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Abstract: This paper investigates the dynamic buckling of bi-directional (BD) functionally graded (FG)
porous cylindrical shells for various boundary conditions, where the FG material is modeled by means
of power law functions with even and uneven porosity distributions of ceramic and metal phases.
The third-order shear deformation theory (TSDT) is adopted to derive the governing equations of
the problem via the Hamilton’s principle. The generalized differential quadrature (GDQ) method is
applied together with the Bolotin scheme as numerical strategy to solve the problem, and to draw the
dynamic instability region (DIR) of the structure. A large parametric study examines the effect of
different boundary conditions at the extremities of the cylindrical shell, as well as the sensitivity of
the dynamic stability to different thickness-to-radius ratios, length-to-radius ratios, transverse and
longitudinal power indexes, porosity volume fractions, and elastic foundation constants. Based on
results, the dynamic stability of BD-FG cylindrical shells can be controlled efficiently by selecting
appropriate power indexes along the desired directions. Furthermore, the DIR is highly sensitive
to the porosity distribution and to the extent of transverse and longitudinal power indexes. The
numerical results could be of great interest for many practical applications, as civil, mechanical or
aerospace engineering, as well as for energy devices or biomedical systems.

Keywords: bi-directional functionally graded; bolotin scheme; dynamic stability; elastic
foundation; porosity

1. Introduction

Circular cylindrical shells have an essential role in various fields of engineering applications
such as aircraft, pressure vessels, gas turbines, and many other industrial purposes because of their
excellent performance. Due to the advancement of the knowledge and technology, in recent years a
new category of materials with interesting properties, named as functionally graded materials (FGMs)
has been successfully applied. Conventional types of these materials are made of two or more different
constituent phases, namely, the ceramic and metal phases, which are distributed gradually according
some fixed functions. Since FGMs have some extraordinary properties, namely, a high temperature and
a corrosion resistance, as well as an improved residual stress distribution, they are widely studied in
many field of the applied sciences and they are adopted as structural components in military, medical,
or aerospace industries, as well as in power plants or vessels. Thus, due to their special privileges in
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comparison with traditional materials, most industries make effort to exert such materials in lieu of
ordinary ones [1–4].

A large number of studies in literature has focused on the thermo-mechanical and buckling
behavior of FGMs for shell and plate structures. In this context, only some research works associated
with FG cylindrical shells will be reviewed here, in line with the perspective developed in the present
work. Du et al. [5] investigated the nonlinear forced vibration response of FG cylindrical thin shells,
and used the perturbation method and the numerical Poincaré maps to solve the governing equations
of the problem. Rahimi et al. [6] studied the vibration of FG cylindrical shells with ring supports. It
was found that symmetric and asymmetric boundary conditions affect significantly the vibrations of
the structure, with a general increase or decrease, respectively. In a recent work, Ghasemi et al. [7]
have studied the agglomeration effect of FG hybrid single-walled carbon nanotubes on the vibration
of hybrid laminated cylindrical shell structures. Bich et al. [8] performed the nonlinear static and
dynamic buckling of imperfect eccentrically stiffened FG thin circular cylindrical shells subjected
to an axial compression. Beni et al. [9] presented a novel formulation based on a modified couple
stress theory to study simply supported FG circular cylindrical shells in the framework of thin shell
structures, whereby the vibration behavior based on a classical continuum was found to be quite
unaffected by the length scale parameters. Da Silva et al. [10] studied the nonlinear vibrations of a
simply supported fluid-filled FG cylindrical shell subjected to a lateral time-dependent load and an
axial static preloading condition. Bich and Nguyen [11] applied the displacement method to study the
nonlinear vibration of FG circular cylindrical shells subjected to an axial and transverse mechanical
loading. Ghannad et al. [12] introduced an analytical solution for the deformation and stress response
of axisymmetric clamped–clamped thick FG cylindrical shells with variable thickness, while applying
the first-order shear deformation theory and the perturbation theory, based on the Donnell’s nonlinear
large deflection theory. To date, many analytical and numerical approaches have been proposed in
literature to handle simple and coupled vibration problems of cylindrical shell structures, including
thermo-elastic, piezoelectric, and thermo-piezoelectric multi-field problems (see refs. [13–27], among
others). As far as FGMs are concerned, many recent studies about the free vibration and buckling
response of conventional and bi-directional FG cylindrical shells have been recently performed in
literature [28–33]. A key point of the static and dynamic response of FG shell structures is related to the
presence of porosities, which can form during a fabrication process, with possible effects on the global
structural response. Indeed, an increasing attention to this aspect has been devoted in the scientific
community for a correct interpretation of the mechanical performances of FG materials and structures.
For example, in a recent work, Kiran and Kattimani [34] assessed the possible effect of porosity on the
vibration behavior and static response of FG magneto-electro-elastic plates, with a clear reduction of
the natural frequencies for an increased porosity within the material. In another study, Kiran et al. [35]
analyzed the effect of porosity on the structural behavior of skew FG magneto-electro-elastic plates.
Barati et al. [36] performed the buckling analysis of higher order graded smart piezoelectric plates with
porosities resting on an elastic foundation. It was found that the buckling behavior of piezoelectric
plates is significantly influenced by the porosity distribution. In the further works by Wang et al. [37,38],
the authors studied the vibration response of longitudinally traveling FG plates with porosities [37]
while considering the thermo-mechanical coupled response in [38]. A similar free vibration problem
was studied in [39,40] for FG cylindrical shells, by means of the sinusoidal shear deformation theory
and the Rayleigh–Ritz method, accounting for the possible presence of defects and porosities. In the
context of nanomaterials and nanostructures, some modified couple stress theories have been recently
proposed as efficient theoretical tools to study their coupled thermomechanical vibration behavior,
also in presence of different levels of porosity, see [41–47], among others.

Up to date, however, there is a general lack of works in literature focusing on the dynamic
buckling response of bi-directional (BD)-FG cylindrical shell embedded in a Winkler–Pasternak
foundation, including the simultaneous effect of porosity. To this end, we propose the third-order
shear deformation theory (TSDT) to model the cylindrical shells with porosities, subjected to an axial
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compressive excitation. The Hamilton’s principle will be employed to determine the governing partial
equations of motion, whereby the generalized differential quadrature (GDQ) method is adopted to
solve the problem together with the associated boundary conditions into a system of Mathieu–Hill
equations. Afterward, the Bolotin method is employed to determine the boundaries of the dynamic
instability region (DIR) of BD-FG cylindrical shells. A systematic study focuses on the sensitivity of the
dynamic stability behavior to different dimensionless ratios, i.e., the thickness-to-radius ratio, or the
length-to-radius ratio, as well as to different boundary conditions, transverse and longitudinal power
indexes, porosity volume fractions and foundation constants. The paper is organized as follows. In
Section 2 we determine the governing equations of the problem for porous BD-FG cylindrical shells,
which are solved numerically according to the GDQ and Bolotin methods, as detailed in Section 3.
Section 4 aims at validating the proposed approach and shows the main results from a broad numerical
investigation, whereas the final remarks are discussed in Section 5.

