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Abstract: Recently Internet of Things (IoT) attains tremendous popularity, although this promising
technology leads to a variety of security obstacles. The conventional solutions do not suit the new
dilemmas brought by the IoT ecosystem. Conversely, Artificial Immune Systems (AIS) is intelligent
and adaptive systems mimic the human immune system which holds desirable properties for such
a dynamic environment and provides an opportunity to improve IoT security. In this work, we
develop a novel hybrid Deep Learning and Dendritic Cell Algorithm (DeepDCA) in the context of
an Intrusion Detection System (IDS). The framework adopts Dendritic Cell Algorithm (DCA) and
Self Normalizing Neural Network (SNN). The aim of this research is to classify IoT intrusion and
minimize the false alarm generation. Also, automate and smooth the signal extraction phase which
improves the classification performance. The proposed IDS selects the convenient set of features from
the IoT-Bot dataset, performs signal categorization using the SNN then use the DCA for classification.
The experimentation results show that DeepDCA performed well in detecting the IoT attacks with
a high detection rate demonstrating over 98.73% accuracy and low false-positive rate. Also, we
compared these results with State-of-the-art techniques, which showed that our model is capable of
performing better classification tasks than SVM, NB, KNN, and MLP. We plan to carry out further
experiments to verify the framework using a more challenging dataset and make further comparisons
with other signal extraction approaches. Also, involve in real-time (online) attack detection.

Keywords: artificial intelligence; artificial immune system; cyber security; danger theory; deep
learning; dendritic cell; internet of things; IoT; network security

1. Introduction

Recently in the academic and industrial circles, Internet of Things (IoT) have became an active area.
According to Cisco, 500 billion devices will be connected by the year 2030 [1]. Although this technology
is promising in many sectors, such as uch as smart homes, health-care, intelligent transportation, power
smart grid and numerous areas that not yet even conceived [2], it carries with it many security risks.
Easy accessibility and tremendous propagation of IoT devices creates a fertile environment for cyber
attacks. Most of these devices are small, inexpensive and have limited memory and computing capacity
to run the current existing security software [3]. Additionally, the Original Equipment Manufacturers
(OEMs) are using commercial embedded Real-Time Operating Systems (RTOS), such as FreeRTOS
and OpenRTOS to minimize the cost [4] which makes these end devices vulnerable to be targeted.
As stated by a report for Malwarebytes, the IoT attacks will continue at steady levels with increased
sophistication [5]. For example, recent malware such as Mirai [6] and Ransomware of Things (RoT) [7,8]
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proven that conventional security methods are ineffective and do not provide decentralized and strong
security solutions. In addition to the urgent need for a new paradigm of security commensurate
with the changes that have emerged with the IoT ecosystem. Where the security problems inherited
from the traditional network alongside the Advanced Persistent Threat (APT). Therefore, to dissolve the
obstacles security of IoT we must look at solutions from a comprehensive perspective and take into
account new circumstances and requirements. Lately, multiple solutions have been applied to secure
the IoT environment and guarantee security requirements like authentication, availability, integrity,
confidentiality and privacy [9].

From another aspect, the Artificial Immune System (AIS) is a bionic intelligent system that mimics
the biological immune system and its way to protect against foreign or dangerous invaders [10].
AIS has proven effective in protecting TCP/IP networks [11,12] , Wireless Sensor Networks (WSN)
[13,14], and Mobile Ad Hoc Network (MANET) [15,16]. This makes it more suitable for a dynamic
and changeable environment such as IoT. Moreover, the human immune system properties make it
a perfect approach to resolve IoT security dilemmas. Due to its ability to self-learning, adaptability
robustness, resource optimization, dynamic structure, and lightweight [17] make it adapted to various
applications such as computer security [18], intrusion detection [19,20], anomaly detection [21], data
analysis [22,23], pattern recognition [24] and scheduling [25,26]. Over and above, AIS methods solve
multi-objective optimization problems successfuly [27,28], control engineering [29,30] and robotics
[31].

After extensive IoT attacks, we reviewed the proposed recommendations and solutions to avoid
infection. The suggested solutions were generally summed up to change the default passwords for
the IoT devices, disable some ports, and guide consumers and manufacturers to use more secure
devices. Although these security practices are effective and provide the first line of defense, their
application is limited to security management and human interaction. Another challenge in the case of
known software vulnerabilities is the delay of download the patches. Under these conditions, intrusion
detection techniques become more important. Thus, the motivation for this study is that the traditional
detection approaches are not able to efficiently detect new variants of IoT attacks. Consequently, it
is urgent to study intrusion detection approaches in depth.Wherefore, the immune-based detection
methods consider as a priority option due to its desirable properties.

