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Abstract: Inverse halftoning is an ill-posed problem that refers to the problem of restoring
continuous-tone images from their halftone versions. Although much progress has been achieved over
the last decades, the restored images still suffer from detail loss and visual artifacts. Recent studies
show that inverse halftoning methods based on deep learning are superior to other traditional methods,
and thus this paper aimed to systematically review the inverse halftone methods based on deep
learning, so as to provide a reference for the development of inverse halftoning. In this paper, we firstly
proposed a classification method for inverse halftoning methods on the basis of the source of halftone
images. Then, two types of inverse halftoning methods for digital halftone images and scanned
halftone images were investigated in terms of network architecture, loss functions, and training
strategies. Furthermore, we studied existing image quality evaluation including subjective and
objective evaluation by experiments. The evaluation results demonstrated that methods based on
multiple subnetworks and methods based on multi-stage strategies are superior to other methods.
In addition, the perceptual loss and the gradient loss are helpful for improving the quality of restored
images. Finally, we gave the future research directions by analyzing the shortcomings of existing
inverse halftoning methods.

Keywords: deep learning; inverse halftoning; digital halftone image; scanned halftone image; image
quality evaluation

1. Introduction

Digital halftoning is a special image transformation technology that can convert continuous-tone
images into halftone images with only 1 bit per pixel. Different from the general binary image,
the halftone image can be perceived as a continuous-tone image when it is viewed from a certain
distance because of the low filtering character of the human visual system. Halftone images are widely
used in many fields, such as the printing industry [1], telemedicine [2], Internet of Things (IoT) [3],
and the textile industry [4]. The common application case of halftone image is for bi-level output
devices such as printing press, printers, copiers, fax machines, plasma display panels, and so on.
Another application field is in that the halftone image can be used as an image compression mode
where there is not enough storage space and ultra-low power image acquisition is needed, such as in
telemedicine and IoT [2,3]. Inverse halftoning is an inverse process of halftoning that is used to restore
continuous-tone images from their halftone versions. This inverse process is needed because typical
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image processing techniques are suitable to continuous-tone images but are very difficult to halftone
images. Nowadays, inverse halftoning is required in many practical applications, such as image
compression, image restoration, watermarking, high dynamic range imaging, and so on. Specifically,
halftone images printed in newspapers, magazines, or books are often copied by photographing or
scanning for further applications, and these copied halftone images with halftone dot noises and
Moiré artifacts need to be restored as clear and high quality continuous-tone images. Figure 1 gives an
illustration of halftoning and inverse halftoning, where the halftone image in Figure 1b is generated
from Figure 1a using the error diffusion digital halftoning method, and the image in Figure 1c is
restored from Figue 1b by our designed inverse halftoning method. In this section, we briefly introduce
halftoning and inverse halftoning technologies.
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Figure 1. An illustration of halftoning and inverse halftoning, where the region of red box in each image
is enlarged and overlapped on the left part of each image: (a) continuous-tone image, (b) halftone
image, (c) restored image from (b).

1.1. Halftoning Technology

Digital halftoning is a technique that simulates continuous-tone images by using dots of a limited
number of colors and varying dots either in size or in spacing. According to the distribution of
dots, it can be divided into amplitude-modulated (AM) screening and frequency-modulated (FM)
screening as shown in Figure 2. The image hierarchy is represented by the size of the dots in AM
screening whereas the dot distance is fixed in spacing and by the density of dots in FM screening [1].
Color halftone images refer to the overlapping halftone images generated from its each color channel.
Figure 3 gives an illustration of color halftone image generated by RGB color image. If the image mode
is CMYK (cyan, magenta, yellow, black), then C, M, Y, and K channel halftone processing is required
instead of a R, G, and B channel image. Besides the AM and FM screening methods, a large amount
of digital halftoning methods have been presented, such as ordered dithering, error diffusion, dot
diffusion, iterative processing, and methods based on look-up table (LUT) [5].
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Figure 3. Color halftoning process. R, G, and B channels of RGB image; color halftone image; and
continuous-tone image are shown from left to right in that order.