2. Governing Equations of the Problem

Let us consider a BD-FG porous cylindrical shell embedded in an elastic foundation with thickness
h, radius R, and length L, where two different porosity distributions of the constituent phases are
accounted for the analysis, namely an even and an uneven distribution, see Figures 1 and 2. We assume
a BD-FG material made of a metal (labeled as m) and a ceramic (labeled as c) in the inner and outer shell
surfaces, respectively. While the material properties for a conventional FG model vary continuously
along the thickness direction from a ceramic or metal to another one, the basic material properties
selected herein, vary also along the shell length from the metal to the ceramic phase. To this end, the
volume fractions of the ceramic and metal phases are defined as follows

Vc(x, z) =
(1

2
+

z
h

)nz(x
L

)nx
, Vm(x, z) = 1−Vc(x, z), (1)

where nz and nx refer to the non-negative volume fraction exponents defining the profile variation of
the material properties along the shell thickness and length directions, respectively. In addition, z and x
stand for the radial distance from the mid-plane and longitudinal distance from the origin of the BD-FG
cylindrical shell, respectively. The effective material properties (i.e., Yong’s modulus, density and
Poisson’s ratio) of the BD-FG porous cylindrical shell are assumed to change according to a modified
power law model with a linear algebraic combination of volume fractions of two basic materials. Two
types of BD-FG material models include both even and/or uneven porosity distributions, i.e.,
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for an uneven distribution. In the all the expression (2) and (3), ζ and ξ denote the volume fraction of an
even or uneven porosity inside the phases, respectively. While an even model accounts for porosities
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evenly distributed across the radial direction, the porosities in an uneven model is mostly concentrated
in the shell mid-plane. It is worth noting that the uneven porosity distribution is linearly reduced from
a larger value at mid-plane to a smaller value at the top and bottom sides of the structure.
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In what follows, we apply the TSDT, such that the displacement field of an arbitrary point of the
shell along the x, y, and z axes, is defined as

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t) − cz3
(
ϕx(x, y, t) + ∂w0(x,y,t)

∂x

)
,

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) − cz3
(
ϕy(x, y, t) + ∂w0(x,y,t)

∂y

)
,

w(x, y, z, t) = w0(x, y, t),

(4)

where c = 4
3h2 , and u, v, w stand for the longitudinal, circumferential, and transverse (radial)

displacement components, respectively. These are determined, in turn, by means of the kinematic
quantities u0, v0, and w0 at the middle surface, and the rotations ϕx and ϕy of a transverse normal
section about the x and y axis, respectively.

According to the TSDT, the strain components of the cylindrical shell can be written as [48]

εxx =
∂u0(x, y, t)

∂x
+ z

∂ϕx(x, y, t)
∂x

− cz3
(
∂ϕx(x, y, t)

∂x
+
∂2w0(x, y, t)

∂x2

)
, (5a)
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εyy =
∂v0(x, y, t)

∂y
+ z

∂ϕy(x, y, t)
∂y

− cz3
(
∂ϕy(x, y, t)

∂y
+
∂2w0(x, y, t)

∂y2

)
+

w
R

, (5b)
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∂x + z
(
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)
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(
∂ϕx(x,y,t)
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∂ϕy(x,y,t)

∂x + 2∂
2w0(x,y,t)
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)
,

(5c)

γxz = ϕx(x, y, t) − 2cz2
(
ϕx(x, y, t) +

∂w0(x, y, t)
∂x

)
+
∂w0(x, y, t)

∂x
, (5d)

γyz = ϕy(x, y, t) − 2cz2
(
ϕy(x, y, t) +

∂w0(x, y, t)
∂y

)
+
∂w0(x, y, t)

∂y
, (5e)

which are related to the stress components as follows

σxx

σyy
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σxy
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=
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Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66





εxx

εyy

εxz

εyz

εxy


, (6)

where the stiffness Qi j is defined as

Q11(x, z) = Q22(x, z) = E(x,z)
1−(ν(x,z))2 , Q12(x, z) = Q21(x, z) = ν(x, z)Q11(x, z),

Q44(x, z) = Q55(x, z) = Q66(x, z) = E(x,z)
2(1+ν(x,z)) .

(7)

The strain energy of the BD-FG porous cylindrical shell is expressed as follow

ΠS =
1
2

L∫
0

2πR∫
0

h
2∫

−
h
2

(σxxεxx+σyyεyy + τxyγxy + τxzγxz +τyzγyz
)
dzdydx, (8)

and the kinetic energy of the cylindrical shell reads

ΠT =
1
2

L∫
0

2πR∫
0

h
2∫

−
h
2

ρ(x, z)

(∂u(x, y, z, t)
∂t

)2

+

(
∂v(x, y, z, t)

∂t

)2

+

(
∂w(x, y, z, t)

∂t

)2dzdydx. (9)

The total potential energy corresponding to the axial compressive load Fa(t) together with the
Winkler and/or Pasternak elastic foundation, can be written as follow

ΠE =
1
2

L∫
0

2πR∫
0

h
2∫

−
h
2

(
kww0

2+kg

(∂w0

∂x

)2

+

(
∂w0

∂y

)2+Fa(t)
(
∂w0

∂x

)2dzdydx, (10)

where kw and kg refer to the Winkler foundation stiffness and shear layer stiffness of the elastic
foundation, respectively.
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Consistently with the Hamilton’s principle, the following governing equations of motion for the
BD-FG cylindrical shell are determined

t2∫
t1

(δΠT − δΠS − δΠE)dt = 0, (11)

where the symbol δ denotes the variation of the energy quantities. By combination of Equations (8)–(10)
and Equation (11), after integration by parts, we get the following governing equations of motion,
under the assumption of a null value for u0, v0, w0, ϕx, and ϕy.

∂Nxx

∂x
+
∂Nxy

∂y
= I0(x)

∂2u0(x, y, t)
∂t2 + (I0(x) − cI3(x))

∂2ϕx(x, y, t)
∂t2 − cI3(x)

∂3w0

∂x∂t2 , (12a)

∂Nxy

∂y
+
∂Ny

∂y
= I0(x)

∂2v0(x, y, t)
∂t2 + (I0(x) − cI3(x))

∂2ϕy(x, y, t)

∂t2 − cI3(x)
∂3w0(x, y, t)

∂y∂t2 , (12b)

∂Qxz
∂x +

∂Qxy
∂y − 3c

(
∂Rxz
∂x +

∂Rxy
∂y

)
+ c

(
∂2Pxx
∂x2 + 2

∂2Pxy
∂x∂y +

∂2Pyy

∂y2

)
−

Nyy
R

−kww0(x, y, t) + kg

(
∂2w0(x,y,t)

∂x2 +
∂2w0(x,y,t)

∂y2

)
+ Fa

∂2w0(x,y,t)
∂x2 = I0(x)

∂2w0(x,y,t)
∂t2

−c2I6(x)
(
∂4w0(x,y,t)
∂x2∂t2 +

∂4w0(x,y,t)
∂y2∂t2

)
+ cI3(x)

(
∂3u0(x,y,t)
∂x∂t2 +

∂3v0(x,y,t)
∂y∂t2

)
+c(I4(x) − cI6(x))

(
∂3ϕx(x,y,t)
∂x∂t2 +

∂3ϕy(x,y,t)
∂y∂t2

)
,

(12c)

∂Mxx
∂x +

∂Mxy
∂y −Qxz + 3cRxz − c

(
∂Pxx
∂x +

∂Pxy
∂y

)
= (I0(x) − cI3(x))