The artificial immune system has various algorithms detect different types of attacks. The second
generation of these algorithms called Dendritic Cell Algorithm (DCA). Greensmith introduced this
novel danger-based AIS to detect port-scan attacks over wired networks [32]. DCA is inspired by
the capability of DCs to receive multiple antigens and signals, as well as reveal the context of each
antigen. A novel DeepDCA is introduced in this study by sing an AIS inspired algorithm promises
to address the challenges of IoT environment that make it vulnerable to attacks. The DeepDCA is
verified and tested in this study to detect DoS, DDoS, Information gathering and theft. DeepDCA can
be generalized to detect other types of attacks on IoT.

In this paper, we propose a novel Deep Learning and Dendritic Cell Algorithm based IDS
framework; named DeepDCA. To identify IoT intrusion and minimize the false alarm generation.
Our contributions can be summarized as follows:

• Design a novel IDS composite of Self Normalizing Neural Network (SNN) for signals
categorization with Dendritic Cell Algorithm (DCA)

• Introduce the concept of Self Normalizing Neural Network in the DCA signal extraction phase
to search for the convenient features, reduce the complexity and automate this phase while
preserving excellent performance.

• Implement the proposed framework on IoT dataset and evaluate its performance based on a
variety of IDS performance metrics.

• Use an IoT dataset instead of the out-dated KDD Cup 99 dataset.

The rest of this paper is organized as follows. Section 2 provides a brief background of recent
large-scale attacks targeting IoT devices and existing IoT security Approaches. Section 3 describes the
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dendritic cell algorithm generally and the basic concepts of Self Normalizing Neural Network. Related
work for the AIS algorithms in the IoT ecosystem summarizes in Section 4. While Section 5 presents
the proposed method based on DCA and SNN for signal selection and categorization. Followed by the
evaluation results of the proposed IDS in Section 5. Finally, Section 6 concludes the paper.

2. Background

2.1. Intrusion Detection Systems

Many technologies designed to protect the internet from destruction, breaches and unauthorized
access. However, there are many defense technologies designed to protect this environment. IDSs are
one of the essential parts that aim to monitor, analyze the network traffic and detect attacks. According
to Hernández-Pereira, Elena, et al. [33] Intrusion can be defined as “any set of actions that attempt to
compromise the Confidentiality, Integrity, and Availability (CIA) of information resources.” Typical
IDS have an analysis engine, sensors, and a reporting system. The sensors collect network, and host
data then send it to the analysis engine. Hence, the analysis engine investigates the collected data and
detect intrusions. If intrusion exists, the network administrator receives an alert from the reporting
system [34].

Intrusion Detection Systems Architecture

The architecture of the IDSs functional modules divided into four types: [35] (see Figure 1)

• Event-boxes (E blocks): these blocks monitor the target system by sensor elements and acquire the
information events.

• Database-boxes (D blocks): these blocks store information from E blocks.
• Analysis-boxes (A blocks): these blocks analyze events and detect potential abnormal behavior.
• Response-boxes (R blocks): these blocks execute in case an intrusion occurs.

Figure 1. General architecture for IDS systems.

2.2. IoT Security Overview

The dynamic characteristics of the Internet of things and the desire to make devices
connected anywhere, anytime, and anyplace creates critical challenges about privacy and security.
Researchers from the HP lab addressed that almost 70% of IoT devices are vulnerable to be targeted,
which means 25 vulnerabilities per device [36]. The vulnerabilities around privacy, lack of encryption
standards, authentication/authorization. Additionally, the threats and security problems inherited
from the traditional network [37]. As shown in Figure 2, the attacks classified on the IoT three layers:
perception, network, and application-layer [38].
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Figure 2. Attacks on IoT Layers.

2.3. Existing IoT Security Approaches

2.3.1. Non Artificial Intelligence-Based Security Method

Many of non-artificial intelligence-based security methods have been implemented to secure
the IoT environment. A good example of these methods: identity-based encryption, watchdog,
reputation and trust mechanisms, Complex Event Processing (CEP) and lightweight cryptography.
Table 1 summarize the presented techniques.

Table 1. Non-Artificial Intelligence-based Security Method.

Ref Year Techniques Metrics IoT Layer Simulator Category

[39] 2019 Generic honeypot
framework by
utilizing VPN
connections

Detection rate, low
cost and maintenance
effort

Applications
Layer

Simulation Data Honeypot

[40] 2016 Identity-based
encryption

Efficiency (overhead
cost associated with
computation and
communication)

Applications
Layer

Simulation Data Lightweight
cryptography
(LWC)

[41] 2015 Watchdog,
reputation and
trust mechanisms

Detection rate, false
positives and false
negatives.

