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Abstract: Renewable generation brings both new energies and significant challenges to the evolving
power system. To cope with the loss of inertia caused by inertialess power electronic interfaces (PEIs),
the concept of the virtual synchronous generator (VSG) has been proposed. The PEIs under VSG
control could mimic the external properties of the traditional synchronous generators. Therefore, the
frequency stability of the entire system could be sustained against disturbances mainly caused by
demand changes. Moreover, as the parameters in the emulation control processes are adjustable rather
than fixed, the flexibility could be enhanced by proper tuning. This paper presents a parameter tuning
method adaptive to the load deviations. First, the concept and implementation of the VSG algorithm
performing an inertia response (IR) and primary frequency responses (PFR) are introduced. Then, the
simplification of the transfer function of the dynamic system of the stand-alone VSG-PEI is completed
according to the distributed poles and zeros. As a result, the performance indices during the IR
and PFR stages are deduced by the inverse Laplace transformation. Then, the composite influences
on the performances by different parameters (including the inertia constant, the speed droop, and
the load deviations) are analyzed. Based on the composite influences and the time sequences, an
adaptive parameter tuning method is presented. The feasibility of the proposed method is verified
by simulation.
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1. Introduction

Renewable generation (RG), such as the solar PV (photovoltaic) and wind power, has been
widely utilized in the last decades due to the depleted fossil fuels and the environment concerns [1–3].
Compared to traditional power plants, renewable generation units are more scalable to be either
equipped close to the demand or concentrated into renewable plants. Voltage-sourced converters
(VSCs) are commonly equipped for the integration of renewable generation, which provides fast and
accurate adjustments on generation profiles [4,5]. The solar PV and wind power can be categorized
as inverter-based generation (IBG) because inverters are required to regulate their outputs [6–8].
According to the BP energy outlook 2018, by 2040, there would be strong growth in the share of
renewables, reaching 25% of total energy consumption in an evolving transition scenario [9,10].
Therefore, with the increasing penetration of renewable generation and the consequent displacement of
traditional synchronous generators (SGs), the current power system has been undergoing an intrinsic
transition toward converter-dominated grids.

However, the fast power electronic interfaces (PEIs) (which are tens or hundreds of times faster
than system frequency) also incur problems as they have almost no inertia. The overall inertia is an
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important indicator to evaluate system strength. On the one hand, when frequency events happen,
inertia response (IR) could slow down the change of the range of frequency (ROCOF). On the other
hand, it buys time for the activation of the primary frequency response (PFR, which kicks in when
the frequency deviation crosses a preset deadband) and mitigates the nadir [11]. In the meantime,
the parallel operation involving SGs and the PEI-based RG could cause unstable operation because
their responses activate at very different paces. Moreover, for the paralleled RG units, autonomous
operation and proportional load share are also hard to achieve [12–17].

The critical problem for high-penetration IBG integration is caused by its incompatible
characteristics with the synchronous machines. In other words, the IBG units could not provide IR and
PFR jointly and collaboratively with the SGs. As the current power system is still dominated by the
synchronous machines, it is desired to make the IBG compatible in current power systems. Under this
background, the concept of the virtual synchronous generator (VSG) is proposed [18–24]. The VSG
concept is to modify the highly programmable supplementary controllers of the VSC interfaces and
mimic the external characteristics of the traditional SGs [18]. By the VSG control, the emulation of IR
and PFR can be implemented [18–24].

However, as one of the major advantages for power converters is its ability of fast response,
the fixed inertia property may limit the response time and flexibility. So, there is a tradeoff between
fast response and frequency stability [22,25,26]. As the parameters of PEIs are tunable rather than
predominated by physical equipment, VSG-IBG units could also alter their external properties for
advanced performances. Continuous changes and the step change of virtual inertia parameters are
designed to minimize the frequency deviation and energy support [27–29]. However, the parameter
settings are straightforward but arbitrary. In [30], quantitative performance analysis is presented
for the inertia response provided by the capacitors in the DC links. From its results, the designs for
capacitance and DC voltage are completed. However, the capacitors can only provide short-term
inertia response. As the frequency response involves two stages, including the inertial response and
the primary frequency response, then the virtual inertia constant, virtual speed droop, and the load
disturbances should be considered.