∂2u0(x,y,t)
∂t2

+
(
I2(x) − 2cI4(x) + c2I6(x)

)∂2ϕx(x,y,t)
∂t2

−c(I4(x) − cI6(x))
∂3w0(x,y,t)
∂x∂t2 ,

(12d)

∂Myy
∂y +

∂Mxy
∂x −Qyz + 3cRyz − c

(
∂Pyy
∂y +

∂Pxy
∂x

)
= (I0(x) − cI3(x))

∂2v0(x,y,t)
∂t2

+
(
I2(x) − 2cI4(x) + c2I6(x)

)∂2ϕy(x,y,t)
∂t2

−c(I4(x) − cI6(x))
∂3w0(x,y,t)
∂y∂t2 ,

(12e)

Note that the resultants in Equation (12) are computed by integration of the pertaining stress
components along the shell structure, i.e.,


Nxx

Nyy

Nxy
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h
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−
h
2
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σyy

τxy

dz, (13)


Mxx

Myy

Mxy

 =

h
2∫

−
h
2


σxx

σyy

τxy

zdz, (14)


Pxx

Pyy

Pxy

 =

h
2∫

−
h
2


σxx

σyy

τxy

z3dz, (15)
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{
Qxz

Qyz

}
=

h
2∫

−
h
2

{
τxz

τyz

}
dz, (16)

{
Rxz

Ryz

}
=

h
2∫

−
h
2

{
τxz

τyz

}
z2dz. (17)

The generalized inertia moments are defined as

(I0(x), I1(x), I2(x), I4(x), I5(x), I6(x)) =

h
2∫

−
h
2

(
1, z, z2, z3, z4, z6

)
ρ(x, z)dz. (18)

Three types of boundary conditions are considered along the shell edges, namely

â Simply-Simply (S-S) supports

x = 0, L ⇒ v0 = w0 = ϕy = Mx = Nx = 0, (19)

â Clamped-Clamped (C-C) supports

x = 0 , L ⇒ u0 = v0 = w0 = ϕx = ϕy = 0, (20)

â Clamped-simply (C-S) supports

x = 0⇒ u0 = v0 = w0 = ϕx = ϕy = 0, (21a)

x = L⇒ v0 = w0 = ϕy = Mx = Nx = 0, (21b)

3. Solution Procedure

In this section, we want to determine the dynamic stability of BD-FG porous cylindrical shells,
where the governing equations of motion are expressed through the following expansion for the
kinematic quantities

u0(x, y, t) = U(x) sin
(
n

y
R

)
U(t) (22a)

v0(x, y, t) = V(x) cos
(
n

y
R

)
V(t) (22b)

w0(x, y, t) = W(x) sin
(
n

y
R

)
W(t) (22c)

ϕx(x, y, t) = Φx(x) sin
(
n

y
R

)
Φx(t) (22d)

ϕy(x, y, t) = Φy(x) cos
(
n

y
R

)
Φy(t) (22e)

where n is the circumferential half wave number, U(t), V(t), W(t), Φx(t) and Φy(t) are the time
functions. The admissible displacement functions in Equation (22) satisfy both the equations of motion
and their boundary conditions. Afterward, the governing equations of the problem are discretized
according to the GDQ method.

Upon substitution of Equation (22a–e) and Equation (5a–e) into Equation (12), after a proper
manipulation, we obtain the equations of motion in their final form, as detailed in Appendix A.
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The above-mentioned equations of motion are solved numerically in a strong form by means of
the GDQ method, as largely discussed in [49] and in a review paper [50] in terms of accuracy, stability
and reliability, and successfully applied for many numerical applications, namely, the buckling, free
vibration, or dynamic problems of composite structures [51–55], as well as the fracture mechanics
problems [56,57] or non-linear transient problems [58,59]. In addition, the Bolotin method [60] is
proposed herein to determine the DIRs for the differential equations system, known as Mathieu–Hill
system of equations. More details about the basics of the proposed numerical tools are recalled in
what follows.

3.1. The GDQ Method

The GDQ method approximates the fundamental system of differential equations, by discretizing
the derivatives of a function J(x) respect to a spatial variable at a given discrete grid distribution, by
means of the weighting coefficients. For a one-dimensional problem where the whole domain 0 ≤ x ≤ L
is discretized in N grids points, the approximation of the nth-order derivatives of J function respect to
x variable can be expressed as [49]

dn J
(
xp

)
dxn =

N∑
r=1

χ
(n)
pr J(xr) n = 1, 2, . . . , N − 1, (29)

χ
(n)
pr being the weighting coefficients, defined as follows [49]

χ
(1)
pq =

Υ
(
xp

)(
xp − xq

)
Υ
(
xq

) , p , q; p, q = 1, 2, . . . , N (30)

and Υ
(
xp

)
is the Lagrangian operator expressed as [49]

Υ
(
xp

)
=

N∏
p,q, q=1

(
xp − xq

)
. (31)

For higher order derivatives of the weighting coefficients it is [49]

χ
(n)
pq = n

χ(n−1)
pp χ

(1)
pq −

χ
(n−1)
pq(

xp − xq
)  (32)

It is well known in literature that the type of grid distribution within the domain can
affect significantly the accuracy of the proposed method [50]. In what follows we apply a
Chebyshev–Gauss–Lobatto non-uniform pattern, due to its great performances, as verified by Shu [49]

xp =
L
2

(
1− cos

(
xp − 1
N − 1

)
π

)
p = 1, 2, . . . , N. (33)

Thus, the governing differential equations of motion and boundary conditions are discretized
according to the GDQ approach, as detailed in Appendix B. Let us denote the periodic axial compressive
load as

Fa(t) = αFcr + βFcr cos(ωt) (34)

where α and β refer to the static and dynamic load factors, respectively. Furthermore, Fcr denotes the
critical static load and ω stands for the excitation frequency. By substituting Equation (34) into the
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third Equation (A3) from the Appendix A, and by combining the discretized equations of motion along
with the associated boundary conditions, the problem can be redefined in the following matrix form(

Mbb Mbd
Mdb Mdd

)
..
Γb..
Γd

+

((
Kbb Kbd
Kdb Kdd

)
+ Fcr(α+ β cos(ωt))

(
KG

bb KG
bd

KG
db KG

dd

)){
Γb
Γd

}
=

(
0
0

)
(35)

where M, K, and KG are the mass, stiffness, and geometric stiffness matrixes, respectively, and

Γ =
{
U, V, W, Φx, Φy

}T
denotes the unknown dynamic displacement vector. In addition, indexes b and

d indicate the boundary points and domain points, respectively.

3.2. Bolotin Method

The second order system of differential Equation (35) is known in literature as Mathieu–Hill
system of equations due to presence of the periodic coefficient, accordingly. In the present study we
propose the Bolotin method [60] to define the boundaries associated to the DIR of the BD-FG porous
cylindrical shell. Based on this method, the dynamic displacement vector Γ can be defined in a Fourier
series as follows [60]

{Γ} =
∞∑

s=1,3,...