Network Layer Simulator Cooja Intrusion
detection
system

[42] 2014 External entity as
the ISP or Security
as a service (SECaaS
or SaaS) provider, to
install access control
rules in the network

........ Network Layer Captured
the network
activity using the
Wireshark packet
analyzer.

Emerging
household
appliances

[43] 2014 Complex event
processing (CEP)

CPU utilization,
memory
consumption and
processing time

Applications
Layer

Esper an engine
for CEP and event
series analysis.

Real-time
intrusion

[44] 2013 Dynamic variable
cipher security
certificate “one time
one cipher”

Repetition rate Sensor Layer Simulation Data Lightweight
cryptography
(LWC)

[45] 2013 Rule-based
detection

Detection rate, false
positives

Network Layer Demo Intrusion
detection
system

[46] 2013 End-to-End
message security
such as IPsec and
DTLS

Detection rate,
True positives rate
energy and memory
consumption

Network Layer Contiki’s network
simulator Cooja

Real-time
intrusion
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2.3.2. Artificial Intelligence-Based Security Method

Artificial intelligence has attracted attention in recent years, especially in the field of IoT security.
The following Table 2 summarizes the leading technologies that have been introduced to protect the
IoT ecosystem.

Table 2. Artificial Intelligence-based Security Methods (FS = Features Selection).

No Year Techniques Dataset Metrics IoT Layer FS Category

[47] 2019 C5 and One Class
Support Vector
Machine classifier

Bot-IoT dataset Detection rate
and False
positive

Network Layer Yes Intrusion
Detection
System

[48] 2019 Multilayer
Perceptron (MLP)

ADFA-LD and
ADFA-WD

Accuracy,
Recall, and F1

Network Layer No Intrusion
Detection
System

[49] 2018 Recurrent Neural
Network (RNN)
+ Convolutional
Ceural Network
(CNN)

RedIRIS. Accuracy,
Precision,
Recall, and F1

Network Layer No A network
traffic
classifier
(NTC)

[50] 2018 Deep-learning
(DAE + Deep
Feed Forward
Neural Network
(DFFNN))

NSL-KDD and
UNSW-NB15

Accuracy,
Detection rates,
and False
Positive Rate

Network Layer Yes Anomaly
Detection

[51] 2017 Deep Neural
Network + Grid
Search Strategy

UNSW-NB15,
CIDDS-001, and
GPRS.

Accuracy,
Precision,
Recall and False
Alarm Rate.

Transport Layer No Anomaly
Detection

[52] 2017 Convolutional
Neural Networks
(CNN)

IoTPOT Detection rates,
Accuracy

Network Layer No Light-weight
Detection

[53] 2017 Recurrent Neural
Network (RNN)

ISCX Intrusion
Detection Dataset
and the CTU-13
Dataset

Sensitivity,
Specificity,
Precision,
Confusion
Matrix
Accuracy
and F1 Score

Applications
Layer

No Botnet
Detection

[54] 2016 Stacked Auto
Encoder (SAE)
Deep learning

KDD99 Detection rates,
and False
Positive Rate

Transport Layer Yes Intrusion
Detection
System

[55] 2016 artificial neural
network (ANN)

Collect the data in
Testbed

Detection rates,
and False
Positive Rate

Network Layer No Anomaly
Detection

[56] 2016 Artificial Neural
Network (ANN)

Simulated IoT
network.

Accuracy, and
False Alarm
Rate.

Applications
Layer

No Threat
Analysis

[57] 2016 Machine Learning
+ Security as a
Service

...... Accuracy, and
False Alarm
Rate

Transport Layer No Integrated
Intrusion
Detection
System

[58] 2013 Hormone-based
Service Detection
Algorithm
(HSDA)

Simulated IoT
network

Stability of
the network,
Saving energy
and Detection
rates

Network Layer No Anomaly
Detection
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3. Dendritic Cell Algorithm

Algorithm Overview

In 1994, Pollu Matzinger introduced the danger theory and described the immune mechanism
through the danger signals activation when damage exists [59,60]. It also states that in the absence of
tissue-related danger signals, the innate immune mechanism will be suppressed [61]. This process
derived from the cell death process (apoptosis and necrosis). The dendritic cell algorithm (DCA),
presented by Green-Smith et al. which considered as de facto danger theory algorithm.DCA goes
through four phases as detailed below [62]:

• Phase 1. Pre-processing and initialization: this phase includes two main steps: feature reduction
and signal categorization. First, feature reduction which selects the most important attributes from
the training set. Next, the selected features classify to signal category: safe, danger and PAMP.

• Phase 2. Detection : in this phase, the DCA has to generate a signal database by combining the
input signals with the antigens to obtain cumulative output signals.