For halftone images, there are two existing forms: one is in the form of an electronic document,
and the other is in the form of a printed medium such as newspapers, books or magazines. For the
halftone image in the form of electronic document, we call it a digital halftone image because it does
not print on analog medium, whereas for the halftone image in the form of a printed medium, we call
it a scanned halftone image because it needs to be scanned into the computer first when we want to
reuse it. Figure 4 shows an example of these two types of halftone images. As shown in Figure 4,
the scanned halftone image is more blurred and has more serious quality degradation than the digital
halftone image.
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1.2. Inverse Halftoning Technology

Inverse halftoning is an ill-posed problem because of the inevitable information loss during
halftoning. From Figures 2–4, we can see that there are halftone noise patterns existing in both
digital halftone images and scanned halftone images, and more complex quality degradation in
scanned halftone images. Thus, the critical issue of inverse halftoning is not only removing halftone
noise patterns but also restoring fine details from halftone images. Over the last decades, many
inverse halftoning methods have been proposed, such as low-filtering methods [6,7], projection onto
convex sets method (POCS) [8], maximum a posteriori (MAP) estimation method [9], wavelet-based
method [10], look-up-table method (LUT) [11,12], dictionary learning method [13,14], and neural
networks method [15]. The references [1] and [16] reviewed these methods in detail. Although these
traditional methods achieved state-of-the-art performance at that time, the restored continuous-tone
images still suffer from visual artifacts and subtle details loss. Hence, inverse halftoning is still a
promising but challenging problem.

Recently, deep convolution neural networks (DCNN) have demonstrated their powerful ability in
many image processing tasks. As a result, more and more researchers are focusing on inverse halftoning
based on DCNN [17–30]. In particular, the first work using deep learning for inverse halftoning was
presented by Hou and Qiu [17]. To promote the research of inverse halftoning, we reviewed the
recently development of inverse halftoning method based on deep learning. Because complex and
compounded degradation processes exist for scanned halftone images, such as ink smear, paper fiber
structures, and paper damage with time, and there are no paired real data for learning [24], the inverse
halftoning method for scanned halftone images is different from that for digital halftone images. Thus,
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the review on inverse halftoning based on deep learning is arranged in terms of following the two
directions of digital halftone images and scanned halftone images.

The remainder of the paper is organized as follows. Section 2 introduces the inverse halftoning
method for digital halftone images. Accordingly, the inverse halftone method for scanned halftone
images is investigated in Section 3. Section 4 presents and discusses the existing image quality
evaluations through experiments, and the prospects are drawn in Section 5. Section 6 provides
a summary.

2. Inverse Halftoning Technology for Digital Halftoning

Inverse halftoning for digital halftone images can be considered as a nonlinear transformation
from a halftone image to a continuous-tone image, which can be expressed as follows:

Iih = D(Ih) (1)

where Ih and Iih refer to the digital halftoning image and the restored continuous-tone image by inverse
halftoning method, respectively, and D represents the nonlinear transformation. Here, the DCNN is
used as a nonlinear mapping function.

According to the network architecture, inverse halftoning methods for digital halftoning can
be divided into two types: end-to-end learning method based on a single network (EEBSN) and
end-to-end learning method based on multiple sub-networks training (EEBMN).

2.1. End-to-End Learning Method Based on A Single Network (EEBSN)

EEBSN means that the whole deep neural network consists of only one network. The specific
process of EEBSN is to design the network structure, generate the training dataset, and input the
dataset into the network for training.

In 2017, Xianxu Hou et al. [17] first proposed an Inverse Halftoning Method based on UNet (called
IH-UNet). The network structure is shown in Figure 5, where the U-Net structure combined with
batch normalization (BN) were applied as the basic network structure. In order to merge the low-level
features into the high-level features, the skip connection structure was added on the basis of U-Net.
Following this, the U-Net structure was also used by Xiao et al. in reference [18], in which the equal-size
feature graph in up-sampling and down-sampling were fused by a concatenating method instead of
using skip connection, and average pooling (AP) was used for down-sampling as shown in Figure 5.
Apart from the U-Net structure, the fully convolution neural network proposed in reference [19] can
also be used for inverse halftoning, which consists of two types of layers: the convolution layers and
Rectified Linear Unit (ReLU) layers, where they are arranged in a sequence. On the basis of the above
basic principle of image transformation with DCNN, we think the ResNet proposed by He, K. et al. [31]
and the DenseNet proposed by Huang, G. et al. [32] can also be taken as a basic network structure for
inverse halftoning.
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The loss function is another important problem for inverse halftoning based on DCNN.
The common loss function used in reference [18] was the mean square error (MSE) of the restored
continuous-tone image Iih and its corresponding real continuous-tone image Ic, which is a per-pixel
loss function as follows:

LMSE =
1
N

N∑
i=1

(Ic
i − Iih

i )
2

(2)

where N is the pixel number of image Iih or image Ic.
Due to easy producing blurry outputs or visual artifacts by per-pixel losses, the perceptual loss

was used in reference [17], which was used to measure the difference between two images at different
deep feature levels on the basis of pre-trained deep convolutional neural networks. The perceptual
loss function is defined as Equation (3).

Lp =
1
N

N∑
i=1

(Φ j(Ic
i ) −Φ j(Iih

i ))
2

(3)

where Φ j represents the extracted features at the jth convolutional layer of the pre-trained deep
convolutional neural network. The VGG-Net [33] is commonly used as a typical pre-trained deep
convolutional neural network.