(
{ϑs} sin

( sωt
2

)
+ {υs} cos

( sωt
2

))
, (36)

where ϑs and υs denote the arbitrary time invariant vectors. It should be mentioned that the first DIR
with period 2T is generally much meaningful and wider than the secondary one with period T. For
this reason, in this work we consider the solutions with period 2T. By substitution of Equation (36)
into Equation (35) and by mathematical manipulation, we get the following first order equation∣∣∣∣∣∣[K] − Fcr

(
α±

β

2

)[
KG

]
−
ω2

4
[M]

∣∣∣∣∣∣ = 0, (37)

which represents a classical eigenvalue problem. The critical buckling load can be computed from
Equation (35) by neglecting the inertia terms and by setting α + β cos(ωt) = 1. Then, solving
Equation (37) for some fixed values of α and Fcr, the variation of the excitation frequency ω in regards
to β can be drawn as DIR for the BD-FG structure.

4. Numerical Investigation

In this section some illustrative example are shown, starting with a preliminary validation of the
proposed method with respect to the available literature, and continuing with a parametric investigation
of the problem, whose results are evaluated comparatively in order to evaluate the sensitivity of the
mechanical response.

4.1. Validation

Due to the general lack of works in the literature on the dynamic buckling behavior of BD-FG
porous cylindrical shells, the proposed model is validated, herein, for an axial buckling problem
of a simply supported conventional FG cylindrical shell based on two different theories. Thus, for
comparative purposes, we select the same material properties and shell geometry as reported in [48,61],
and neglect the inertia terms, foundation parameters and porosity effects, while assuming a null
value for nx. In Table 1 we summarize the results in terms of critical axial buckling load Fcr for a FG
cylindrical shell with h = 0.001 m, L/R = 0.5, Ec = 380 GPa, Em = 70 GPa, ν = 0.3, c = 0, with a
clear excellent agreement between our results and predictions in Ref. [61] based on the first order
shear deformation theory. This first numerical example could be considered as limit case, where the
TSDT reverts to the FSDT, since it refers to a thin shell structure, just for validation purposes. More
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accurate results, however, are always expected under a TSDT assumption for increased values of the
shell thickness, as done in the next parametric investigation.

Table 1. Comparative evaluation of the critical axial buckling load (MN) for a FG cylindrical shell with
h = 0.001 m, L/R = 0.5, Ec = 380 GPa, Em = 70 GPa, ν = 0.3, nx = 0.

R/h Khazaeinejad and Najafizadeh [61] Present

5 Alumina 1.598 (1,1) 1.5975
nz = 1 0.853 (1,1) 0.8532
nz = 2 0.662 (1,1) 0.6624
nz = 5 0.520 (1,1) 0.5197

nz = 10 0.450 (1,1) 0.4500
Aluminum 0.294 (1,1) 0.2942

10 Alumina 1.403 (1,1) 1.4029
nz = 1 0.759 (1,1) 0.7589
nz = 2 0.589 (1,1) 0.5885
nz = 5 0.456 (1,1) 0.4557
nz = 10 0.393 (1,1) 0.3931

Aluminum 0.258 (1,1) 0.2584

20 Alumina 1.594 (1,1) 1.5936
nz = 1 0.903 (1,1) 0.9029
nz = 2 0.698 (1,1) 0.6977
nz = 5 0.514 (1,1) 0.5140

nz = 10 0.430 (1,1) 0.4295
Aluminum 0.293 (1,1) 0.2935

30 Alumina 1.566 (2,1) 1.5664
nz = 1 0.826 (2,1) 0.8262
nz = 2 0.642 (2,1) 0.6419
nz = 5 0.511 (2,1) 0.5108

nz = 10 0.449 (2,1) 0.4486
Aluminum 0.289 (2,1) 0.2885

100 Alumina 1.443 (3,1) 1.4428
nz = 1 0.782 (3,1) 0.7822
nz = 2 0.606 (3,1) 0.6064
nz = 5 0.469 (3,1) 0.4681

nz = 10 0.404 (3,1) 0.4008
Aluminum 0.266 (3,1) 0.2657

300 Alumina 1.443 (5,1) 1.4431
nz = 1 0.787 (5,1) 0.7841
nz = 2 0.610 (5,1) 0.6079
nz = 5 0.468 (5,1) 0.4683

nz = 10 0.402 (5,1) 0.4017
Aluminum 0.266 (5,1) 0.2658

As further comparative study, Table 2 compares the dimensionless critical buckling load (Pcr =

FcrL2/π2Dm; Dm = Emh3/12
(
1− ν2

m

)
) for a FG cylindrical shell with h = 0.001 m, Ec = 380 GPa,

Em = 70 GPa, ν = 0.3, c = 4/3h2. Based on Table 2, it is worth noticing the high precision between our
results and predictions by Bagherizadeh et al. [48], which confirms the accuracy of the GDQ method.
This method is thus proposed in the following parametric study, as efficient numerical tool to solve
the problem.
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Table 2. Comparative evaluation of the dimensionless critical axial buckling load for a FG cylindrical
shell with h = 0.001 m, Em = 70 GPa, ν = 0.3, nz = 2.

Z h/R Bagherizadeh et al. [48] Present

50 0.01 79.9296 (4,5) 79.9295
0.025 79.48684 (4,3) 79.4868
0.05 78.79842 (4,3) 78.7984

300 0.01 479.5066 (10,5) 479.5065
0.025 476.3834 (10,3) 476.3834
0.05 470.8775 (11,1) 470.8775

900 0.01 1438.157 (18,3) 1438.1576
0.025 1428.611 (18,2) 1428.6108
0.05 1412.380 (19,1) 1412.3802

4.2. Parametric Study

We refer to a BD-FG cylindrical structure with constituent phases of properties listed in Table 3,
where the following dimensionless parameters are considered to compute the dimensionless structural
excitation frequencies

Ω = ωR
√
ρm

Em
, Kg =

kgR2

Emh3 , Kw =
kwR4

Emh3 . (38)

Table 3. Material properties of the BD-FG cylindrical shell.

Constituent Phases Materi
Properties

E (GPa) ρ (Kg/m3) ν

c SiC 427 3100 0.17
m Al 70 2702 0.3

We determine the DIR, and highlight the effects of different parameters such as the
thickness-to-radius ratio (h/R), the length-to-radius ratio (L/R), the static load factor, the boundary
conditions, the power law indexes (nx,nz), the type and volume fraction of porosity, and the foundation
parameters, on the dynamic buckling behavior of the BD-FG cylindrical shell.

In Figure 3 we plot the variation of the DIR for different thickness-to-radius ratios (h/R), where a
clear shift of the DIR is observed for increasing h/R ratios. This means that the DIR becomes wider for
a certain value of the dynamic load factor, and occurs with a sort of delay. An increased h/R ratio from
0.01 to 0.1 yields a global shift of the DIR origin point towards high excitation frequencies.

Figure 4 shows the sensitivity of the DIR for varying L/R ratios, while keeping fixed h/R = 0.01.
In detail, for L/R = 1 the structure has a wider DIR in comparison with the other values, whereby an
increasing L/R ratio yields the DIR to take place at lower excitation frequencies. Based on the plots in
Figure 4, we can observe a reduction of about 41.96% in the excitation frequencies corresponding to the
origin of the instability region, for a L/R ranging between 1 and 10. When the L/R ratio features higher
magnitudes, the bending resistance gradually reduces and yields an increased bending deformation.
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Figure 4. Effect of the length-to-radius ratio on the DIR for a BD-FG cylindrical shell with R = 0.5 m,
h/R = 0.02, nx = nz = 1, α = 0.3.