• Phase 3. Context Assessment: the generation of cumulative output signals from the detection
phase are used to perform context assessment of antigens. If the collected antigens by a DC has a
greater Mature DCs (mDC) than its Semi-Mature DCs (smDC) value, it is labeled as 1, otherwise 0.

• Phase 4. Classification: the calculated value deriving from the Mature Context Antigen Value
(MCAV) for each antigen is used to assess the degree of the anomaly. When the value of MCAV
is closer to 1, the antigen probability of been anomalous is higher. The MCAV of antigen is
calculated by dividing the number of times an antigen appears in the mature context by the total
number of that antigen presentation. When the MCAV is calculated, the classification task starts
by comparing the MCAV of each antigen to an anomalous threshold. Antigens with MCAVs
greater than the anomaly threshold are classified into the abnormal otherwise are classified
into normal.

4. Self-Normalizing Neural Networks

Self-normalizing neural networks are introduced in 2017 by Gnter Klambauer [63]. It is a
higher-level abstraction neural networks where the neuron activations automatically concentrate
on a fixed mean and variance. Unlike other neural networks algorithms that lack the ability to
normalizing the outputs and need further layers such as batch normalization [64]

4.1. SELU Activations

The activation function proposed in SNN is Scaled exponential linear units (SELU). It is similar to
the Rectified Linear Units (ReLU) but with a simple exponential function. The SELU activation function
is defined as:

sel(x) = λ

{
x if x > 0
αex − α if x ≤ 0

(1)

where x denotes input α (α = 1.6733), λ (λ = 1.0507) are hyper parameters which control the mean
and variance of the output distribution.

4.2. Alpha Dropout

Ordinarily, the neurons are dropout in a random way by setting his weight to zero with probability
1− p. In doing this the network is prevented to set mean and variance to an expected value. The ReLUs
works very well with the standard dropout for the following reason: zero goes down to the low variance
region which is the default value. In the case of SELU, we have that the default low variance is given by
limx→∞ selu(x) = −λα = α′ and for this reason the standard dropout does not fill well. Then for sets
that the input values randomly to α′, alpha dropout is the proposed to fit them well. The original values
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of mean and variance are restored by alpha dropout and the self-normalizing property is preserved too.
Therefore by making activation into negative values saturation at random alpha dropout suits SELU.

5. Related Work: AIS and IoT

The using of AIS approaches to secure the IoT started in 2010, in this section, we will address the
AIS methods that have been used to secure the IoT area based on the IoT layers.

5.1. Sense Layer

Many solutions based on AIS have been applied to secure the physical layer communication.
The work of Chmielewski and Brzozowski [65], presented a “support system for existing solutions”
embedded in a re-programmable FPGA (Field Programmable Gate Array). This model based on
hybrid negative selection algorithm, called b-v model to detect the zero-day attacks. Besides,
Chen et al. [66] investigated and computed the intensity value of security threats faced by IoT.
They addressed a theoretical security situation sense model. This model consists of a security threat
sense sub-model (STS) and a security situation assessment sub-model (SSA). This work introduced a
notable mathematical theoretical model but this would be more interesting if it describes how to apply
it within IoT and what type of data could be used.

5.2. Network Layer

So far, most of the AIS- based studies have been carried out in the network layer to handle the IoT
security. A signature-based IDS proposed by Liu et al. [67]. This IDS contains memory detectors that
simulate the antigens in the human body and classify datagrams as normal and malicious. In spite
of that theory mathematically analyzed and detected a various number of intrusions, it has a high
computational running and the researchers did not specify how to implement it in limited resources
devices. Additionally, a dynamic approach called Artificial Immune System Response Model (AISRM)
was produced by Liu et al. [68]. The proposed model captures the IoT data packets and transforms
them into immune antigens then detects and responds to attacks. Although this is an adaptable model
proven through a simulation experiment, the central server scalability is a significant problem where
all communication passes through.

5.3. Application Layer

For the application layer, smart homes represented the majority. In this context
Arrignton et al. [69] proposed a Behavioral Intrusion Detection System based on positive and negative
selection algorithms. This work provides an important insight into the process of detecting abnormal
behavior related to non-playing characters such as a human. Nonetheless, due to the expanding of
IoT network, this would delays the performance and leads to consume the resources. And conversely,
in order to reduce the cost and time and provide the optimal solution, Yang et al. [70] developed a
multi-objective optimization model.

6. DeepDCA: Deep Learning Dendritic Cell Algorithm

This Section presents the DeepDCA model for the automate DCA data pre-processing phase.
As shown in Figure 3, the framework consists of three main steps, namely: Features Selection, Signals
Categorization, and Deterministic Dendritic Cell algorithm. The proposed approach functions will
mainly focus on the pre-processing phase.
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Figure 3. Flowchart of The DeepDCA Proposed Model.