By analyzing the above methods, we found that the method in [17] was better than other methods
based on a single network. The advantage of this method is that using U-Net structure and skip
connection can incorporate low level features in the decoding process. In addition, the perceptual loss
is a good choice for improving the quality of restored images. However, the image details are still
not satisfactory.

2.2. End-to-End Learning Method Based on Training of Multiple Sub-Networks (EEBMN)

Because there are two tasks of removing halftone noise dots and restoring fine details in inverse
halftoning, the mapping from halftoning images to continuous-tone images is a complex nonlinear
transformation. Thus, it is difficult for inverse halftoning with a signal network to address these
two tasks well. On the basis of the idea that the transformation can be considered as a compound of
multiple nonlinear transformations, many researchers proposed inverse halftoning methods based on
multiple sub-networks, where each sub-network was designed for a different task [19–23]. Depending
on whether the subnetwork is pre-trained or not, the methods in references [20] are called deep learning
without pre-training (DLOPT), whereas the other methods in references [19–23] are called deep learning
with pre-training (DLWPT). Experiments show that these methods can achieve better performance
than the method with a single network.

2.2.1. Deep Learning Without Pre-Training (DLOPT)

In reference [20], the authors proposed a Progressively Residual Learning network (called PRL
method) which can synthesize the global tone and subtle details in a progressive manner. It consists of
two modules: content aggregation module and detail enhancement module. The network architecture
is briefly depicted in Figure 6. For the content aggregation, the sub-network looks like a U-Net
structure with skip connection. It starts with a convolutional layer and a residual block, followed by
two downscaling blocks, and then four residual blocks for constructing the content and tone features;
finally, two up-scaling blocks are used to make the feature maps back to the input resolution. For the
detail enhancement module, the output of the content aggregation module and the input halftone
image are concatenated and then fed into the detail enhancement module. The detail enhancement
module consists of eight residual blocks, which are used to extract structural details. For the loss
function, the MSE and perceptual loss are both adopted to guide the image recovery. The advantage
of the method in [20] is that the image details are restored in a progressive manner, as well as the
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application of residual learning for extracting structural details. However, halftone dot noises still
exist when it is used to restore historical photos.
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2.2.2. Deep Learning with Pre-Training (DLWPT)

In order to further improve the accuracy of information reproduction, the researchers put forward
the idea of firstly pre-training a network layer by layer and then training comprehensively. The process
could be divided into designing the network, generating datasets according to the functions of
sub-networks, pre-training the sub-network, and training the whole network in sequence.

Chang-Hwan Son [19] proposed an inverse halftoning method through structure-aware DCNN,
with the network being composed of three sub-networks as shown in Figure 7, in which each
sub-network is constructed by a different number of layers including convolution and ReLU operation.
The first sub-network aims to generate the initial continuous-tone image from an input halftone image,
whereas the second sub-network connected to the output of the first sub-network is designed to extract
local image structures such as lines, curves, or textures. The input halftone image, the output of the first
sub-network, and the second sub-network are all concatenated and then fed into the third sub-network
for reconstructing the final continuous-tone image. As shown in Figure 7, the entire network is trained
in stages with each sub-network. The first sub-network is primarily trained using the input halftone
and its corresponding continuous-tone image, where the MSE loss function is employed to guide the
training process. Once the first sub-network has been trained well, the second sub-network begins
to be trained. For the training of the second sub-network, the Sobel gradient operator is applied to
generate the gradient image, and the MSE loss between the gradient images generated by the output
of the second sub-network and the original continuous-tone image is used to train it. Ultimately,
the halftone images and continuous-tone images are applied to train the whole network, including the
third sub-network in an end-to-end manner. The advantage of this method is that the image structure
map predictor (ISMP) is introduced in the network, which can predict image structure for improving
the quality of restored images. The disadvantage of the method is that the experiment is only evaluated
in halftone images generated by the error diffusion method.
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The same as reference [19], Xiao et al. [21] also used gradient information in their proposed network
to boost details in the recovered continuous-tone image. In contrast to the method in reference [19],
the proposed network as shown in the dashed box of Figure 8 firstly extracts the vertical and horizontal
gradient information directly from the input halftone image by sub-network V1 and sub-network V2,
respectively. Then, the input halftone image and two gradient maps generated by the sub-network V1
and sub-network V2 are concatenated as the input of the third sub-network IH. The third sub-network
IH is used to restore continuous-tone images. All the three sub-networks have the same architecture
with a U-shaped encoder–decoder and skip connections. The training of the network is divided into
two stages. In the first stage, the sub-network V1 and V2 are pre-trained, respectively, by the MSE loss
between gradient maps obtained from ground truth images and predicated gradient maps generated
by the sub-network V1 and V2. In the second stage, the loss function for training the third sub-network
IH is composed of two parts: the first part is the MSE loss between the final output image and the
ground truth image, and the second part is the gradient loss term.

