive industry is presented by Jakubek and Strasser [89]. They achieve the detection of faults
by using kernel regression techniques and a NN. The resulting network uses significantly less basis
functions than a radial basis function network with the same accuracy. Oliva et al. [90] present a
model-based approach to predict the remaining driving range by combining a particle filtering and
Markov chains by implementing detailed models of the battery, electric motor, and vehicle dynamics.
Tseng and Chau [91] and Grubwinkler and Lienkamp [92] study different methodologies for the
prediction of electric vehicle energy consumption. In particular, Tseng and Chau compare three
approaches that include (1) approaches based on driver/vehicle/environment dependent factors using
speed profile matching and driving habit matching, (2) approach of comparison with the average
using personalized adjustment, and (3) a collaborative filtering approach that uses matrix factorization;
whereas Grubwinkler and Lienkamp use the least-mean square algorithm for the prediction of the mean
energy consumption. To have a broad overview of the methodologies used in estimation strategies
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related to the battery, control, and energy management of both hybrid and electric vehicles, it is
recommended to review the work of Cuma and Koroglu [93].

In transformers, their preventive maintenance is very often emphasized. Liao et al. [94] use
least-square SVM (LS-SVM) and particle swarm optimization in order to optimize the regression
parameters for the diagnosis of transformers immersed in oil by using dissolved gases. A comparison
with back-propagation neural network, radial basis function neural network, generalized regression
neural network, and support vector regression is carried out. Advantages of the regression model
include those inherited from the support vector regression, i.e., a unique solution and support of
statistical learning theory. In the next years, the wavelet technique is fused with the LS-SVM by
Zheng et al. [95] and Zhang et al. [96] to diagnose transformers as well. From the analysis and
interpretation of the data generated by the concentration of dissolved gases, Yang and Hu [97] propose
a fault diagnosis system, which combines back-propagation NN and a multinomial logistic regression
model. Al-Janabi et al. [98] also propose a hybrid system to diagnose transformers. The proposal
is based on genetic algorithms and neural networks; in general, it provides information to identify
the exact fault in the transformer and its fault state. Fei and Zhang [99] also make use of genetic
algorithms along with SVM for fault detection in transformers. Unlike the abovementioned works,
Koley et al. [100] use the WT for the extraction of characteristics of the impulse test response of a
transformer in the time and frequency domains and the SVM in regression mode to classify transformer
faults. It should be pointed out that the SVM tool trained with only simulated data was capable
of predicting fault classes accurately when the analog data were presented to the trained SVM for
fault prediction.

For the diagnosis of faults in centrifugal pumps, Yunlong and Peng [101] present a new method
based on LS-SVM and the empirical mode decomposition. In the case of monoblock centrifugal pumps,
Sakthivel et al. [102] use a decision tree-fuzzy hybrid system. In the test dataset, the classification
accuracy was 99.3% in decision tree-fuzzy method, 97.50% in rough set-fuzzy method, and 96.67%
in case of PCA-based decision tree fuzzy method. For the same task, in [103], Muralidharan and
Sugumaran use Wavelet analysis, the Naïve Bayes (NB) algorithm, and the Bayes network algorithm.
In [104], they apply the J48 algorithm and the continuous Wavelet transform (CWT). The sym3, rbio2.6,
and coif1 mother wavelets are the most suitable for fault diagnosis of centrifugal pumps, reaching a
classification accuracy of 100%. Finally, in [105], they use the SVM and the CWT. In this case, bior3.7_17
is the wavelet that gives maximum classification accuracy (99.76%). Hence, it can be considered as
the best wavelet as it has the maximum fault discriminating capability for the system under study.
Other works that have used the WT are the systems for electric power distribution. Jamil et al. [106]
implement an algorithm based on fuzzy logic that uses the DWT to identify 10 different types of
faults in an electrical power distribution system. For high impedance fault detection in electrical
distribution networks, the WT extracts dynamic characteristics to feed a decision-making system
based on SVM [107]. The SVM is also used along with the Hilbert Huang transform to decompose
the voltages of transmission lines into intrinsic mode functions [108] for fault classification in power
systems. The main contribution of the proposed algorithm is the possibility of its application to any
transmission line, no matter the line configuration, with no need for re-training at different load values,
voltage levels, and fault resistances. In 2018, Singh and Vishwakarma [109] present a methodology to
classify cross-country faults in series-compensated double circuit transmission lines. This method is
based on EMD and three different classifiers: SVM, NB, and PNN. The effectiveness is 95% for SVM,
91.66% for Naïve-Bayes, and 96.7% for PNN, where their response times are 0.03s, 0.012s, and 0.016s
respectively. Da Silva et al. [110] apply qualitative trend analysis and NB for the diagnosis of multiple
failures in transmission lines. This hybrid diagnosis system can be generalized to deal with other types
of faults along the transmission line.
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Regarding other machines, Lin and Horng [111] use a scheme of classification and detection
of faults in an ion implanter, proposing a hybrid classification tree, i.e., they combine a grouping
algorithm with CART. They indicate that their methodology is general and can be applied to other
machines by simply modifying the warning generation criteria. For the fault detection in components
of nuclear power plants components, statistical methods have been used. Di Maio et al. [112] used a set
of auto-associative kernel regression models, a hybrid approach based on correlation analysis, a genetic
algorithm, and a sequential probability ratio test to detect faults by taking as a case study a coolant
pump of a typical pressurized water reactor. Liangyu et al. [113] propose an artificial NN combined
with optimal zoom search to recognize various degrees of failure in a high-pressure feedwater heater
system. The classification of the healthy and defective conditions of a face milling tool is done through
the acquisition of sound signals using the discrete WT (DWT) and the J48 algorithm, which is a decision
tree technique [114]. On the other hand, to detect and diagnose faults in HVAC systems, Du et al. [115]
combine NNs and clustering analysis.