In this paper, an adaptive method of parameter tuning for VSG-based VSCs providing both inertia
response (IR) and PFR for counteracting the load disturbances is presented based on quantitative
performance analysis. The contributions of this work could be summarized as follows:

(1) The analysis of frequency response dynamics, based on the simplification of the transfer
function down to the second-order form, is conducted. Performance indices are proposed, and the
frequency responses influenced by different parameters are analyzed.

(2) It is noted that the performance indices are influenced by composite parameters, but the
hierarchical stages of IR and PFR operate in chronological order. Therefore, a parameter tuning
algorithm is designed in which the parameters are also determined following a chronological sequence.

(3) The adaptive parameter tuning approach is verified when load disturbances in different
magnitudes happen. The proposed parameter approach could be used to enhance the flexibility and
response time as well as maintain the required frequency stability.

The rest of the paper is organized as follows: Section 2 presents the VSG algorithm to perform
frequency response. Section 3 analyzes the parameter influence. Through analyzing the composite
influence on system performances by different parameters, Section 4 proposes a parameter tuning
algorithm by consideration of the time sequence of performance indices in the multiple frequency
control stages. Section 5 verifies the proposed algorithm by simulation.

2. Implementation of VSG Algorithm to Emulate Frequency Control

The system frequency indicates the overall power balance between the generation and the demand
at any instantaneous time. In the traditional SG-dominated power system, the active power-frequency
control is a series of multiple temporal stages. The stage of IR is naturally provided by all SGs from the
direct coupling between mechanical and electrical parts. The stage of PFR is spontaneously provided
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by the SGs with headroom from the turbine-speed governor systems [31]. The properties of IR and
PFR are summarized in Table 1.

Table 1. Properties of inertia response (IR) and primary frequency responses (PFR). ROCOF: change of
the range of frequency, SGs: synchronous generators.

IR PFR

Time scale Instantaneous Seconds-30 s

Activation ROCOF Frequency deviation crosses a
preset deadband

Reference Naturally provided Frequency deviation
Control parameter H Percentage R

Participants All SGs All SGs with headroom
Executor Rotating equipment Speed governor

Energy resource Kinetic Primary energy input

For the PEI-based IBG, the external characteristics are largely determined by the supplementary
controller. In inchoate studies, among the VSG implementations in different orders, the simplest
second-order model is with better stability in transients [32] and can be combined with virtually any
VSC control strategies based on the conventional cascade structure [33]. By the modification of the
supplementary controller, the VSG algorithm enables the PEIs to function in the same way as SGs with
the ability to perform IR and PFR.

The inertia response of the SGs is instantaneous without prerequisite measurements. For traditional
SGs, the inertia is provided by the kinetic energy stored in the rotation equipment. The inertia constant
HSG indicates the inertia property, which can be expressed as

HSG =
JSGω

2
r

2VAbase
(1)

where J is the moment of inertia, ωr is the angular speed of the rotor, and VAbase is the rated power.
Similar to HSG, the virtual inertia constant Hvir of PEIs can be expressed as the ratio of the provided
energy to the rated power

Hvir =
Jvirω

2
m

2VAbase
(2)

where Jvir is the virtual moment of inertia and ωm is the virtual angular speed. The inertia response
follows Newton’s law of motion, which can be expressed as the swing equation

Pm − Pe =
d∆ωr/dt

M
+ D∆ωr (3)

where M = 2Hvir, D is the damping coefficient of the load, Pm and Pe are the virtual mechanical and
electrical power, and ωr is the virtual angular speed. When the swing equation is represented by the
inertia constant, all the parameters are per-unit values.

