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Abstract: This study proposed the concept of sparse and low-rank matrix decomposition to address
the need for aviator’s night vision goggles (NVG) automated inspection processes when inspecting
equipment availability. First, the automation requirements include machinery and motor-driven focus
knob of NVGs and image capture using cameras to achieve autofocus. Traditionally, passive autofocus
involves first computing of sharpness of each frame and then use of a search algorithm to quickly
find the sharpest focus. In this study, the concept of sparse and low-rank matrix decomposition was
adopted to achieve autofocus calculation and image fusion. Image fusion can solve the multifocus
problem caused by mechanism errors. Experimental results showed that the sharpest image frame and
its nearby frame can be image-fused to resolve minor errors possibly arising from the image-capture
mechanism. In this study, seven samples and 12 image-fusing indicators were employed to verify the
image fusion based on variance calculated in a discrete cosine transform domain without consistency
verification, with consistency verification, structure-aware image fusion, and the proposed image
fusion method. Experimental results showed that the proposed method was superior to other
methods and compared the autofocus put forth in this paper and the normalized gray-level variance
sharpness results in the documents to verify accuracy.

Keywords: autofocus; night vision goggles; image fusion; sparse and low-rank matrix decomposition

1. Introduction

Night vision goggles (NVG) equipment can be used as nighttime visual aids by helicopter pilots
in low-light environments. In particular, the NVG availability situation will directly affect the safety
of nighttime aerial reconnaissance missions. Therefore, highly equipment availability should be
maintained through regularly maintaining inspections and verifications. At present day, the aviator’s
NVG model AN/AVS-6 (V) 1 and AN/AVS-6 (V) 2 still rely on lots of manpower to perform their
calibration. While processing, NVGs need to be placed on a test bench in order to commence manual
focus adjustment operations by observing the image through the eyepiece. After the focus adjustment
operation is completed, to make sure that the equipment is in line with calibration standards is
confirmed only by human eyes. Since automatic image detection technology is sophisticated and
widely applied, the researcher aims to reduce the staff's education time and to achieve the goal of
proper equipment used by means of automatic image detection [1].
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After gaining an insight into the performance and limitations of NVG, the autofocus operating
process can be more accurately developed. Referring to the document of basic structure [2], the
image quality of NVG relies on the electromagnetic spectrum signals detected by the enlarged image
intensifier. The electro-optic system of the image intensifier is an important component. This component
significantly affects resolution and light amplification. However, this component is subject to damage
under strong light or high-humidity environments, and the general architectural diagram of the
image intensifier is as shown in Figure 1 [2]. As the image intensifier will affect aviator’s safety,
image intensifier detection has become a standardized process. The current aviator’s nighttime NVG
test bench (TS-3895A/UV) [3] can provide the nighttime low-light environment required for NVG
calibration. However, the test bench itself is unable to automatically adjust the NVG focal length. In
addition to the drawback of needing to observe NVG eyepiece images by human eye before manually
adjusting nighttime NVG focal length, human factors may lead to inaccurate test results. Therefore, this
project intends to use a direct current (DC) servo driver to promote the focal knob of NVG to achieve
the purpose of adjusting focus and acquiring quantitative value of rotation angle. For the configuration
and design, refer to the document [1]. At present the autofocusing methods can be divided into active
autofocusing and passive autofocusing [4]. Active autofocusing involves installing external infrared
or other tools to measure distance between camera lens and target. Passive autofocusing, on the
other hand, involves calculating sharpness information of a single image obtained from the camera.
After calculating the sharpness of multiple images, the sharpness curve is acquired. The peak value
of the sharpness curve is the best focal distance. Since this case proposes to adjust focus via image
information of NVG, the passive autofocusing method was adopted. The key to the application of
this method lies in whether effective sharpness points can be calculated through image information.
Light luminance is the key affecting the passive autofocusing system. In previous studies, many
types of sharpness computing methods were compared [5] to determine merits and drawbacks, which
were applied in NVG’s autofocusing [1]. In passive autofocusing, regardless of sharpness computing
method, the subsequent image intensifier display on the screen undergoes defect testing, all of which
are independent processes. Jian and Peng proposed autofocusing process for NVGs [1], which uses
gradient-based variable step search and variation of normalized gray-level as the main method for
accomplishing autofocus. Wang et al. [6] suggested the application of a robust principal component