Table 3 lists the works that have presented hybrid techniques for the detection of faults and
diagnosis of the abovementioned electric equipment and systems. According to the information
shown in Table 3, two different are combined on average to perform the diagnosis, where not only DM
techniques are implemented, but other signal processing algorithms are used to extract or highlight
features contained into the analyzed signals in order to simplify the fault classification task. As main
techniques, the WT and the EMD are found. While the works that use WT exploit its capability for
time frequency decomposition in a symmetric way, the works that use EMD exploit its capability
to decompose a signal in an adaptive way. In this regard, EMD has been preferred in many works
since a-priori information for the analyzed signal is not needed. From this point of view, other recent
schemes based on EMD such as down-sampling EMD [116], which is a method that provides specific
advantages over EMD, should be explored in the field of fault detection in electric equipment. WT has
been also widely used to remove the unwanted noise in an electrical signal. This noise is generated by
acquisition systems, sensors, or any electronic device. Regarding DM techniques, FLSs have presented
suitable results under noisy conditions in the input signals, since this noise is somehow compared
with the uncertainties of the input data, which is an inherent ability of FLSs.

Table 3. Summary for hybrid techniques used.

Data Mining Techniques Other Techniques Application

� Fuzzy min-max NN and CART [81,82] - � Induction motors

� ANFIS and CART [83] - � Induction motors

� Logistic regression [84] WT
� Stator winding of an

induction motor

� Multiple linear regression and genetic
algorithms [85] RMS

� Three-phase
induction motors

� PNN and orthogonal least squares
regression algorithm [86] DWT � Induction machines

� Kernel recursive least squares algorithm
and Bayesian technique [87] - � Turbofan engine

� SVM, PNN, kNN, and Principal
components analysis [88] - � Engine system
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Table 3. Cont.

Data Mining Techniques Other Techniques Application

� Kernel regression techniques and NN [89] - � Automotive industry

� Particle Filtering and Markov Chains [90] -
� Electric
� Vehicles

� Average and collaborative filtering [91] Similarity Matching � vehicle energy consumption

� Mean and least-mean square algorithm [92] - � vehicle energy consumption

� LS-SVM regression [94] Particle swarm optimization
algorithm

� Transformer

� LS-SVM [95,96] WT � Transformer

� Multinomial logistic regression and NN [97] - � Transformer

� NN and genetic algorithm [98] - � Transformer

� SVM and genetic algorithm [99] - � Transformer

� SVM in regression mode [100] WT � Transformer

� LS-SVM [101] EMD � Centrifugal pump

� Decision tree-fuzzy and rough set-fuzzy
methods [102] -

� Monoblock
centrifugal pump

� NB classifier and Bayes net classifier [103] Wavelet analysis
� Monoblock

centrifugal pump

� Decision tree [104] Wavelet analysis
� Monoblock

centrifugal pump

� SVM [105] CWT
� Monoblock

centrifugal pump

� Fuzzy logic [106] WT
� Electrical power

distribution system

� SVM [107] WT � Distribution networks

� SVM [108] EMD � Power systems

� SVM, NB and PNN [109] EMD � Transmission Lines

� Naïve Bayes [110] Qualitative trend analysis � Transmission Lines
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Table 3. Cont.