Appl. Sci. 2020, 1, x FOR PEER REVIEW 7 of 17 

To further enhance the detail and texture information, Yuan et al. [22] proposed an improved 
method based on the method in the reference [21], which takes the effectiveness of residual sub-
network into account, as shown in Figure 8. For the training of the residual sub-network, the 𝐿ଵ loss 
between the predicted continuous-tone image by the residual sub-network and the ground truth 
image is used. To make the residual sub-network and the sub-network composed by V1, V2, and IH 
collaborate more seamless, the pixel value loss and the gradient loss are combined to fine-tune the 
parameters of two networks. Compared with the method in [21], the advantage of [22] is the 
introducing of the gradient guided block and residual learning model, which are beneficial in 
enhancing the fine image details. Nevertheless, some noise patterns in restored images still exist.  

 
Figure 8. The network architecture in references [21] and [22]. 

Considering the restoration of non-smooth areas such as texture and details will affect the 
reproduction of smooth areas in a single network. Zhao et al. [23] proposed an opposite method that 
restores smooth area prior to restoring details. The network architecture is shown in Figure 9. Firstly, 
the halftone image is divided into flat area and non-flat area. Then, the pre-trained local adaptive 
adjustment method is used to smooth the flat area and the residual blocks are adopted to further 
construct the smooth area. The residual blocks consist of two convolutional layers, two batch 
normalizations, and ReLU. The non-flat area channel is restored by applying residual blocks alone. 
Finally, the reconstructed flat area and non-flat area are combined to generate an inverse halftone 
image. The method in reference [23] is proposed for bit-depth expansion and obtains favorable visual 
quality, but the halftone dot noises cannot be removed clean because the objective of this method is 
not designed for inverse halftoning. 

 
Figure 9. The network architecture in reference [23]. 

3. Inverse Halftoning Technology for Scanned Halftone Images 

The inverse halftoning method for scanned halftone images refers to converting the scanned 
halftone image into a continuous-tone image. This method is used to preserve valuable works of art 
in electronic form, such as ancient books, calligraphy, and paintings. Due to some obvious quality 
reduction in the scanned halftone image, such as dot deformation, ink smear, and paper changes with 

Figure 8. The network architecture in references [21] and [22].

To further enhance the detail and texture information, Yuan et al. [22] proposed an improved
method based on the method in the reference [21], which takes the effectiveness of residual sub-network
into account, as shown in Figure 8. For the training of the residual sub-network, the L1 loss between
the predicted continuous-tone image by the residual sub-network and the ground truth image is used.
To make the residual sub-network and the sub-network composed by V1, V2, and IH collaborate more
seamless, the pixel value loss and the gradient loss are combined to fine-tune the parameters of two
networks. Compared with the method in [21], the advantage of [22] is the introducing of the gradient
guided block and residual learning model, which are beneficial in enhancing the fine image details.
Nevertheless, some noise patterns in restored images still exist.

Considering the restoration of non-smooth areas such as texture and details will affect the
reproduction of smooth areas in a single network. Zhao et al. [23] proposed an opposite method
that restores smooth area prior to restoring details. The network architecture is shown in Figure 9.
Firstly, the halftone image is divided into flat area and non-flat area. Then, the pre-trained local
adaptive adjustment method is used to smooth the flat area and the residual blocks are adopted to
further construct the smooth area. The residual blocks consist of two convolutional layers, two batch
normalizations, and ReLU. The non-flat area channel is restored by applying residual blocks alone.
Finally, the reconstructed flat area and non-flat area are combined to generate an inverse halftone
image. The method in reference [23] is proposed for bit-depth expansion and obtains favorable visual
quality, but the halftone dot noises cannot be removed clean because the objective of this method is not
designed for inverse halftoning.
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3. Inverse Halftoning Technology for Scanned Halftone Images

The inverse halftoning method for scanned halftone images refers to converting the scanned
halftone image into a continuous-tone image. This method is used to preserve valuable works of art
in electronic form, such as ancient books, calligraphy, and paintings. Due to some obvious quality
reduction in the scanned halftone image, such as dot deformation, ink smear, and paper changes with
time, the restoring of the scanned halftone image is more complex compared to the digital halftone
image. In addition, there is no paired real data for scanned halftone images. Thus, the means of
restoring a high quality continuous-tone image from a scanned halftone image is a challenging process.