analysis method in multifocus image fusion. Additionally, an increasing number of related themes
have undergone research [7], and low-rank matrix and sparse matrix themes aroused the study interest.
Therefore, further development and application in NGV autofocusing and image fusion to aid in
identifying NVG equipment availability were explored.
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The configuration of the mechanism comprises an NVG testing autofocusing system that includes
a platform, motor, mechanism, and camera, as shown in Figure 2, as well as the multifocus problem
caused by the inaccuracy between lens and NVG, as shown in Figure 3. This study adopted the
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image fusion method to resolve multifocus problems. Targeting how to correctly fuse images to
ensure results presenting better information representativeness compared to any single input image
is also an important topic in image fusion [7]. So far, a large quantity of image fusion techniques
have been proposed. Among them, wavelet transport-based image fusion is a popular subject of
research [8,9] because it can maintain precision of spectrum while increasing and improving accuracy
of the space. When using wavelet decomposition, if only a few decomposition stages are used, the
fused image’s accuracy of space will be poorer. On the contrary, if too many decomposition stages are
used, spatial similarity between the fused image and the original will be poorer [10]. Among those
fusion methods, structure-aware image fusion [11] and image fusion in the discrete cosine transform
(DCT) domain [12,13] are quite classic methods and widely used in various fields [14,15]. The following
discusses wavelet-based image fusion in recent years. Vanmali et al. [16] proposed a quantitative
measure using structural dissimilarity to measure the ringing artifacts. Ganasala and Prasad [17]
especially focused on poor contrast and high-computational complexity issues of fusion outcomes. Seal
and Panigrahy [18] focused on translation-invariant à trous wavelet transform and fractal dimension
using a differential box counting method. Hassan et al. [19] implemented image fusion methods that are
combined with wavelet transform and the learning ability of artificial neural networks. In recent years,
deep learning networks have also been used to execute image fusion [20–22]. In general, deep learning
networks’ fusion quality depend on the sample characteristics at the time of data training. Image fusion
based on low-rank matrix and sparse matrix characteristics has been a popular topic in recent years.
Maqsood and Javed [23] proposed a multimodal image fusion scheme, which was based on two-scale
image decomposition and sparse representation. This technology mainly uses the edge information
of the sparse matrix for fusion. Ma et al. [24] proposed a multifocus image fusion method, mainly
established in one fusion rule of sparse coefficients, which is based on the optimum theory and solved
by the orthogonal matching pursuit method. Wang and Bai [25] proposed a novel strategy on the low
frequency fusion assisted through sparse representation. Wang [26] proposed a novel fusion method
based on sparse representation and non-subsampled contourlet transform, and used some indicators to
prove the fusion result was excellent. Fu et al. [27] proposed a multifocus image fusion method through
distributed compressed sensing (DCS). This method is mainly considered the high-frequency images’
information. The final result was using visual and quantitative metric evaluations to analyze the results
of the fusion. Among all the methods for decomposing data into low-rank matrix and sparse matrix, the
most classic is robust principal component analysis (RPCA). There have been quite extensive expansion
and application of RPCA, where RPCA via the principal component pursuit (PCP) method has been
used to reduce the amount of calculation, with numerous extensions and expansions [28], including
stable principal component pursuit (SPCP) [28], quantization based principal component pursuit
(QPCP) [29], block based principal component pursuit (BPCP) [30], and local principal component
pursuit (LPCP) [31]. Additionally, other methods for solving low-rank matrix and sparse matrix
also include the subspace tracking series method [32], matrix completion series method [33], and
nonnegative matrix factorization series method [34]. Of the discussions on these various methods, so far,
studies have provided different pros to decompose matrices [28,35,36]. This study attempts to fuse the
images of different focal distances by decomposing low-rank matrix and sparse matrix, not only taking
into consideration decomposition and recombination of a single image [37,38] but also considering
simultaneously decomposing and fusing more than two images [6,7] and even expanding to multiple
images. Among those studies to date, there has not yet been a correct image fusion rating standard,
and different fields result in different conclusions. Nevertheless, the rating standard currently provides
evidential fusion results and field applicability related studies [39–41]. Thus, the indicators provided
in the study by Liu [42] et al. were adopted to carry out fusion rating. The program for fusion rating
standard used is provided by the website below: https://github.com/zhengliu6699/imageFusionMetrics,
which discusses feasibility of applying deep semi- nonnegative matrix factorization (NMF) model [34]
method in autofocusing and image fusion.