In Figure 5, we evaluate the effect of the static load factor on the instability region of the BD-FG
cylindrical shell. As expected, in absence of a static load on the structure, the width of DIR gets smaller,
whereby for an increased static load factor, it becomes gradually greater for a fixed value of dynamic
load factor (i.e., β = 1), and its origin tends to move on the left side. This proves the sensitivity of the
structural instability to the static load factor.
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As also visible in Figure 6, we evaluate the impact of different boundary conditions on the DIR of
the cylindrical shell. Here, we consider three different boundary conditions, namely, S-S, C-S, and
C-C boundary conditions. Based on the plots of Figure 7, it is worth noting that a C-C boundary
conditions yields higher values of the dimensionless excitation frequencies than those ones provided
by a S-S or C-S supports, due to an increased stiffness of the structure. Furthermore, the origin of
the instability region tends to get away from the origin. Once the dynamic load factor β reaches
the unit value, the width of the DIR for S-S boundary condition becomes smaller, compared to the
other boundary conditions. This means that, for lower values of dimensionless excitation frequency,
a BD-FG cylindrical shell with S-S supports tends to become more unstable compared to the other
boundary conditions.
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A further investigation is devoted to study the influence of the power law index along the length
nx on the dynamic buckling behavior of one-directional FG cylindrical shell, as depicted Figure 7. In
such a case, the DIR takes place at lower frequencies owning to an increased magnitude of the power
law index. The effect of an increased dimensionless excitation frequency related to the origin of the
DIR is meaningful within the range 0.2 ≤ nx ≤ 5. For greater values of nx, the variation in frequency
corresponding to the origin of DIR becomes less remarkable. A one-directional FG cylindrical shell
with nx = 10 or nx = 8 is more sensitive to the dynamic instability for lower excitation frequencies
compared with those ones with nx ≤ 5.

For a conventional FG cylindrical shell, we also investigate the effect of the transverse power
index nz on the DIR, as plotted in Figure 8. It can be mentioned that for a constant value of the dynamic
load factor, the enhancement of nz yields a reduction width of the dynamic instability region, especially
for lower excitation frequencies. In addition, the origin DIR moves to a lower dimensionless excitation
frequency. Comparing the results from Figures 7 and 8, it can be concluded that, a double increase of
both nx, and nz, leads to a reduction in the excitation frequency. Nevertheless, nx plays an important
role in the reduction of the excitation frequency and in the increase of the structural instability. For
β = 0, for example, we note a reduction of the excitation frequency equal to 49.3% and 44.49%, for and
increasing value of nx and nz from 0.2 up to 10, respectively.

Figure 9 shows the effect of the transverse and longitudinal volume fraction indexes on the DIR.
In detail, for an increase of these two parameters, the origin of DIR moves to higher dimensionless
excitation frequency, and the DIR width declines. In conclusion, the double increase of nx and nz

leads a metal phase reinforcement, with a overall decrease of the structural stiffness and an increase in
the structural instability. BD-FG cylindrical shells with lower values of nz and nx, are less sensitive
to the dynamic instability, due to their higher stiffness. The contrary occurs for higher values of
nx and nz due to an increased deformability of the structure. The importance of applying BD-FG
materials is highlighted when the variation of material properties is considered in a single direction or
more directions simultaneously. This issue can be beneficial for the fabrication and design purposes
of modern FG structures. Subsequently, the dynamic stability of BD-FG cylindrical shells can be
controlled selecting appropriate power indexes corresponding to the desired direction.
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Moreover, Figure 10 shows the effect of an even porosity volume fraction on the dimensionless
excitation frequency of a BD-FG porous cylindrical shell. Note that the dimensionless excitation
frequency decreases for increasing values of nx and nz. In addition, for a fixed value of nx, nz, the
excitation frequency tends to converge to a common point. As expected, at the intersection point,
the effect of an even porosity volume fraction, ζ, on the dimensionless excitation frequency is almost
negligible. However, for different values of nx, nz, the effect of even porosity between the ceramic
and metal phases can change significantly, such that before the intersection point, an increased even
porosity volume fraction increases the dimensionless excitation frequency, and the contrary occurs
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after the intersection point, with a gradual decrease in the excitation frequency for an enhanced ζ. The
additional Figures 11 and 12 show the different response for different values of ζ, while assuming the
same value for nx and nz. In detail, under the assumption nx = nz = 0.15 (Figure 11), it is visible that
an increased porosity ζ moves the DIR towards higher excitation frequencies. A reversed behavior
occurs in Figure 12 under the assumption nx = nz = 1.5, since an increased value of ζ causes a general
shift of the DIR to lower excitation frequencies. This confirms the effect of either the even porosity
volume fraction ζ and the power indexes nx and nz on the stability response of the structure.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 35 
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R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, β = 0.
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Figure 11. Effect of the even porosity volume fraction ζ on the DIR for a BD-FG porous cylindrical shell
with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.
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Figure 12. Effect of the even porosity volume fraction ζ on the DIR for a BD-FG porous cylindrical shell
with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.

In Figures 13–15 we repeat the parametric analysis to evaluate the effect of an uneven porosity
between two phases of the second ceramic and second metal. In detail, Figure 13 shows the variation
of the dimensionless excitation frequency versus nx, nz, for different values of ξ. Figure 14 is devoted
to check for the influence of ξ on the DIR of the structure for nx = nz = 0.15. Additionally, in this
case, we can observe as the DIR moves to the right side by increasing ξ and it takes place at higher
excitation frequencies. Nevertheless, by assuming nx = nz = 1.5, a different trend is noticed for the
DIR in Figure 15, since an increased value of ξ yields the DIR to occur at lower excitation frequencies
and its width gets smaller.
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R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, β = 0.
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shell with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.
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Figure 15. Effect of the uneven porosity volume fraction ξ on the DIR for a BD-FG porous cylindrical
shell with R = 0.5 m, h/R = 0.02, L/R = 1, α = 0.3, nx = nz = 0.15.

The last parametric analysis considers the possible sensitivity of the response to the elastic
foundation. For this reason, Figures 16 and 17 plot the variation of the DIR with the Winkler or
the Pasternak foundation coefficients, respectively. A noteworthy increase in stiffness emerges from
both figures, where the origin of the DIR moves towards higher values of frequency. According to
a comparative evaluation of the results, it seems that the best dynamic behavior of the cylindrical
shell is reached for a structure surrounded by a Pasternak elastic foundation. Hence, the effect of the
Pasternak elastic coefficient is more remarkable than the Winkler-based one, where a BD-FG cylindrical
shell becomes more stable if embedded in a Pasternak foundation.
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5. Conclusions

This work investigates the dynamic stability of BD-FG cylindrical shells embedded in an elastic
foundation, including possible effects related to porosity. The material properties of BD-FG porous
cylindrical shells are computed according to a modified BD power law model. Using the Hamilton’s
principle, we determine the governing equations of the problem, under the classical TSDT assumptions.
The aforementioned equations are rewritten into a system of Mathieu–Hill equations, according to
a GDQ approach. The work is also devoted to determine the DIR of the structure while applying
the Bolotin method. After a preliminary validation of the proposed formulation, with respect to the
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available literature, we perform a large numerical investigation to check for the sensitivity of the
response both in terms of excitation frequencies and DIRs, for different thickness-to-radius ratios,
length-to-radius ratios, boundary conditions, transverse and longitudinal power law indexes, even
and uneven porosity volume fractions, and foundation parameters. Based on the systematic numerical
investigation, the main conclusions can be summarized as follows

• An increased thickness-to-radius ratio causes a general shift of the DIR origin towards higher
excitation frequencies. Moreover, the DIR gets wider at a certain value of the dynamic load factor.