6.1. Feature Selection

This framework adopted the Information Gain (IG) approach to decide which features are more
important. The IG(F) is a measure of the reduction in entropy of variable F that is archived by learning
after the value for the feature is observed. In Data Science the information gain used for ranking the
features. A feature with high information gain ranked higher than others and has a strong power in
the classification process. The IG can be obtained by [71]:

IG(S) = E(F)− ∑
v∈values(S)

|Fv|
|F| ∗ E (Fv) (2)

where IG is the gain, values(S) is symbolize all the possible values of an attribute S. Moreover, Fv is a
subset generated by partitioning S based on feature F, and E(F) is the entropy which computed as the
following:

Entropy (F) =
i=2

∑
i=1
−pi ∗ log2 pi (3)

6.2. The SNN Signal Categorization

The SNN module assign each selected attribute to specific signal category (see Figure 4).
The guidelines for signal categorization are presented below:

• Danger Signal: this signal indicates to the presence of anomalous situation or attack circumstances
• Safe Signal: this signal indicates to the presence of normal behavior or non-attack circumstances
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Input layer
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h(1)1 2
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(12 nodes)
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DS

Output layer
(2 nodes)

Figure 4. SSN Architecture for Signal Categorization.

Generation of DCA Signals

The SNN is designed to extract the signals as safe (SS) and danger (DS) signal form the features
(f_1, f_2, ..., f_N) as the following parametrized:

SS ( f1, f2, . . . , fN) = 100 ∗ sigmoid

(
bS + ∑

i
wS,i ∗ selu (bS,i + vS,i ∗ fi)

)
(4)

SD ( f1, f2, . . . , fN) = 100 ∗ sigmoid

(
bD + ∑

i
wD,i ∗ selu (bD,i + vD,i ∗ fi)

)
(5)

where
wS,i and wD,i >= 0 (6)

The sigmoid activation function at the output neurons assures that the signals are contained in
the range 0–100. Where the selu activation function at the hidden layer neurons admits to cut off
high or low values of the feature attributes—depending on the signs of the parameters vS,i or vD,i.
The positivity restriction on the weights wS,i and wD,i breaks the symmetry between the formulae
for the two signals. It prohibits the SNN from choosing a solution where wS,i = −wD,i. These steps
illustrate using the Algorithm 1.
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Algorithm 1 SSN for Signal Categorization.
Input: Features ( f1, f2, ..., fN);

Output: Signals as safe (SS) and danger (DS)

1: initialise number of hidden layers L, weights w;
2: for i in Number of inputs do
3: Add input fi;
4: Add neuron HS,i SeLU activation & connect with fi;
5: Add neuron HD,i SeLU activation & connect with fi;
6: Add AlphaDropout Layer for the SS;
7: Connect it with HS,i, i = 1, ..., Number o f inputs;
8: Add AlphaDropout Layer for DS;
9: Connect it with HD,i, i = 1, ..., Number o f inputs;

10: Add neuron S with sigmoid activation;
11: Connect it with the AlphaDropout Layer for SS;
12: Add neuron D with sigmoid activation
13: Connect it with the AlphaDropout Layer for DS;
14: end for
15: while no of epochs not complete & condition not fulfilled do
16: Update weights;
17: Compute training and validation loss;
18: Evaluate model performance;
19: end while

6.3. Signal Processing

The combined signals to produce the intermediate output values of K and csm. The value K is
a measure of the anomaly or irregularity in the cell, by other hands, the csm value represents the
concentration of the complete signal that a cell exposes in all its useful life. When the cell depletes
its shelf life will migrate and will be ready to classify all of the antigens collected in his past useful
life, at this time produce the classification as normal or abnormal. The addition of safe signals with
the danger signals gives the value csm. Therefore, the value K is obtained subtracting of the danger
signals twice the safe signal. The following equation gives the values:

Ki = DSi − 2SSi. (7)

6.3.1. Costimulation (CSM)

The generated signals from the SSN module combine to produce two intermediate output values
CSM and K. By Costimulation we mean the process of cumulative concentration of signals within its
environment by a DC in a period of time of his life. For a DC in the moment that his life span expires,
it immediately migrates to the lymph node and exhibits antigens in certain circumstances. With the
following equation the calculation of the value csm is performed:

csmi = SSi + DSi, (8)

where S and D are the input value for the safe and danger signals.