https://github.com/zhengliu6699/imageFusionMetrics
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2. Materials and Methods

In order to examine the pros and cons of the NVG image autofocusing and fusion method
proposed, the processing method was as shown in Figure 4. The process mainly consisted of several
blocks, including low-rank and sparse matrix, image fusion, and autofocus. The image samples,
proposing method, matrix decomposition process, and fusion method used were included in low-rank
and sparse matrix and image fusion blocks. The explanation for this part is found in the description of
tested images section and image fusion using low-rank and sparse matrix section. Autofocus block
explains the use of sparse matrix information to complete the sharpness computing and to obtain the
best focal image.

2.1. Description of Tested Images

In order to carry out various fusion method ratings, aircraft, clock, disk, lab, leopard, and toy
images commonly used in research were used here to test the qualities of fusion methods. The images
for testing were as shown in Figure 5a–l. In addition, the images for NVG testing of fusion results
were as shown in Figure 5m,n. Through the aviaiton nighttime NVG testing bench (TS-3895A/UV)
with NVG, the DC servo driver-driven focal knob was able to collect NVG testing images at the
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rotation angles ranging between 1 to 110 degrees. In order to simplify and facilitate the description of
subsequent algorithms, the images collected were converted from colored ones into the gray-level, 110
images in total for autofocusing the algorithm used. To compare the quality of the traditional methods
with the method in this paper, the same image sources as those of Jian and Peng [1] were used.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 21 
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2.2. Image Fusion Using Low-Rank and Sparse Matrix

According to the fusion algorithm processing flow in Figure 4, the image fusion algorithm was
verified. In the process, the diagram of a matrix structure of the source image for multifocus image
of NVG was as shown in Figure 6. In particular, I is a two-dimenisonal image matrix, t is the total
number of images, the image height is n, and the width is m.
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First, single source images were converted into one-dmeiensional vectors. Data arrangement in
this step was as shown in Figure 7, where IR was a one-dimensional vector. Each one-dimensional
vector IR

t was sequenced from top to bottom according to frame sequence. After combination, it was
named D matrix (data matrix).
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Then, the deep semi-NMF model method proposed by Trigeorgis, Bousmalis, Zafeiriou, and
Schuller [34] was used here to obtain the low-dimensional representation. The equation is as shown in
Equation (1):

D ≈ Z×H. (1)

In particular, D is data matrix, Z is loadings matrix, and H is features matrix. This study adopted
the method with low-dimesional characteristics to obtain A and E matrices. A is low-rank matrix and
E is sparse matrix:

A = Z×H, (2)

E = D−A. (3)

In A matrix, the relationship bewteen respective row vectors and images was as shown in
Equation (4):

A =


AIR

1
AIR

2
...

AIR
t

,
AIR

1 : the size is 1 by L (4)

In particular, the length of Lisn×m. In A matrix, the respective row vectors are, AIR
1 , AIR

2 , . . . , AIR
t ,

respectively. In this paper, D matrix formed by respective images was decomposed into A and E
matrices. Therefore, these two charactersitics were targeted for processing. In particular, A process
involved reshaping the row vectors from AIR

1 through AIR
t to the two-dimensional images of AI1 −

AIt
and obtaining the mean value. The result was called AIbest, and the process was as shown in
Equation (5):

AIbest =
(
AI1 +

AI2 + . . .+
AIt

)
/t (5)

The first image corresponding to sparse matrix EI1 and mask offset manipulation was as shown in
Figure 8.
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The corresponding image in sparse matrix was as shown in Equations (6) and (7):

OptIndx
z =

argmax
x ∈ [1, t]

(
Var

(
mzIx

))
, Z = 1, 2, . . . , len (6)