Fundamentally, inverse halftoning is an image restoration problem. Thus, some general purpose
DCNNs for image restoration can also be used for inverse halftoning, such as super-resolution networks,
style transfer networks, and Generative Adversarial Networks (GANs). In this section, according to
whether the network is specially designed for inverse scanned halftone images, the inverse halftoning
method for scanned halftone images is divided into two types: the method based on general purpose
DCNNs and the method for specially designed DCNNs.

3.1. Inverse Halftoning Based on General Purpose DCNNs for Scanned Halftone Images

Super-resolution reconstruction is a typical image processing problem that is used to restore high
resolution images from low resolution images. Similarly, inverse halftoning can also be considered as
an image super-resolution reconstruction problem. Thus, the DCNN designed for super-resolution
reconstruction can also be used for inverse halftoning. In reference [24], the authors Gao et al. used
the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN method) proposed by
Wu et al. [25] for comparison with their proposed inverse halftoning method. The architecture of
ESRGAN is shown in Figure 10, which is the optimized version of Super-Resolution Generative
Adversarial Network (SRGAN) [34]. In ESRGAN, the discriminator of Relativistic GAN (RaGAN) [35]
and dense block [32] are adopted to replace the discriminator of SRGAN and residual block [31],
and the batch normalization is also removed.
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Figure 10. The architecture of ESRGAN. The generator is used to produce an inverse halftone image
from its low-resolution halftone image, and the RaD is a discriminator for judging whether the inverse
halftone image is a continuous-tone image.

Image style transfer is a technique that converts an image into another style image. On the basis
of the idea that halftone images and continuous-tone images are two different style images, the DCNN
designed for style transfer can be retrained for inverse halftoning. Considering the limitations of no
paired dataset for scanned halftone images, DCNNs based on unsupervised GAN network proposed
by Ian Goodfellow [36] is a better choice, such as CycleGAN [26] and XNet [27].
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The core technique of CycleGAN is the two mapping generators, with which the whole process
can be performed as a loop as shown in Figure 11. The two mapping generators denote the generator of
converting halftone images to inverse halftone images and the generator of transferring continuous-tone
images to halftone images. Meanwhile, two discriminators are used to promote the generation of the
optimal inverse halftone image. One is used to reduce the difference between the generated halftone
image and the original halftone image, and the other is used to narrow the gap between the inverse
halftone image and the continuous-tone image. The cycle structure with two discriminators realizes
the conversion of halftone and continuous-tone style smoothly.
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In 2019, Omry Sendik [27] proposed the concept of latent space on the basis of CycleGAN,
and designed XNet by fusing two common GAN networks as shown in Figure 12. Accordingly,
cross identity loss, latent cycle-consistency loss, and latent cross-translation consistency loss were
proposed, which are similar to the principle in CycleGAN. These loss functions make constraints on
training more accurate and are prone to achieving better performance.
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Figure 12. The architecture of XNet. HIa and CTb refer to a halftone image and a continuous-tone
image, respectively, as the input of this network. Correspondingly, HIb, HIb’, IHa, and IHa’ refer to the
reconstructed images with different styles through different paths.

To sum up, the GAN-based network can indeed be applied to inverse halftoning, but the image
performance is not ideal because of the uncertainty of information learning. To alleviate the problem,
Li et al. [28] proposed a phased inverse halftoning method, as shown in Figure 13, which consists
of three sub-networks with a three-layer. The whole process is divided into dataset generation and
network training. For dataset generation, the rough image and guidance image are generated by
processing the scanned halftone image with previous methods. For network training, the training
dataset is firstly sent to the first two sub-networks for feature extraction, and then the extracted features
are inputted into the filter network. The smaller the residual, the closer the restored image and original
continuous-tone image will be. Although the above general purpose DCNN methods can be retrained
for inverse halftoning, the restored image quality is poor compared with those of purposefully designed
inverse haltoning.
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3.2. Inverse Halftoning Based on Special Designed DCNNs for Scanned Halftone Images

During the process of printing and scanning, the scanned halftone image quality is seriously
degraded, and there is no paired real data for machining learning. Thus, the inverse halftoning for
scanned halftone images is more difficult than the method for the digital halftone image. None of the
existing DCNN methods can satisfy for scanned halftone images. Recently, only a few studies have
addressed this problem, such as in references [24,29,30], where the DCNN is specially designed for
inverting scanned halftone images.