The PFR of SGs is provided by the turbine–governor system. In per-unit value, the droop
property is

∆Y = −
1
R
×

1
1 + sTG

×
1 + sFHPTRH

(1 + sTCH)(1 + sTRH)
∆ωr (4)

where R is the speed droop, Y is the valve position, and TG is the time constant of the speed governor.
For a typical steam turbine, TCH is the time constant of main inlet volumes and steam chest; TRH
is the time constant of the reheater; and FHP is the fraction of the total turbine power generated by
high-pressure (HP) sections. The control structure of the active power-frequency loop is shown in
Figure 1.
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The IR and PFR provided by VSG-PEIs is shown in Figure 2. The inertia and primary frequency
response are autonomously delivered to stabilize the system frequency after load disturbances. The key
performance indices involve the magnitude of ROCOF, the frequency nadir, the settling time, and the
settling frequency.
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3. Simplification and Performance Analysis

The emulation of IR and PFR is derived from the mechanism imitation of the swing equation and
the speed governor. The effect of the closed-loop transfer function of the VSI based on the cascade
control structure is assumed to be fast and accurate. The high-order transfer function of IR and PFR
can be simplified by the dominant poles and zeros according to control theory. By the inverse Laplace
transformation, the performance indices of the dynamic responses in the time domain can be deduced.

As the frequency is a common factor, when there is a load change, it is reflected instantaneously
throughout the whole system by a change in frequency. For a step change of demand ∆PL, the transfer
function from ∆PL to the virtual angular speed of rotor ∆ωm is

G(s) =
∆ωm

∆PL
=

−R(1 + sTG)(1 + sTCH)(1 + sTRH)

(2Hs + D)(1 + sTG)(1 + sTCH)(1 + sTRH)R + sFHPTRH + 1
(5)

where s is the Laplace operator.
For traditional SGs, the typical parameters are shown in Table 2.
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Table 2. Typical parameters of an SG with a reheat steam turbine.

Parameter Value Unit Parameter Value Unit

R 0.05 pu FHP 0.3 pu
H 5 pu TRH 7 s
D 1 pu TCH 0.3 s
TG 0.2 s

The pole-zero map of the transfer function is shown in Figure 3.
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From the transfer function G(s), the zeros are fixed on the real axis. With the increasing of H, the
poles P3 and P4 tend to approach the zeros Z2 and Z3. As P3 and P4 are fast poles and very close to Z2
and Z3, the dynamic responses are determined by the dominant zeros Z1 and the slow poles P1 and
P2 [34].

Simplifying the system by Z1, P1, and P2, the system transfer function is

G(s) =
−R(1 + sTRH)

(2Hs + D)(1 + sTRH)R + sFHPTRH + 1
= K

s + z1

s2 + 2ζωns +ω2
n

(6)

where ωn and ζ are the undamped natural frequency and damping ratio,

K = − 1
2H , z1 = 1

TRH
, ωn =

√
1+RD

2HRTRH

ζ = 2HR+TRHDR+FHPTRH
4HRTRH

×

√
2HRTRH

1+RD

(7)

When the system is subjected to a step increase in demand,

∆PL =
∆p
s

. (8)

By taking the inverse Laplace transformation, the dynamic response of the frequency deviation in
the time domain is

∆ f (t) = K∆p× [
z1

ω2
n
+ Ae−ζωnt sin(ωdt + β)] (9)

where
ωd = ωn

√
1− ζ2

A =

√
( z1ζ−ωn
ωdωn

)
2
+ ( z1

ωn
)

2

β = arctan[ z1ωd
ωn(z1ζ−ωn)

] + π

(10)
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Assuming the original state of the system frequency is 1.0 pu, the dynamic response of the system
frequency is

f (t) = 1 + K∆p× [
z1

ω2
n
+ Ae−ζωnt sin(ωdt + β)]. (11)

From Equation (11), system performance indices during IR and PFR can be derived. First, the rate
of change of frequency (ROCOF) is

ROCOF = −K∆p× [Aζωne−ζωnt sin(ωdt + β) −Aωde−ζωnt cos(ωdt + β)]. (12)

Further, when t = 0, ROCOF reaches its maximum value, which can be expressed as

ROCOFmax = −K∆p× (Aζωn sin β−Aωd cos β), (13)

the peak time tpeak, or the time when the frequency reaches a nadir, can be expressed as

tpeak =
1
ωd

(arctan

√
1− ζ2

ζ
− β). (14)