EIbest =
EI(OptIndexx

z) (7)

In particular, Var in Equation (6) is the computed variance, and len is the total number of images
undergoing mask offset. The best label obtained according to Equation (6) was used to acquire the
EIbest image in Equation (7), through which the best edge information was retained. Finally, the image
obtained in Equation (5) was added to the images in AIbest and Equation (7) to get the best fusion
image Ibest, as shown in Equation (8):

Ibest =
AIbest +

EIbest (8)

2.3. Autofocus Using Sparse Matrix

In addition to image fusion, autofocusing using sparse matrix method process was also put
forward in this study. The sparse feature of sparse matrix was mainly used to test the focus stripe
correlation generated from the testing bench. Since low-rank matrix had the main components of focus
stripe, it had the same signficiance pointed out in Equation (3) where sparse matrix was the orignal
image subtracted by low-rank matrix. Hence, the correpsonding frame information in sparse matrix
can be used as a reference for sharpness. This concept was applied in the acutal practice. First, 110
images of different focal distances were compiled into D matrix accoridng to the arrangement diagram
in Figures 6 and 7. As shown in Equations (1) through (4), they were decomposed into low-rank matrix
A and sparse matrix E. Then, EIR

i , i = 1,2,3 . . . t corrsponding to different focal distances in E matrix
were directly used to calulate the images corresponding to single EIR

i , to tally the results. An image
frame corresponding to the lowest value was the sharpest frame. In particular, the lowest point in
Figure 4 was the frame with the best sharpness. The calculation can be simplified into Equation (9).

FP =
argmin
i ∈ [1, t]

(
N∑

k=1

EIR
i (k)

)
=

argmin
i ∈ [1, t]

 m∑
x=1

n∑
y=1

EI i(x, y)

 (9)

where FP is focus position and N = m × n is image size.

3. Experiment Results and Discussion

3.1. Image Fusion Results

According to the image fusion method propsed in Figure 4 and the based-on variance calculated
in discrete cosine transform domain without consistency verification (DctVar) and based-on variance
calculated in discrete cosine transform domain with consistency verification (DctVarCv) [12,13] and
structure-aware image fusion (SAIF) [11] methods, comparison and verification were carried out. This
study was to evaluate the quality of image fusion using relevant indicators compiled by Liu et al. [42].
The original images verified were as shown in the description of the tested images section. The fusion
results of the respective images were as shown from Figures 9–14. Among which, (a) is the mehtod
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proposed in this study, (b) is the fused image result of DctVar method, (c) is the fused image result of
DctVarCv method, and (d) is the fused image result of SAIF method. The fusion indicator results of
vairous images were as shown from Tables 1–6. Among these four fusion methods, gray background’s
fusion quality indicator pointed out the best results for the 12 indicators, which in seuqence were: QMI,
QTE, QNCIE, QG, QM, QSF, QP, QS, QC, QY, QCV, QCB. The higher the value, the better the fusion quality.
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Table 1. List of aircraft fusion results and fusion quality indicators.

Aircraft Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.37 1.32 1.36 1.31 This study (4) > DctVarCv (3) > DctVar (2) > SAIF (1)

QTE 0.442 0.434 0.441 0.441 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QNCIE 0.847 0.842 0.845 0.842 This study (4) > DctVarCv (3) > DctVar (2) > SAIF (1)

QG 0.672 0.648 0.674 0.662 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QM 2.312 2.253 2.311 2.082 This study (4) > DctVarCv (3) > DctVar (2) > SAIF (1)

QSF -0.059 -0.091 -0.060 -0.068 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QP 0.79 0.7 0.80 0.78 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QS 0.948 0.948 0.948 0.953 SAIF (4) > DctVar (3) > This study (2) > DctVarCv (1)

QC 0.89 0.83 0.88 0.88 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QY 0.974 0.931 0.977 0.965 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QCV 9 18 9 9 DctVar (4) > This study (3) > DctVarCv (2) > SAIF (1)

QCB 0.7597 0.709 0.76 0.745 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

Total score 41 20 37 22

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).

Table 2. List of clock fusion results and fusion quality indicators.