Data Mining Techniques Other Techniques Application

� CART and clustering algorithm [111] - � Ion implanter

� Auto-associative kernel regression,
correlation analysis, genetic algorithm, and
probability ratio test [112]

-
� Reactor Coolant Pump of a

typical Pressurized
Water Reactor

� NN [113] Optimal zoom search
� High-pressure feedwater

heater system

� Decision tree [114] DWT � Face milling tool

� NN and subtractive clustering analysis
[115] - � HVAC systems

3. Recent Methods for General Applications

In the literature, various articles that involve the most recent research on classification and
regression algorithms, which can be used in different areas of application, have been presented. Djeffal
et al. [117] present a method based on filtering and revision stages to delete samples that have little
influence on the learning results of a SVM, where the goal is to reduce training time without losing
accuracy. This strategy could be used for handling and reducing huge databases before the application
of any other algorithm. Zhao et al. [118] tackle the challenging problem of classification in the presence
of label noise. In this regard, they propose a Markov chain sampling framework that robustly learns
effective classifiers and accurately identifies mislabeled instances. Hwang and Son [119] propose a
prototype-based classification to select some data from a dataset for development of learning rules and
prediction, demonstrating that the proposed approach overcomes other classifiers such as the Bayes
classifier and the nearest neighbor. Regarding the Bayesian approaches, Zhang et al. [120] present a
probability density estimation approach based on the nonparametric kernel mixing model in order to
estimate reliable class-conditional probability functions; in general, the proposed Bayesian classifier
consists of three steps: Partitioning, structure learning, and estimation of probability density functions.
Zhang et al. [121] propose a learning scheme that offers a recursive algorithm to explore the distribution
of class density for the Bayesian estimation and an automated approach to select powerful discriminant
functions for the classification of high-dimensional data, while Celotto [122] proposes a unified visual
approach to compare and classify a large subset of Bayesian confirmation measures. In the work
of Becker et al. [123], analytical and approximate inference methods are discussed to calculate the
marginal probabilities of Bayes factors, providing guidance on the interpretation of results and offering
new types of analysis to study sequential data in many application areas.

Regarding regression analysis, Le et al. [124] present the geometric-based online Gaussian process
that could scale with massive datasets, guaranteeing that the proposed algorithm produces a good
enough solution (close to the optimal one) and a fast-online regression. Marx and Vreeken [125]
present an information theory-based approach using the Kolmogorov complexity and the principle of
minimum description length to provide a practical solution to the problem of inferring the direction of
causal dependence of observational data. Rudaś and Jaroszewicz [126] analyze two uplift modeling
approaches for linear regression and identify the situations in which each model works best; in fact,
they propose a third model that combines the benefits of both approaches. Liang et al. [70] propose
the model called heterogeneous-target robust mixture regression that addresses the challenges and
practical concerns of joint learning for multiple objectives/multi-tasking learning by managing mixed
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types of objectives simultaneously, imposing structural constraints on each component of the mixture
and adopting robustness strategies.

On the other hand, Chen and Guestrin [127] describe a scalable end-to-end tree boosting system
(XGBoost) and propose a new algorithm based on data dispersion providing information on cache
access patterns, data compression, and fragmentation to construct a scalable tree boosting system.
They claim that XGBoost is widely used by data scientists to achieve cutting-edge results in many
machine learning challenges. Teinemaa et al. [128] evaluate the temporal stability and prediction
accuracy of different existing predictive process monitoring methods, finding that the methods based
on the XGBoost and LSTM exhibit the highest temporal stability. In relation to NN, Baldi [129] studies
the internal and external approaches for the design of recursive neural architectures. Zhang et al. [130]
address the problems of intelligent fault diagnosis when the data at the time of training and testing
does not come from the same distribution by using domain adaptive convolutional NNs. Bouguelia
et al. [131] propose an adaptive algorithm to continuously update a system of neurons through the
extension of the growing neural gas algorithm with three complementary mechanisms, which allows
one to closely monitor the gradual and sudden changes in the distribution of data. The imbalance data
problem is addressed by Xi et al. [132]. They propose the least-squares support vector machine for
class imbalance learning by evaluating two parameters of misclassification costs; also, the Cholesky
factorization is used to enhance computational stability. In order to reduce the estimation error in
online sequential extreme learning machine systems, Lu et al. [133] present a new training approach
based on Kalman filter. Although the two last works have been applied to fault detection in aircraft
engines, they can be used in other machines.

Table 4 shows a compendium of the abovementioned methods. They are grouped by year in order
to show their chronological appearance and highlight which ones are the latest algorithms or strategies
proposed in the literature to solve DM issues or improve DM tasks. As these methods can address
general applications, it is recommended their research and integration in fault detection methodologies
of electric equipment and systems. For instance, the least-squares SVM is useful for imbalance data, i.e.,
when there is a disproportionate ratio of observations in each class, and the Markov chain sampling is
a useful tool for mislabel data.

Table 4. Recent methods for general applications.