Substituting Equation (14) for Equation (11), then the peak frequency fpeak, or the frequency
nadir, is

fpeak = 1 + K∆p×
z1

ω2
n
+ K∆pAe−ζωntpeak

√
1− ζ2 (15)

and the quasi-steady-state frequency fss is

fss = 1 + K∆p×
z1

ω2
n
= 1−

R
DR + 1

∆p. (16)

The settling time ts can be defined as the dynamic response entering the 2% quasi-steady-state
error band, ∣∣∣∣∣∣ f (ts) − fss

1− fss

∣∣∣∣∣∣ = 2%. (17)

Then, the settling time can be expressed as

ts = −
1
ζωn

ln
z1

50Aω2
n

. (18)

From the expressions of the deduced indices, the performance of IR and PFR provided by VSG-PEIs
is determined by three parameters: the inertia constant H, the speed droop R, and the step change of
load ∆p. The performance properties affected by a single parameter are shown in Figures 4–6.

Figure 4 shows the influences of the inertia constant H to the performance indices. In Figure 4,
H increases from 3 to 100. The load change is set to be 0.03 pu, and the parameters of R and D
remain constant.

From Figure 4a,b, the increasing in inertia constant H leads to the decreased magnitude of the
ROCOF and the nadir. However, the increasing H would extend the duration of the dynamic response
and slow down the later frequency control stages, as shown in Figure 4d. Therefore, there is a tradeoff

for the determination of H. From Figure 4c, the settling frequency is irrelative to H.
Figure 5 shows the influence of the speed droop R to the performance indices. In Figures 3 and 4,

R increases from 0.03 to 0.07. The load change is set to be 0.03 pu, and the parameters of H and D
remain constant.

From Figure 5a, percentage R does not influence the magnitude of the ROCOF. From Figure 5b,
the nadir gets worse as R increases. From Figure 5d, the changes in percentage R do not alter the
settling time very much. From Figure 5c, the increase of R would decrease the settling frequency, since
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the speed droop R indicates the amount of power supported for a specific frequency deviation, and the
lower R indicates more supportive power to stabilize the frequency. Therefore, PFR would further
suppress the ROCOF and improve the frequency nadir.

Figure 6 shows the influence of load deviation ∆p on the performance indices. In Figures 3 and 5,
∆p increases from 0 to 0.06 (pu), while the parameters of H, R, and D remain constant.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16 
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From Figure 6a–c, with the increasing of load deviation, the magnitude ROCOF, the peak frequency,
and the settling frequency gets worse. From Figure 6d, the load deviation does not influence the
settling time.

4. Composite Performance Analysis and Adaptive Performance Tuning

From the expressions and properties before, in the process of IR and PFR, the performance is
determined by composite influences by different parameters, including the inertia constant H and the
speed droop R, as well as the load deviation ∆p.

In order to analyze the composite influences, four key performance indices (the magnitude of
ROCOF, the frequency nadir, the settling frequency, and the settling time) are chosen. Figures 7–10
show the relations between the performance indices and the varying parameters. The range selections
are set as follows: H varies from 3 to 10, R varies from 0.03 to 0.08, and the step increase of load varies
from 0 to 0.06.

4.1. Composite Parameter Influences on Performance Indices

Figure 7 shows the composite influences on the magnitude of the ROCOF. In Figure 7a, the inertia
constant and the load deviation vary while the speed droop remains constant. In Figure 7b, the speed
droop and the load deviation vary while the inertia constant remains constant. It shows that the
ROCOF is determined by the inertia constant H and the load deviation ∆p.
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Figure 8 shows the composite influences on the peak frequency. In Figure 8a, the inertia constant
and the load deviation vary while the speed droop remains constant. In Figure 8b, the speed droop and
the load deviation vary while the inertia constant remains constant. It shows that the peak frequency is
determined by all these three parameters.