• An increased length-to-radius dimensionless ratio moves the DIR origin towards lower excitation
frequencies, whereas the DIR gets smaller.

• A simultaneous increase of longitudinal and transverse power indexes yields an overall decrease
in the excitation frequencies associated with the DIR origin.

• The control of the dynamic instability for a BD-FG cylindrical shell, is convenient for an appropriate
selection of the power indexes.

• BD-FG cylindrical shells with a simply support at both ends are more unstable than the
clamped-clamped or clamped-simply supported structures, because of their higher deformability.

• The effect of coefficients and type of porosity on the structural DIR depend on the extent of the
longitudinal and transverse power law indexes. There exists a certain value for these indexes, for
which the excitation frequencies corresponding to the DIR can invert their behavior.

• A general increase in the elastic foundation coefficients yields higher excitation structural
frequencies especially when a Pasternak foundation is assumed instead of a Winkler foundation.
Anyway, the presence of an elastic foundation makes the structure stiffer and more stable.
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dx

)
+

cD12(x)
R

(
dΦx(x)

dx

)
+

(
dA66(x)

dx

)
Φx(x) + A66(x)

(
dΦx(x)

dx

)
−c2G11(x)

(
d3Φx(x)

dx3

)
−

B12(x)
R

(
dΦx(x)

dx

)
− 6c

(
dC66(x)

dx

)
Φx(x)

−6cC66(x)
(

dΦx(x)
dx

)
+ 9c2

(
dF66(x)

dx

)
Φx(x) + 9c2F66(x)

(
dΦx(x)

dx

)
+cF11(x)

(
d3Φx(x)

dx3

)
+ c

(
d2F11(x)

dx2

)(
dΦx(x)

dx

)
+ 2c

(
dF11(x)

dx

)(
d2Φx(x)

dx2

)
−c2

(
d2G11(x)

dx2

)(
dΦx(x)

dx

)
− 2c2

(
dG11(x)

dx

)(
d2Φx(x)

dx2

)
+ 2c2n

R

(
dG12(x)

dx

)(
dΦy(x)

dx

)
−

c2n3G11(x)Φy(x)
R3 −

9c2nF66(x)Φy(x)
R

+ 2c2n
R

(
dG66(x)

dx

)(
dΦy(x)

dx

)
+

c2nG12(x)
R

(
d2Φy(x)

dx2

)
+

cn3F11(x)Φy(x)
R3

(A3)
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−
cnD11(x)Φy(x)

R2 +
2c2nG66(x)

R

(
d2Φy(x)

dx2

)
+

6cnC66(x)Φy(x)
R

−
2cn
R

(
dF66(x)

dx

)(
dΦy(x)

dx

)
−

2cnF66(x)
R

(
d2Φy(x)

dx2

)
−

cnΦy(x)
R

(
d2F12(x)

dx2

)
−

2cn
R

(
dF12(x)

dx

)(
dΦy(x)

dx

)
−

cnF12(x)
R

(
d2Φy(x)

dx2

)
+

c2nΦy(x)
R

(
d2G12(x)

dx2

)
+

nB11(x)Φy(x)
R2 −

nA66(x)Φy(x)
R

−kwW(x) + kg

(
d2W(x)

dx2 −
n2

R2 W(x)
)
− Fa

d2W(x)
dx2 = 1

W(t)

(
I0(x)W(x) d2W(t)

dt2

−c2I6(x)
(

d2W(x)
dx2

d2W(t)
dt2 −

n2

R2 W(x) d2W(t)
dt2

)
+ cI3(x)

(
dU(x)

dx
d2U(t)

dt2

−
n
R V(x) d2V(t)

dt2

)
+ c(I4(x) − cI6(x))

(
dΦx(x)

dx
d2Φx(t)

dt2 −
n
R Φy(x)

d2Φy(t)
dt2

))

cn2D66(x)U(x)
R2 −

n2B66(x)U(x)
R2 +

(
dB11(x)

dx

)(
dU(x)

dx

)
+ B11(x)

(
d2U(x)

dx2

)
−c

(
dD11(x)

dx

)(
dU(x)

dx

)
− cD11(x)

(
d2U(x)

dx2

)
−

nB66(x)
R

(
dV(x)

dx

)
−

nV(x)
R

(
dB12(x)

dx

)
−

nB12(x)
R

(
dV(x)

dx

)
+

cnD12(x)
R

(
dV(x)

dx

)
+

cnD66(x)
R

(
dV(x)

dx

)
+

cnV(x)
R

(
dD12(x)

dx

)
−

cW(x)
R

(
dD12(x)

dx

)
−

cD12(x)
R

(
dW(x)

dx

)
−

c2n2G12(x)
R2

(
dW(x)

dx

)
+

cn2F12(x)
R2

(
dW(x)

dx

)
+

cn2W(x)
R2

(
dF12(x)

dx

)
−

2c2n2G66(x)
R2

(
dW(x)

dx

)
+

2cn2F66(x)
R2

(
dW(x)

dx

)
−

c2n2W(x)
R2

(
dG12(x)

dx

)
−A66(x)

(
dW(x)

dx

)
− 9c2F66(x)

(
dW(x)

dx

)
+c2

(
dG11(x)

dx

)(
d2W(x)

dx2

)
+ c2G11(x)

(
d3W(x)

dx3

)
+

W(x)
R

(
dB12(x)

dx

)
+

B12(x)
R

(
dW(x)

dx

)
− c

(
dF11(x)

dx

)(
d2W(x)

dx2

)
−cF11(x)

(
d3W(x)

dx3

)
+ 6cC66(x)

(
dW(x)

dx

)
−

n2C66(x)Φx(x)
R2 +

2cn2F66(x)Φx(x)
R2 −

c2n2G66(x)Φx(x)
R2 +

(
dC11(x)

dx

)(
dΦx(x)

dx

)
+C11(x)

(
d2Φx(x)

dx2

)
−A66(x)Φx(x) − 9c2F66(x)Φx(x) + c2

(
dG11(x)

dx

)(
dΦx(x)

dx

)
+c2G11(x)

(
d2Φx(x)

dx2

)
− 2c

(
dF11(x)

dx

)(
dΦx(x)

dx

)
−2cF11(x)

(
d2Φx(x)

dx2

)
+ 6cC66(x)Φx(x) −

nC66(x)
R

(
dΦy(x)

dx

)
−

nΦy(x)
R

(
dC12(x)

dx

)
−

nC12(x)
R

(
dΦy(x)

dx

)
−

c2nG66(x)
a

(
dΦy(x)

dx

)
+

2cnF66(x)
R

(
dΦy(x)

dx

)
+

2cnF12(x)
R

(
dΦy(x)

dx

)
−

c2nΦy(x)
R

(
dG12(x)

dx

)
+

2cnΦy(x)
R

(
dF12(x)

dx

)
−

c2nG12(x)
R

(
dΦy(x)

dx

)
= 1

Φx(t)

(
(I0(x) − cI3(x))U(x) d2U(t)

dt2 +
(
I2(x) − 2cI4(x) + c2I6(x)