Year Methods Usage

2016

Naïve Bayes and feature weighting approaches [121] � High-dimensional massive data classification

Visual approach to represent Bayesian confirmation
measures (BCMs) [122]

� Visualize the behavior and symmetry properties of BCMs

XGBoost [127] � Scalable machine learning system for tree boosting

2017

Covering-based samples reduction [117] � Fast binary support vector machine learning method

MixedTrails, a Bayesian approach [123] � Types of analysis to study sequential data

Geometric-based Online Gaussian Process for fast
regression [124]

� Handling of large-scale datasets

Kolmogorov complexity and use the Minimum
Description Length [125]

� Solution to the problem of inferring the direction of
causal dependence of observational data

Recursive neural architectures [129]
� Design of recursive architectures for numerical data of

variable size
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Table 4. Cont.

Year Methods Usage

2018

Heterogeneous-target robust mixture regression
(HERMIT) [70]

� Handling of heterogeneous data

Markov chain sampling [118] � Classification of data in presence of label noise

Prototype-based classification [119]
� Learning and prediction based on the selection of

handfuls of class data

Kernel mixture model [120] � Probability density estimation in Bayesian classifiers

Linear regression [126] � Uplift modeling

Random forest, XGBoost, and LSTM [128]
� Analysis of temporal stability and accuracy for

binary classification

Convolutional NN [130]
� Intelligent fault diagnosis when the data at training and

testing time does not come from the same distribution

Growing Neural Gas Algorithm [131] � Adaptive algorithm got evolving data streams

2019

Least squares support vector machine [132] � Imbalance of data

Logistic regression and Kalman filter [133]
� Estimation error reduction in online sequential extreme

learning machine systems

4. Conclusions

The development of efficient and reliable methodologies represents an extremely important task
for researchers and developers of diagnosis systems; in order to contribute to the solution of this task,
DM techniques have been widely used. To offer the reader an overview of DM techniques used in
the detection of faults and diagnosis of electrical equipment and systems in recent years, this paper
provides a general review that can facilitate informed decision-making for specific applications. All the
details and results obtained by the authors cited here can be consulted directly from the bibliography
of each research.

Although certain techniques have been constantly used for specific applications, e.g., SVMs in
transformers, the selection of an appropriate DM technique for either classification or regression will
depend on many factors, e.g., monitoring technology, features of data, and knowledge about the in-test
system operation. However, it is important to take into account that the more complex and robust the
systems, the greater the amount and variety of data produced, and the more difficult the detection of
faults and the diagnosis. Additionally, the researcher has to be informed about the features of specific
DM algorithms so that, through its implementation, the information contained in the acquired data
can be exploited.

It is extremely difficult for a single technique to detect the full range of faults of a system in
a 100% reliable way. Each method has its own strengths and weaknesses. Outputs from various
diagnostic methods must be aggregated into an overall evaluation system; thus, instead of using one
diagnostic method, intelligent hybrid methods that combine the strengths of each method can be
developed. In the literature, there are many articles using hybrid techniques in order to increase the
percentage of efficiency, accuracy, reliability, and speed of their models. On the one hand, different
signal processing techniques have been used for pre-processing of data. This pre-processing allows
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highlighting and extracting information from raw data. Typical operations are denoising, frequency
or mode decomposition, and space transformation, where the WT- and EMD-based methods have
demonstrated promising results. On the other hand, the combination of different DT algorithms has
been also explored in order to take advantage of their individual benefits. Wu et al. [134] present
an important analysis on the 10 most influential DM algorithms in the research community, being
C4.5, CART, PageRank, k-Means, kNN, Apriori, AdaBoost, Expectation-Maximization, NB, and SVM.
It should be noted that these algorithms cover statistical learning, classification, clustering, link mining,
and association analysis. Despite obtaining promising results in many works and having knowledge
about both the in-test system and analyzed data, it is difficult or impossible to conceive a perfect
algorithm in terms of accuracy, velocity, or complexity for specific applications, mainly considering
that even similar applications can have many different requirements; in this regard, the design and
development of new algorithms and methods are still of paramount importance.

Also, special attention has to be given to equipment related to renewable energy sources such as
wind turbines, photovoltaic systems, power converters, energy storage systems, among others, due to
their rapid development and growth [135,136]. For instance, the void defects evolving into damage
in wind turbine blades are investigated in [137]. The improvement of photovoltaic and wind power
storage systems based on the prediction of battery life and its faults using SVMs is presented in [138];
in these systems, the correct operation of batteries is fundamental. It is clear that all the elements of a
system are important and the research of specialized fault detection methodologies for the individual
elements and the system as a whole are critical for the maintenance and repair of the system.

Some recommended directions for future research are: (i) Fusion and analysis of multiple
physical variables as source of information of a specific equipment, (ii) exploration and integration
of recent algorithms to improve the quality of data before the application of a DT-based algorithm,
(iii) development of practical hardware solutions for online and real-time fault diagnosis, and (iv)
detection of incipient faults.
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