Figure 9 shows the composite influences on the settling frequency. In Figure 9a, the inertia constant
and the load deviation vary while the speed droop remains constant. In Figure 9b, the speed droop
and the load deviation vary while the inertia constant remains constant. It shows that the settling
frequency is determined by the speed droop R and the load deviation ∆p.
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Figure 10 shows the composite influences on the settling time. In Figure 10a, the inertia constant
and the load deviation vary while the speed droop remains constant. In Figure 10b, the speed droop
and the load deviation vary while the inertia constant remains constant. It shows that the settling time
is determined by the speed droop R and the inertia constant H.
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4.2. Supported Energy and Power during IR and PFR

In the process of IR, the kinetic energy stored in the rotating equipment of SGs is provided to
suppress the ROCOF. Correspondingly, when IBG provides IR, kinetic energy (such as rotating blades
in wind turbines) or virtual kinetic energy (such as the spare generation availability, the electrostatic
energy in capacitors, or the storage energy) is provided. The provided energy by the VSG-PEI can be
expressed as

∆E(t) =
1
2

Jvir(ω
2
t −ω

2
0) (19)

where ωt and ω0 are virtual angular speed and its initial value, Jvir is the virtual moment of inertia.
From Equation (19), the provided energy is related to the inertia constant Hvir and the frequency.

For an IBG unit with a VA base of 15,000 watts, under different inertia constants, the provided
energy is shown in Figure 11 (R = 0.05, D = 1, ∆p = 0.03). From Figure 11, the IBG with larger virtual
inertia constant provides more energy during the frequency response. This is because the IR activates
instantaneously and faster than the activation of the PFR. Therefore, there is a tradeoff in the design of
H. Although the larger H indicates better nadir and settling frequency, it requires more energy from
the PEIs.
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From the previous sections, the virtual moment of inertia Jvir is determined by the inertia constant
H. In steady state, the settling frequency is determined by the speed droop R (when D and ∆p are
considered as constants). Therefore, the provided energy at the settling time varies according to the
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H and R settlings, as shown in Figure 12. From Figure 12, the supported energy increases with the
increase of H and R.
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In steady state, the provided power in the PFR loop can be expressed as

pPFR =
1/R

D + 1/R
× ∆p (20)

where ∆p is the PFR power and ∆p is the step deviation of the load. From the expression, there is also a
tradeoff between the speed droop R and the frequency deviation. In parallel operation with other PFR
players, the speed droop R is inversely proportional to the supportive power. In a stand-alone scenario,
the smaller speed droop R can improve the settling frequency, but it requires a little more power.

It is noted that the supportive kinetic energy from traditional SGs is from and recharged by the
primary energy input. The primary energy sources for the SGs (such as coal, nuclear) are abundant and
persistent. However, the primary input for renewable generation is stochastic and fluctuant. The stored
energy in capacitors or batteries can only provide frequency responses in a limited time-span, and
after the responses, their operation status needs to be restored for self-stability. In the view of time, the
IR and its support energy are short-term, while the PFR and its support power are long-term. Under
a specific grid code, the provided energy and power from PEIs should be designed to be as low as
possible to avoid the oversized headroom and financial costs. Consequently, the desired H and R
should be set as the lowest values in their satisfying ranges.

4.3. Adaptive Parameter Tuning

In power systems, the disturbances are mainly caused by the loss of the load, and large disturbances,
which are represented by the step changes of the load, range from 0.03 to 0.05 pu [11,22]. In some
renewable-rich countries (such as Germany, the United States, and the UK), the system operators have
made grid codes for renewables to provide ancillary services [35]. For example, the prescribed limit for
ROCOF is 0.125 Hz/s [36]. In addition, in this material, the maximum ROCOF and PFR delivery time in
its case study are set to be 0.5 Hz/s and 10 s, respectively. In another research, the maximum frequency
deviation ∆ fmax is set as 0.2 Hz [30]. It is noted that if the ROCOF exceeds 1 Hz/s, the frequency relay
would be tripped and incur a large disturbance to a power system [37]. Generally, the delivery of PFR
is required to be within 10–30 s, and the PFR capacity should always limit the frequency between 49.5
and 50.5 Hz. The conventional standards (when the nominal frequency is 50 Hz) are summarized in
Table 3.
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Table 3. Performance indices for IR and PFR.