In terms of scanned halftone images, they are often contaminated with moiré patterns. Considering
the moiré patterns span over a wide range of frequencies, Sun et al. [29] proposed a multi-resolution
DCNN for moiré pattern removal. The proposed architecture is shown in Figure 14, in which the
input image is firstly converted into multiple feature maps at different resolution levels by a nonlinear
multi-resolution analysis, and then each feature map is fed into a sequence of cascaded convolutional
layers for removing the moiré pattern associated with the specific frequency band of this branch,
and finally the outputs at different resolutions are up-sampled as the input resolution and fused
together as the final output image. The method of the reference [29] is a groundbreaking work for moiré
pattern removal, which achieved the state-of-the-art performance in this field at that time. However,
there is still room for improving image details.
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Another famous work is the research proposed in reference [30], which can not only remove halftone
artifacts but also synthesize the fine details lost during halftone. The network is depicted as shown in
Figure 15, which combines the GAN network with other networks, such as semantic segmentation
network [37] and U-Net [38]. The method consists of two stages. In the first stage, the initial inverse
halftone image is generated by applying CoarseNet, semantic segmentation network [37], and EdgeNet
rationally. CoarseNet, which consists of U-Net and skip connection, is used to reconstruct colors,
tones, and shapes roughly. The semantic segmentation network [37] is adopted to generate object-level
context and extract edge information by the EdgeNet. In the second stage, the DetailsNet, which also
consists of common convolutional layer, is used to enhance details and further remove artifacts in
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images. To improve the quality of the inverse halftone image, two discriminators [39] were adopted,
where one is used to detect the whole image while the other is to examine local regions. Compared to
previous methods, the proposed method can achieve more convincing results, but this is dependent on
the training examples.
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Aiming at the restoration of invaluable historical photographs in the form of halftone prints in old
publications, Gao et al. [24] proposed a pioneering method to address this issue. The challenge is that
the quality of the scanned halftone image is poor and no paired real data are available for training.
To solve these problems, the authors [24] developed a novel learning strategy by dividing the task into
two stages as shown in Figure 16. The first stage is to remove printing artifacts, where the scanned
halftone image is transformed to a digital halftone image. Due to lack of paired data, the CycleGAN
technique is employed in the sub-network used in the first stage, which is an unsupervised learning
network including U-Net structure and skip connection. Through the first stage, the scanned halftone
image is converted into a synthetic halftone image. In the second stage, the synthetic halftone image
can be converted into a continuous-tone image by inverse halftoning method for digital halftone
images. Because sufficient paired images can be easily generated by using the halftone synthesizer,
the sub-network used in the second stage is easily trained. The sub-network in the second stage is
composed of U-Net structure, skip connection, and Residual-in-Residual Dense Blocks (RRDBS) 32].
The advantage of this method is that it does not need paired data in the first stage, whereas the second
stage can be easily trained with synthetic data. However, it fails to input halftone prints with severely
damaged areas.
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4. Quality Evaluations of Inverse Halftone Images

To evaluate the performance of various inverse halftoning methods, the corresponding image
evaluation methods are studied in this section, which are divided into subjective evaluation and
objective evaluation. The subjective evaluation is mainly based on human eyes, which will be affected
by people’s national characteristics, customs, and cultural background. The objective evaluation is a
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quantitative method, which can cover the shortage of subjective evaluation. In this section, some typical
inverse halftoning methods based on deep learning, such as PRL [20], IH-UNet [17], and ESRGAN [25]
networks, are evaluated on the basis of the evaluation index.

4.1. Subjective Evaluation

Subjective evaluation is the most commonly used and direct method, which is to judge and evaluate
images by observers according to their experience or specified evaluation scale [40]. The restored
continuous-tone image is evaluated by considering the following factors: halftone dot noise removal,
texture detail reproduction, smooth area processing, and chromatic aberration. As shown in Figure 17,
the continuous-tone images restored by the IH-UNet [17] and PRL method [20] are better in dot
removal than others, whereas the images processed by the PRL method perform better in the smooth
region. In terms of texture details, the image processed by ESRGAN [25] is the clearest, whereas
the images processed by PRL is the closest to the original continuous-tone image. In the aspect of
color reproducing, the image generated by the PRL method is the most similar to the original image,
followed by IH-UNet and ESRGAN.Appl. Sci. 2020, 1, x FOR PEER REVIEW 12 of 17 
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Figure 17. The images of butterfly, Lena, and peppers (from up to bottom) evaluated by the subjective
evaluation, in which the regions marked with a green box are enlarged for detail observation. (a) Halftone
images, (b) continuous-tone images, (c) restored images by the PRL method, (d) restored images by the
IH-UNet method, and (e) restored images by the ESRGAN method.
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4.2. Objective Evaluation

The most common used index of objective evaluation includes mean-square error (MSE),
peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) [41]. Besides these indexes,
the color and clarity indexes are also introduced in this subsection.

MSE is one of the most basic image quality evaluation indexes that can quantitatively evaluate
the overall performance of inverse halftone images. It is a per-pixel comparison between the restored
continuous-tone image Iih and the original continuous-tone image Ic, which is defined as follows.