6.3.2. Lifespan

By mean of the term lifespan of a DC we signify the total time that a DC takes to collect all of the
signal concentration on its environment previous to the migration to the lymph node. When the value
of lifespan results in less than the sum of the concentration the lifespan of the DC stops of subtracting
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the accumulated concentration of signals over time. Thus, the value of lifespan is a fixed quantity, but
overtime this value is decreasing as the following Equation (9) assures-where i = 1, ..., N-:

li f espan = li f espanSSi + DSi (9)

6.4. Anomaly Metrics: MCAV and Kα

Once all data are processed it is possible to calculate the metric MCAV, the mature context antigen
value obtained from the output of the cell that comes out from the run-time process. The value is
calculated for each antigen of type α, where the symbol α is associated with a collection of antigens
that has in common the same value. Clearly we could think by its name that MCAV is indeed a
measure of the proportion of antigen contained in a completely mature cell whose value is given by
the following equation:

MCAVα =
M
Ag

, (10)

where MCAVα represents the antigen MCAV of the collection α, M is the number of the mature antigen
of type α, and Ag is the total quantity of antigen presented for the collection of an antigen of type α.
This is a probabilistic metric with values between zero and one, when the value of this metric goes to
one, the probability of maturity of the cell increase. The classification rule applied on as follows in
Equation (11) and the deterministic DCA could be described by mean of the Algorithm 2.

f (x) =

{
Malicious, if MCAV > at
Legitimate, otherwise

(11)



Appl. Sci. 2020, 10, 1909 12 of 23

Algorithm 2 Determisnistic DCA for Intrusion Detection.

Input Antigens and Signals;

Output Antigens Types and accumulative k values

1: set number of cells;
2: initialise DCs()
3: while data do
4: for input do
5: if Antigens then
6: antigenCounterC++;
7: cell index = antigen counter modulus cells number;
8: DC of cell index assigned antigen;
9: update DCs antigen profile;

10: else . This occur for the case of signals;
11: calculate csm and k;
12: for all DCs do
13: DC.lifspan- = csm;
14: DC.k+ = k;
15: if DC.lifespan less or equal to then
16: logDC.k, number of antigens and iterations
17: reset DC();
18: end if
19: end for
20: end if
21: end for
22: end while
23: for antigen Type do
24: calculate anomaly metrics;
25: end for

7. Experimental Setup

To conduct this experiment, we performed it on the High-Performance Computing (HPC) called
Aziz. Aziz is a Fujitsu PRIMERGY CX400, Intel True Scale QDR, Intel Xeon E5-2695v2 12C 2.4GHz
which provides a distributed computing facility. Moreover, for data exploration and visualization
we used ggplot framework [72] and Seaborn [73]. For preprocessing steps and feature engineering,
Pandas framework [74] and Numpy framework [75] have been used. To calculate performance metrics,
scikit-learn [76] was used, and finally, for data analysis, scikit-learn framework and Keras [77] were
used. We followed the Cross-Industry Standard Process (CRISP) methodology [78]. CRISP is a
structured methodology for Data Mining projects conceived in 1996. which contain the following
steps: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and
Deployment.

7.1. Data Acquisition

To illustrate the effectiveness of our model we selected The BoT-IoT dataset [79]. This data was
created in the Cyber Range Lab of The center of UNSW Canberra Cyber and has more than 72,000,000
records which include DDoS, DoS, OS and Service Scan, Keylogging and Data exfiltration attacks.
Table 3 illustrate the statistics distribution of considered features.
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7.2. Exploratory Data Analysis (Understating the Data)

Exploratory Data Analysis (EDA) is “the process of examining a dataset without preconceived
assumptions about the data and its behavior” [80]. The goal of the EDA is to evaluate the cleanliness
and missing data and explorer the relationships among variables which give us a deep insight (see
Table 4).

Table 3. Statistical Description for The Dataset.

Name Value

Rows 3,668,045

Columns 47

Discrete columns 7

Continuous columns 40

All missing columns 0

Missing observations 0

Complete Rows 3,668,045

Memory allocation 13.6 Mb

7.3. Preparation Steps of Bot-IoT Dataset

Handling Categorical Variables

The categorical feature values (‘saddr’, ‘sport’, ‘daddr’, ‘dport’, ‘state’, ‘category’, and
‘subcategory’) have converted into numeric values for easily applying feature selection method and
the DeepDCA algorithm.

Table 4. Frequency distribution of considered features.