Performance Indices Standard

Maximum ROCOF magnitude 0.125–0.5 Hz/s
Frequency nadir/peak magnitude 0.2–0.5 Hz

Settling frequency 49.5–50.5 Hz
PFR delivery time Between 10–30 s

It is noted that the stages of IR and PFR activate in chronological order. Therefore, based on the
composite effects and the preset standards, a flowchart of parameter design for VSG-PEIs is shown
in Figure 13. In step A, the standards for ROCOF and the frequency nadir are input. In step B, the
satisfying range of H is obtained according to the standard of the ROCOF. In step C, the satisfying
range of R is obtained by the nadir requirement. In step D, the desired H and R are determined by
checking the settling time and frequency.
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5. Simulation

In this section, the proposed VSG emulation strategies and the parameter tuning approach are
verified in simulation through MATLAB/Simulink. Based on the predetermined standards of the
performance indices shown in Table 4, the parameters in the simulation are shown in Table 5.

Table 4. Predetermined standards of performance indices.

Performance Indices Standard

Maximum ROCOF magnitude Within 0.5 Hz/s
Frequency nadir/peak magnitude Within 0.2 Hz

PFR delivery time Within 20 s
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Table 5. Parameters in simulation.

Parameter Value Unit Parameter Value Unit

Vdc 800 V H 5 pu
Vac 0.22 kV D 1 pu
L 10 mH Percentage R 5 pu
C 350 µF Voltage droop 3% pu
f 50 Hz Load step 0.03 pu

fpwm 5000 Hz Step time 1 s
VAbase 15,000 W

5.1. Parameter Determination

When the step deviation of the load varies from 0 to 0.06 pu, the boundary values of the inertia
constant H and the speed droop R to meet the above standards are selected as the desired parameters,
which are shown in Figure 14.
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By the parameter settings, the theological performances of the simplified dynamic system are
shown in Figure 15.

5.2. Simulation Results and Analysis

When subjected to a step increase of load from 0.01 to 0.06 pu, respectively, the simulation results
of the frequency and the ROCOF of the dynamic systems are shown in Figure 16. With the increase of
load deviation, the nadir and ROCOF get worse. Clearly, the fixed parameter settings cannot satisfy
the standards because they are not adaptive to load changes.
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Correspondingly, when the proposed method of adaptive tuning is activated, the parameter
settings are determined by the load changes measured by sensors. Under the preset performance
standards, the parameter settings for varying step increase of the load are calculated and shown in
Figure 17. With the increase of the demand, the inertia constants H increases while the percentage R
decreases accordingly.

By the adaptive parameter settings, the frequency and ROCOF responses of the dynamic system
are shown in Figure 18. Although the step change of the demand varies, the frequency nadir and the
magnitude of the ROCOF both satisfy the preset standards. Consequently, the proposed method of
adaptive parameter tuning is verified.
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6. Conclusions

Based on the quantitative analysis of the performance indices in the IR and PFR stages, this paper
proposes a parameter tuning method adaptive to load changes for VSG-PEIs performing frequency
control. From the previous, the conclusions are made.
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(1) The frequency responses of PEIs include two stages: the inertia response and the primary
frequency response. When subjected to load disturbances, the transfer function of the dynamic system
of VSG-PEIs performing frequency response can be derived from the control structures.

(2) By the properties of the fast and slow poles and zeros, the dynamic system can be simplified into
a second-order system. The performance indices are deduced by the inverse Laplace transformation.

(3) In the frequency response, the maximum deviation and the magnitude of the ROCOF are two
key indices that determine the performance. The magnitude of the ROCOF is determined by the load
deviation and the inertia constant. The nadir is determined by the load step, the inertia constant, and
the speed droop.

(4) By the properties of the performance indices, adaptive parameter tuning can be implemented.
The inertia constant is obtained by the ROCOF standard and the measurement of the load step. Then,
the speed droop R is obtained by the nadir standard and the inherited setting of H. Finally, the desired
H and R are checked to satisfy the standards of the settling frequency and time.

By the simulation results, the parameter settings of the VSG-PEIs are adaptive to the step change
of the demand. Consequently, the proposed method can fully satisfy the predetermined standards in
various conditions.

In parallel scenario, as the overall properties of frequency response are determined by all the
responsive sources (in the same way as the frequency response dominated by online synchronous
machines in traditional power systems), the calculated inertia and speed droop characteristics can
be used to (1) examine the overall frequency stability and (2) allocate parameter references for
coordinative operation.
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