MSE =
1

mn

m∑
x=1

n∑
y=1

(Iih(x, y) − Ic(x, y))
2

(4)

where (x, y) is the pixel position, and m and n refer to the width and height of the image, respectively.
PSNR is another commonly used image quality evaluation index. Recently, it has been widely

used in the quality evaluation of inverse halftone image, focusing on the evaluation of image structure
consistency. Theoretically, the higher the PSNR value, the less distortion of the inverse halftone image
and the more similar the structure is to the original image. The specific expression is as follows.

PSNR = 10 log10

[
2552

MSE

]
(5)

SSIM is known as a perceptual-aware method for measuring the similarity between two images,
and the expression of SSIM is shown as follows.

SSIM =
(2µcµi + c1)(2σci + c2)

(µ2
c + µ

2
i + c1)(σ2

c + σ
2
i + c2)

(6)

where µc and µi refer to the mean pixel values of the original continuous-tone image and the inverse
halftone image, acting as brightness estimates. σc and σi refer to the pixel value variance of the original
continuous-tone image and the inverse halftone image, acting as contrast estimation. σci refers to the
covariance of the pixel values of the original continuous-tone image and the inverse halftone image,
acting as a measure of the structural similarity. c1 and c2 are two constants for maintaining stability.
The SSIM value ranges from 0 to 1, and the closer SSIM is to 1, the more similar the two images.

For color halftone image, the color difference can objectively represent the color similarity between
the original image and the inverse halftone image. In 2016, Pedro et al. [42] applied color difference to
evaluate the quality of inverse color halftone image. Firstly, the image values in RGB color space are
converted to the relative values in CIELAB color space. Then, the color difference between images is
calculated as follows.

∆E∗ =
[
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

]1/2
(7)

where ∆L∗, ∆a∗, and ∆b∗ refer to the difference in color shades and hues between inverse halftone image
and the original continuous-tone image, respectively. The smaller the color difference, the more similar
the inverse halftone image is to the original continuous-tone image.

It is well known that the human eyes perceive two images as being less different when the color
tone changes analogously. However, the previous image quality evaluation methods did not take this
into account, and only evaluated the image quality from the pixel level. To make up for this deficiency,
Jin, Z. et al. [43] proposed a new color image quality evaluation index D. The smaller the value of D,
the more similar the tone changes of the inverse halftone image and the original image.

D = ||RSDO−I | −RSDO| (8)
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where RSDO−I refers to the relative standard deviation of the pixel value difference between the
continuous-tone image and the inverse halftone image, and RSDO refers to the relative standard
deviation calculated by pixel values of the continuous-tone image.

To evaluate the performance of restoring image details of different inverse methods, the index of
image clarity is employed to address this problem. The clarity is the internal evaluation method of the
image, independent of the original image. The higher the clarity, the clearer the details in the image
will be. The clarity is defined as follows.

C =
1

mm

m∑
x=1

n∑
y=1

√
(I(x, y) − I(x + 1, y)2 + (I(x, y) − I(x, y + 1)2

2
(9)

Finally, we evaluated the image quality on the basis of the above indexes in order to compare the
different inverse halftoning methods. The experimental images include the butterfly image, the Lena
image, and the peppers image, and the halftone images were generated by the error diffusion method.
The inverse halftoning method consists of the PRL method [20], the IH-UNet method [17], and the
ESRGAN method [25]. Table 1 gives the experimental results. As shown in Table 1, all objective
evaluation indexes can show the image quality in corresponding aspects, which are consistent with the
visual performance effect, and all have reference significance. However, none of them could individually
evaluate image quality comprehensively. From Table 1, we can also see that the performance of the
method based on multiple sub-networks (PRL method) is better than the method based on a single
network (IH-UNet method), and the performance of the method based on a general purpose DCNN
(ESRGAN method) is the worst.

Table 1. The quality evaluation of different inverse halftoning methods.

Images Methods MSE PSNR SSIM ∆E* D C

Butterfly
PRL [20] 0.011 33.875 0.964 5.642 0.616 10.186

IH-UNet [17] 0.018 25.130 0.868 8.452 0.391 7.274
ESRGAN [25] 0.022 21.627 0.735 11.232 0.242 13.772

Lena
PRL [20] 0.010 34.817 0.942 5.661 0.671 6.684

IH-UNet [17] 0.015 30.671 0.886 7.171 0.510 6.974
ESRGAN [25] 0.022 21.658 0.713 10.409 0.173 11.761

Peppers
PRL [20] 0.011 34.938 0.951 5.925 0.511 6.927

IH-UNet [17] 0.017 29.342 0.873 7.942 0.588 7.554
ESRGAN [25] 0.022 20.826 0.704 10.211 0.125 11.516

5. Prospects

With the rapid development of digital multimedia technology and equipment, inverse halftoning
technology has become an essential part of image display with high precision. Although many
inverse halftoning methods have been proposed, there are still improved room for problems, such as
multi-modal halftone image recovery, color image distortion, scanned halftone image recovery,
and image quality evaluation.