)
Φx(x)

d2Φx(t)
dt2

−c(I4(x) − cI6(x))
dW(x)

dx
d2W(t)

dt2

)
,
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nB12(x)
R

(
dU(x)

dx

)
+

nU(x)
R

(
dB66(x)

dx

)
+

nB66(x)
R

(
dU(x)

dx

)
−

cnD12(x)
R

(
dU(x)

dx

)
−

cnU(x)
R

(
dD66(x)

dx

)
−

cnD66(x)
R

(
dU(x)

dx

)
+

(
dB66(x)

dx

)(
dV(x)

dx

)
+ B66(x)

(
d2V(x)

dx2

)
−

n2B11(x)V(x)
R2

+
cn2D11(x)V(x)

R2 − c
(

dD66(x)
dx

)(
dV(x)

dx

)
− cD66(x)

(
d2V(x)

dx2

)
+

nB11(x)W(x)
R2 −

nA66(x)W(x)
R −

cnF12(x)
R

(
d2W(x)

dx2

)
−

9c2nF66(x)W(x)
R

−
2cnF66(x)

R

(
d2W(x)

dx2

)
+

cn3F11(x)W(x)
R3 −

c2n3G11(x)W(x)
R3

−
2cn
R

(
dF66(x)

dx

)(
dW(x)

dx

)
+

2c2nG66(x)
R

(
d2W(x)

dx2

)
+

6cnC66(x)W(x)
R + 2c2n

a

(
dG66(x)

dx

)(
dW(x)

dx

)
+

c2nG12(x)
R

(
d2W(x)

dx2

)
−

cnD11(x)W(x)
R2 +

nC12(x)
R

(
dΦx(x)

dx

)
+

nΦx(x)
R

(
dC66(x)

dx

)
+

nC66(x)
R

(
dΦx(x)

dx

)
+

c2nΦx(x)
R

(
dG66(x)

dx

)
−

2cnF12(x)
R

(
dΦx(x)

dx

)
−

2cnF66(x)
R

(
dΦx(x)

dx

)
+

c2nG66(x)
R

(
dΦx(x)

dx

)
+

c2nG12(x)
R

(
dΦx(x)

dx

)
−

2cnΦx(x)
R

(
dF66(x)

dx

)
+

(
dC66(x)

dx

)(
dΦy(x)

dx

)
+ C66(x)

(
d2Φy(x)

dx2

)
−A66(x)Φy(x) −

n2C11(x)Φy(x)
R2

+
2cn2F11(x)Φy(x)

R2 −
c2n2G11(x)Φy(x)

R2 − 2c
(

dF66(x)
dx

)(
dΦy(x)

dx

)
−2cF66(x)

(
d2Φy(x)

dx2

)
+ 6cC66(x)Φy(x) − 9c2F66(x)Φy(x)

+c2
(

dG66(x)
dx

)(
dΦy(x)

dx

)
+ c2G66(x)

(
d2Φy(x)

dx2

)
= 1

Φy(t)

(
(I0(x) − cI3(x))V(x) d2V(t)

dt2 +
(
I2(x) − 2cI4(x) + c2I6(x)

)
Φy(x)

d2Φy(t)
dt2

−c(I4(x) − cI6(x)) n
R

d2W(t)
dt2

)
,

(A5)

where (
Ai j(x), Bi j(x), Ci j(x), Di j(x), Fi j(x), Gi j(x)

)
=

h
2∫

−
h
2

Qi j(x, z)
(
1, z, z2, z3, z4, z6

)
dz (A6)

Appendix B

In what follows we rewrite the equations of motion (A1)–(A5) in a discretized form, according to
the GDQ method.(

N∑
r=1

χ
(1)
pr A11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
+ A11

(
xp

)( N∑
r=1

χ
(2)
pr U(xr)

)
−

n2A66(xp)U(xp)
R2

−
nV(xp)

R

(
N∑

r=1
χ
(1)
pr A12(xr)

)
−

nA12(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
−

nA66(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

W(xp)
R

(
N∑

r=1
χ
(1)
pr A12(xr)

)
+

A12(xp)
R

(
N∑

r=1
χ
(1)
pr W(xr)

)
− c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(2)
pr W(xr)

)
−cD11

(
xp

)( N∑
r=1

χ
(3)
pr W(xr)

)
+

cn2W(xp)
R2

(
N∑

r=1
χ
(1)
pr D12(xr)

)
+

2cn2D66(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

cn2D12(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

(
N∑

r=1
χ
(1)
pr B11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
(A7)
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+B11
(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
− cD11

(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
−c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
−

n2B66(xp)Φx(xp)
R2 +

cn2D66(xp)Φx(xp)
R2

−
nΦy(xp)

R

(
N∑

r=1
χ
(1)
pr B12(xr)

)
−

nB12(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
−

nB66(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+

cnD12(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+

cnΦy(xp)
a

(
N∑

r=1
χ
(1)
pr D12(xr)

)
+

cnD66(xp)
a

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
= 1

U(t)

(
I0
(
xp

)
U
(
xp

) d2U(t)
dt2 +

(
I0
(
xp

)
− cI3

(
xp

))
Φx

(
xp

) d2Φx(t)
dt2

−cI3
(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)(
d2W(t)

dt2

))
nU(xp)

R

(
N∑

r=1
χ
(1)
pr A66(xr)

)
+

nA66(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)
+

nA12(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)
+

(
N∑

r=1
χ
(1)
pr A66(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
+ A66

(
xp

)( N∑
r=1

χ
(2)
pr V(xr)

)
−

n2A11(xp)V(xp)
R2

−
2cn
R

(
N∑

r=1
χ
(1)
pr D66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
−

2cnD66(xp)
R

(
N∑

r=1
χ
(2)
pr W(xr)

)
+

nA11(xp)W(xp)
R2

+
cn3D11(xp)W(xp)

R3 −
cnD12(xp)

R

(
N∑

r=1
χ
(2)
pr W(xr)

)
+

nΦx(xp)
R

(
N∑

r=1
χ
(1)
pr B66(xr)

)
+

nB66(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
−

cnΦx(xp)
R

(
N∑

r=1
χ
(1)
pr D66(xr)

)
−

cnD66(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

nB12(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
−

cnD12(xp)
R

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

(
N∑

r=1
χ
(1)
pr B66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+B66

(
xp

)( N∑
r=1

χ
(2)
pr Φy(xr)

)
− c

(
N∑

r=1
χ
(1)
pr D66(xr)

)(
N∑

r=1
χ
(1)
pr Φy(xr)

)
−cD66

(
xp

)( N∑
r=1

χ
(2)
pr Φy(xr)

)
−

n2B11(xp)Φy(xp)
R2 +

cn2D11(xp)Φy(xp)
R2

= 1
V(t)

(
I0(x)V

(
xp

) d2V(t)
dt2 +

(
I0
(
xp

)
− cI3

(
xp

))
Φy

(
xp

) d2Φy(t)
dt2

−
cn
R I3

(
xp

)
W

(
xp

) d2W(t)
dt2

)

(A8)

−
2cn2U(xp)

R2

(
N∑

r=1
χ
(1)
pr D66(xr)

)
−

2cn2D66(xp)
R2

(
N∑

r=1
χ
(1)
pr U(xr)