Feature
Attack

Type

Frequency

Count
Training Test

Normal Non 3,668,045 2,567,631 1,100,413

Information

Theft

Keylogging 73 51 22

Data theft 6 4 2

Information

gathering

Service

scanning
73,168 51,217 21,951

OS

Fingerprinting
17,914 12,540 5374

DoS

DoS TCP 615,800 431,060 184,740

DoS UDP 1,032,975 723,082 30,9893

DoS HTTP 1485 1039 446

DDoS

DDoS TCP 977,380 684,166 293,214

DDoS UDP 948,255 663,778 284,477

DDoS HTTP 989 692 297
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7.4. Feature Selection

Feature selection is a primary step to enhance IDS performance, reduce the computational cost
and improve accuracy. In the original dataset, a selection of the 10 best features has been provided
(see Table 5). In this work, we used the best 10 features and adopted the Information Gain (IG) approach
to decide which features are more important. Figure 5 shows information gain for each feature. The
features (‘seq’, ‘DstIP’, ‘srate’, ‘SrcIP’, ‘max’), are the most discriminative attribute. While the rest
(‘mean’, ‘stddev’, ‘min’, ‘state_number’, ‘drate’) have small maximum information gain (smaller than
0.5), which little contribute to intrusion detection.

Figure 5. Features Ranking Based on Information Gain.

Table 5. BoT-IoT best 10 features Description.

Feature Data Type Description

pkSeqID Ordinal Row Identifier

Seq Numerical Argus sequence number

Mean Numerical Average duration of aggregated records

Stddev Numerical Standard deviation of aggregated records

Min Numerical Minimum duration of aggregated records

Max Numerical Maximum duration of aggregated records

Srate Numerical Source-to-destination packets per second

Drate Numerical Destination-to-source packets per second

NINConn PSrcIP Numerical Total Number of packets per source IP

NINConn PDstIP Numerical Total Number of packets per Destination IP

7.5. DeepDCA-Based Classification

7.5.1. Initialization

In this phase, we initialized the population of DCA with size up to a limit of 100 cells. Then, an
array size named antigens set to store antigen per iteration. Finally, initialize the output parameters K
and CSMK to zero.
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7.5.2. Signals and Antigen

The antigen represented by an attribute of the dataset which identifies the traffic packets uniquely,
in our case the antigen is “pkSeqID” attribute. For the Signals, SNN models meant to implement
a parametrized signal extraction process for the DCA. It defined to have 1 input layer with six
neurons equal to the number of input features, one hidden layer, and 1 output neuron for the binary
classification.. The Model was trained in 125 epochs. The task of the hidden layer neurons would be to
encode the decision for a threshold and transform the input attributes into signals normalized into
the interval [0, 1] (hence, sigmoid activation). Therefore, the hidden layer neurons should decide for a
sign and threshold for each feature. Then, we used selu activation functions for the hidden layer and
an alpha− dropout layer between the hidden layer and the output neurons. The output neurons can
choose a sign and weight per input signal, and would again yield signals within the interval [0, 1].
Figure 6 represents the accuracy and loss of SNN model.

7.5.3. Dendritic Cell Algorithm Module

Once the data pre-processing phase is performed, the model moves to the next stages -as described
in Section 3, which are the Signal Processing, the Context Assessment, and the Classification Procedure.

Figure 6. SNN Model Accuracy and Loss.

7.6. Evaluation Criteria

The confusion matrix is usually used to evaluate the performance of the classification model.
The confusion matrix relies on the four terms of True Positive (TP), True Negative (TN), False Negative
(FN) and False Positive (FP) [81] as shown in Table 6.

• TP: is the number of actual malicious records classified as attacks.
• FP: is the number of actual legitimate records classified as attacks.
• TN: is the number of actual legitimate records identified as normal,
• FN: is the actual anomalous records categorized as normal

Also, we evaluate the performance of DeepDCA model in terms of Accuracy, Precision, Recall,
F-measure, and False alarm rate:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)
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F−measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)

Table 6. Confusion Matrix.

Predicted

Positive Negative

Actual
Positive True Positive False Negative

Negative False Positive True Negative

8. Result and Analysis

This section presents the results obtained when applying the DeepDCA model for intrusion
detection. Several hyper-parameters are examined such as the selected features and the attack types.

8.1. Impact of Features

Table 7 illustrate the influence of the features employed in the learning process. The first
three records in the table represent the result of the imbalanced data. We examined all features
of the BoT-IoT then the best 10 features, and finally, the selected features using information gain
(see Section 7.4). As the accuracy is misleading metrics when dealing with imbalanced classes problem,
Recall, Precision F-measure are telling a more truthful story. Precision is a measure of (exactness),
recall for (completeness) of a model and the F-measure is a harmonic mean of the two. As shown in
Table 7, even though the accuracy for all features of the imbalanced classes gets a better result, the rest
of the metrics are not in line with it. The IG-selected features have the best indication of detection
performance for imbalanced classes. On the other hand with balanced data, as expected fewer features
render better results in general. The results produce slightly worse when added to the full features set.
Consequently, DeepDCA yields a better result when dealing with balanced classes and features that
have a higher importance in the detection process. For make it easier to compare the result, Figure 7
shows the same results in a different format.