5.1. Multi-Modal Halftone Images Recovery

The existing inverse halftoning methods are for a certain digital halftoning method, such as error
diffusion method. The quality of restored continuous-tone images will degrade when they are used for
another type of halftone images. In practical application, there are many different types of halftone
images, which are called multi-modal halftone images. For example, there are 23 types of halftone
images in reference [44]. Thus, the means of restoring a high quality image by taking into consideration
of these multi-modal halftone images is a challenging problem. In future research, we will employ the



Appl. Sci. 2020, 10, 1521 15 of 18

StarGAN [45] deep model to study this problem in order to realize multi-modal inverse halftoning by
one deep model.

5.2. Inverse Halftoning Technology for Color Image Distortion

The existing color inverse halftoning technology is to obtain the inverse halftone image through
the inverse halftone processing of each channel, resulting in poor visual quality in color performance.
Therefore, to construct the relationship between the color channel and the specific color space model
is an important aspect of the research on color image inverse halftoning. To address this issue,
we can add color difference information between the restored continuous-tone image and the original
continuous-tone image into the loss function. On the other hand, we can add a sub-network to restore
the color information. The experimental results of the method in reference [20] demonstrated that
networks at different stages tend to recover different aspects of image information. On the basis of
this idea, in the following study we will design a deep network with three sub-networks. The first
sub-network is employed to remove halftone noises and restore the initial continuous-tone image,
the second sub-network is designed to enhance detail and texture information, and the last sub-network
is applied to adjust color performance. At the same time, the corresponding loss functions will be set
for each sub-network and the whole deep network, in which color difference loss function will be
considered emphatically.

5.3. Adaptive Inverse Halftoning for Scanned Halftone Images

Generally, there is no paired images for scanned halftone images, and quality degradation exists
during the process of printing and scanning, especially for old halftone images printed on newspapers
or books. Nowadays, few researchers study this problem, except for the studies [24,30]. However,
some scanned halftone images with severe blemishes will fail to be restored. In addition, the question
of scanned halftone images with different scanned resolution has not been investigated. Therefore,
to construct a deep learning network that can quickly adapt to various conditions so as to obtain
high quality scanned inverse halftone images is urgently needed. Recently, Kim et al. [46] proposed a
Halftone Color Decomposing Convolutional Neural Network (HCD-CNN) that can better decompose
the photographed image or scanned image as C, M, Y, and K halftone images. Inspired by the
HCD-CNN, the scanned halftone image can be firstly decomposed as CMYK images, and then inversed
as a continuous-tone image using an inverse halftone method for digital halftone images.

5.4. Inverse Halftone Image Quality Evaluation

The image quality evaluation is a very effective way to judge the effectiveness of the inverse
halftoning method. As mentioned in Section 4, there are many evaluation methods for inverse halftone
images, but they are all generally subjective and objective evaluation methods for image quality,
which are still far from the intuitive perception of human eyes. As shown in Figure 17 and Table 1,
the visual effect of restored images and the objective evaluation indexes are not consistent to a certain
extent. In particular, there is no effective quality evaluation for inverse halftoning images that have no
original images. Therefore, a more effective and intuitive image quality evaluation method for inverse
halftoning is still a problem for the immediate future.

6. Conclusions

This paper mainly reviewed the inverse halftoning methods based on deep learning and their
evaluation metrics. According to the source of halftone images, the methods are classified as methods
for digital halftone images and methods for scanned halftone images. Firstly, the network architecture
and the loss function were discussed. It can be seen that for the supervision network, the entire inverse
halftone network mainly applies the U-Net structure and skip connection or its advanced version
structure to restore continuous-tone images. In addition, multiple sub-network architecture is a good
choice for executing different restoring tasks. The per-pixel loss such as MSE and the perceptual
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loss are generally adopted as loss function to guide training. For unsupervised network, the whole
network is based on GAN network, and the loss function is generally composed of generator loss and
discriminator loss for GAN network, cycle consistency loss, and perception loss. Then, the evaluation
index of inverse halftone image was discussed. According to the experimental results, we should use
several indexes to evaluate the inverse halftone image in practice. At the end of the review, in view of
the limitations of the prior inverse halftoning methods and the shortcomings of the existing evaluation
index, we put forward the prospects of the future research direction.
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