)
−

cn2D12(xp)
R2

(
N∑

r=1
χ
(1)
pr U(xr)

)
−

A12(xp)
R

(
N∑

r=1
χ
(1)
pr U(xr)

)
+c

(
N∑

r=1
χ
(2)
pr D11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
+ 2c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(2)
pr U(xr)

)
+cD11

(
xp

)( N∑
r=1

χ
(3)
pr U(xr)

)
−

cnV(xp)
R

(
N∑

r=1
χ
(2)
pr D12(xr)

)
−

2cn
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
−

cnD12(xp)
R

(
N∑

r=1
χ
(2)
pr V(xr)

)
−

2cn
R

(
N∑

r=1
χ
(1)
pr D66(xr)

)(
N∑

r=1
χ
(1)
pr V(xr)

)
−

2cnD66(xp)
R

(
N∑

r=1
χ
(2)
pr V(xr)

)
+

cn3D11(xp)V(xp)
R3 +

nA11(xp)V(xp)
R2 + 2c2n2

R2

(
N∑

r=1
χ
(1)
pr G12(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
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+ 4c2n2

R2

(
N∑

r=1
χ
(1)
pr G66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
−

c2n4G11(xp)W(xp)
R4

+
c2n2W(xp)

R2

(
N∑

r=1
χ
(2)
pr G12(xr)

)
+

2c2n2G12(xp)
R2

(
N∑

r=1
χ
(2)
pr W(xr)

)
−

9c2n2F66(xp)W(xp)
R2

+
4c2n2G66(xp)

R2

(
N∑

r=1
χ
(2)
pr W(xr)

)
+

6cn2C66(xp)W(xp)
R2 −

2cn2D11(xp)W(xp)
R3

−
n2A66(xp)W(xp)

R2 +
cW(xp)

R

(
N∑

r=1
χ
(2)
pr D12(xr)

)
+ 2c

R

(
N∑

r=1
χ
(1)
pr D12(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
+

2cD12(xp)
R

(
N∑

r=1
χ
(2)
pr W(xr)

)
+ A66

(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

)
+

(
N∑

r=1
χ
(1)
pr A66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
−2c2

(
N∑

r=1
χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(3)
pr W(xr)

)
− c2G11

(
xp

)( N∑
r=1

χ
(4)
pr W(xr)

)
−

A11(xp)W(xp)
R2

−6c
(

N∑
r=1

χ
(1)
pr C66(xr)

)(
N∑

r=1
χ
(1)
pr W(xr)

)
− 6cC66

(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

)
+

2c2n2G66(xp)
R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+

2c2n2Φx(xp)
R2

(
N∑

r=1
χ
(1)
pr G66(xr)

)
−

cn2F12(xp)
R2

(
N∑

r=1
χ
(1)
pr Φx(xr)

)
−

2cn2Φx(xp)
R2

(
N∑

r=1
χ
(1)
pr F66(xr)

)
−

2cn2F66(xp)
R2

(
N∑
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(
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dt2

(A9)



Appl. Sci. 2020, 10, 1345 26 of 30

−c2I6
(
xp

)( N∑
r=1

χ
(2)
pr W(xr)

d2W(t)
dt2 −

n2

R2 W
(
xp

) d2W(t)
dt2

)
+ cI3

(
xp

)( N∑
r=1

χ
(1)
pr U(xr)

d2U(t)
dt2

−
n
R V

(
xp

) d2V(t)
dt2

)
+ c

(
I4
(
xp

)
− cI6

(
xp

))( N∑
r=1

χ
(1)
pr Φx(xr)

d2Φx(t)
dt2

−
n
R Φy

(
xp

) d2Φy(t)
dt2

)

−
n2B66(xp)U(xp)

R2 +
cn2D66(xp)U(xp)

R2 +

(
N∑

r=1
χ
(1)
pr B11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
+B11

(
xp

)( N∑
r=1

χ
(2)
pr U(xr)

)
− c

(
N∑

r=1
χ
(1)
pr D11(xr)

)(
N∑

r=1
χ
(1)
pr U(xr)

)
− cD11

(
xp

)( N∑
r=1

χ
(2)
pr U(xr)

)
−

nB66(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
−

nV(xp)
R

(
N∑

r=1
χ
(1)
pr B12(xr)

)
−

nB12(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

cnD12(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

cnD66(xp)
R

(
N∑

r=1
χ
(1)
pr V(xr)

)
+

cnV(xp)
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)
−

cW(xp)
R

(
N∑

r=1
χ
(1)
pr D12(xr)

)
−

cD12(xp)
R

(
N∑

r=1
χ
(1)
pr W(xr)

)
−

c2n2G12(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

cn2F12(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

cn2W(xp)
R2

(
N∑

r=1
χ
(1)
pr F12(xr)

)
−

2c2n2G66(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
+

2cn2F66(xp)
R2

(
N∑

r=1
χ
(1)
pr W(xr)

)
−

c2n2W(xp)
R2

(
N∑

r=1
χ
(1)
pr G12(xr)

)
−A66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)
− 9c2F66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)
+c2

(
N∑

r=1
χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(2)
pr W(xr)

)
+ c2G11

(
xp

)( N∑
r=1

χ
(3)
pr W(xr)

)
+

W(xp)
R

(
N∑

r=1
χ
(1)
pr B12(xr)

)
+

B12(xp)
R

(
N∑

r=1
χ
(1)
pr W(xr)

)
− c

(
N∑

r=1
χ
(1)
pr F11(xr)

)(
N∑

r=1
χ
(2)
pr W(xr)

)
−cF11

(
xp

)( N∑
r=1

χ
(3)
pr W(xr)

)
+ 6cC66

(
xp

)( N∑
r=1

χ
(1)
pr W(xr)

)
−

n2C66(xp)Φx(xp)
R2 +

2cn2F66(xp)Φx(xp)
R2 −

c2n2G66(xp)Φx(xp)
R2

+

(
N∑

r=1
χ
(1)
pr C11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+ C11

(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
−A66

(
xp

)
Φx

(
xp

)
−9c2F66

(
xp

)
Φx

(
xp

)
+ c2

(
N∑

r=1
χ
(1)
pr G11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
+c2G11

(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
− 2c

(
N∑

r=1
χ
(1)
pr F11(xr)

)(
N∑

r=1
χ
(1)
pr Φx(xr)

)
−2cF11

(
xp

)( N∑
r=1

χ
(2)
pr Φx(xr)

)
+ 6cC66

(
xp

)
Φx

(
xp

)
−

nC66(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
−

nΦy(xp)
R

(
N∑

r=1
χ
(1)
pr C12(xr)

)
−

nC12(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
−

c2nG66(xp)
a

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+

2cnF66(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
+

2cnF12(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
−

c2nΦy(xp)
R

(
N∑

r=1
χ
(1)
pr G12(xr)

)
+

2cnΦy(xp)
R

(
N∑

r=1
χ
(1)
pr F12(xr)

)
−

c2nG12(xp)
R

(
N∑

r=1
χ
(1)
pr Φy(xr)

)
= 1

Φx(t)

((
I0
(
xp

)
− cI3

(
xp

))
U
(
xp

) d2U(t)
dt2 +

(
I2
(
xp

)
− 2cI4

(
xp

)
+c2I6

(
xp

))
Φx

(
xp

) d2Φx(t)
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