Table 7. DeepDCA performance based on Features Impact among Imbalanced and Balanced Data.

Features Accuracy Precision Recall F-Measure

Im-Data

All 0.7613 0.5091 0.7368 0.6022

Best 10 0.5800 0.3200 0.6667 0.4324

IG 0.6550 0.7000 0.6422 0.6699

Ba-Data

All 0.8950 0.7900 0.9836 0.8827

Best 10 0.9500 0.9000 1.0000 0.9474

IG 0.9873 0.9917 0.9836 0.9877
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Figure 7. Comparison of Features Impact in Classification Process (Im = Imbalanced Data,
Ba = Balanced Data).

8.2. Impact of Attack Scenarios

We evaluated the proposed IDS by measuring the performance metrics in different attack scenarios
as shown in Table 8. The results illustrated that DeepDCA performed well in detecting various attack
types although its performance was better in DDoS/DoS attacks which may be due to the abundance
of data about this attack in the BoT-IoT dataset.

Table 8. DeepDCA Performance Evaluation Metrics in Different Attack Categories.

Attack Accuracy Precision Recall F-Measure

DoS 99.8% 99.5% 98.53% 99.012%

DDoS 99.9% 100% 100% 100%

Reconnaissance 99.10% 98.88% 98.22% 98.54%

Information
Theft

98.56% 99.01% 98.9% 98.95%

8.3. Comparison with Classifiers

The performance evaluation results of the DeepDCA model are compared with four commonly
used methods for intrusion detection, namely the Support-Vector Machines (SVM), Naive Bayes (NB),
K Nearest Neighbor (KNN) and Multilayer Perceptron (MLP). The comparison made is in terms of
Accuracy, F-measure, Recall/sensitivity and Precision. Table 9 shows that DeepDCA slightly better
than MLP and outperformed other classifiers SVM , NB and KNN. To sum up, applying the DeepDCA
for the Intrusion detection system was validated against an IoT dataset demonstrating over 98.73%
accuracy. It was able to identify successfully different types of attacks and showed good performances
in terms of detection rate and false-positive rates.
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Table 9. Comparison of Classifiers Performance.

Classifiers Accuracy Precision Recall F-Measure

KNN 91.69% 91.99% 93.75% 94.31%

NB 95.00% 95.00% 94.60% 94.30%

SVM 96.00% 96.80% 96.00% 97.00%

MLP 97.59% 97.99% 96.00% 96.37%

Proposed IDS 98.73% 99.17% 98.36% 98.77%

9. Conclusions

In this research, we develop a Deep Learning Dendritic Cell Algorithm (DeepDCA). Our
framework adopts DCA and Self Normalizing Neural Network. The aim of this research is to
classify IoT intrusion and minimize the false alarm generation. Also, automate and smoothe the
signal extraction phase which improves the classification performance. The proposed IDS selects the
convenient set of features from the IoT-Bot dataset and to perform their signal categorization using the
SNN. The experimentation results show that our DeepDCA performed well in detecting the IoT attacks
with a high detection rate demonstrating over 98.73% accuracy and low false-positive rate. Also,
capable of performing better classification tasks than SVM, NB, KNN and MLP classifiers. We plan to
carry out further experiments to verify the framework using more challenging datasets with missing
and noisy data and make further comparisons with other signal extraction approaches. Also, involve
in real-time (online) attack detection.
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Abbreviations

The following abbreviations are used in this manuscript:

IG Information Gain
SS Safe Signals
DS danger Signals
NB Naive Bayes
DC Dendritic Cell
TP True Positive
TN True Negative
FN False Negative
FP False Positive
IoT Internet of Things
AIS Artificial Immune Systems
CSM Costimulation
HPC High Performance Computing
IDS Intrusion Detection System
SNN Self Normalizing Neural Network
DCA Dendritic Cell Algorithm
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RoT Ransomware32of Things
APT Advanced Persistent Threat
EDA Exploratory Data Analysis
WSN Wireless Sensor Networks
CIA Confidentiality, Integrity, and Availability
CEP Complex Event Processing
LWC Lightweight Cryptography
mDC Mature DCs
MCAV Mature Context Antigen Value
SELU Scaled exponential linear units
ReLU Rectified Linear Units
SVM Support-Vector Machines
KNN K Nearest Neighbor
smDC Semi-Mature DCs
RTOS Real-Time Operating Systems
MANET Mobile Ad Hoc Network
CRISP Cross-Industry 231 Standard Process
DeepDCA Deep Learning and Dendritic Cell Algorithm
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