Clock Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.21 1.18 1.19 1.14 This study (4) > DctVarCv (3) > DctVar (2) > SAIF (1)

QTE 0.415 0.406 0.41 0.411 This study (4) > SAIF (3) > DctVarCv (2) > DctVar (1)

QNCIE 0.8447 0.8424 0.8441 0.8398 This study (4) > DctVarCv (3) > DctVar (2) > SAIF (1)

QG 0.682 0.662 0.68 0.676 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QM 2.56 2.58 2.6 2.35 DctVarCv (4) > DctVar (3) > This study (2) > SAIF (1)

QSF -0.04 0.17 0.16 -0.06 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QP 0.804 0.629 0.739 0.803 This study (4) > SAIF (3) > DctVarCv (2) > DctVar (1)

QS 0.946 0.926 0.933 0.956 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QC 0.798 0.756 0.77 0.801 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QY 0.98 0.9 0.96 0.96 This study (4) > SAIF (3) > DctVarCv (2) > DctVar (1)

QCV 13 104 98 12 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QCB 0.77 0.65 0.72 0.75 This study (4) > SAIF (3) > DctVarCv (2) > DctVar (1)

Total score 40 22 31 27

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).
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Table 3. List of disk fusion results and fusion quality indicators.

Disk Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.12 1.11 1.15 1 DctVarCv (4) > This study (3) > DctVar (2) > SAIF (1)

QTE 0.384 0.372 0.387 0.373 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QNCIE 0.836 0.837 0.84 0.831 DctVarCv (4) > DctVar (3) > This study (2) > SAIF (1)

QG 0.68 0.7 0.69 0.68 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QM 2.3 2.8 2.7 2.2 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QSF -0.04 -0.01 -0.04 -0.04 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QP 0.777 0.666 0.795 0.797 SAIF (4) > DctVarCv (3) > This study (2) > DctVar (1)

QS 0.92 0.92 0.92 0.93 SAIF (4) > DctVarCv (3) > DctVar (2) > This study (1)

QC 0.769 0.746 0.756 0.766 This study (4) > SAIF (3) > DctVarCv (2) > DctVar (1)

QY 0.983 0.919 0.989 0.956 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QCV 13 142 27 17 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QCB 0.76 0.68 0.78 0.73 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

Total score 27 28 40 25

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).

Table 4. List of leopard fusion results and fusion quality indicators.

Leopard Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.4509 1.4708 1.471 1.4631 DctVarCv (4) > DctVar (3) > SAIF (2) > This study (1)

QTE 0.4598 0.4524 0.4539 0.4601 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QNCIE 0.8677 0.8695 0.8692 0.8688 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QG 0.856 0.857 0.857 0.859 SAIF (4) > DctVarCv (3) > DctVar (2) > This study (1)

QM 2.476 2.7 2.695 2.667 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QSF -0.0133 -0.0116 -0.0118 -0.0113 SAIF (4) > DctVar (3) > DctVarCv (2) > This study (1)

QP 0.947 0.947 0.949 0.952 SAIF (4) > DctVarCv (3) > This study (2) > DctVar (1)

QS 0.9734 0.9737 0.9737 0.9742 SAIF (4) > DctVar (3) > DctVarCv (2) > This study (1)

QC 0.945 0.944 0.945 0.946 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QY 0.9923 0.9904 0.9921 0.9929 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QCV 13.2 13.8 13.4 12.7 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QCB 0.836 0.872 0.874 0.844 DctVarCv (4) > DctVar (3) > SAIF (2) > This study (1)

Total score 20 30 33 37

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).

3.2. Image Fusion Results of the Discussion

In the air craft image fusion result, seven indicators point out that the method in this study derived
the best fusion result. From the subjective human eye observation, it was deemed that the fusion result
using the DctVar method was clearly the poorest, while the other results were more approximate. In
the clock image fusion result, the seven indicdators showed the study derived the best fusion result,
while the subjective human eye observation deemed the DctVar and DctVarCv results to be the poorest.
The study and the SAIF methods were equally matched in terms of the details. In the disk image
fusion result, the five indicators showed the DctVarCv method derived the best fusion result, while the
subejctive human eye observation deemed the DctVar and DctVarCv reuslts to be the poorest. The
square effect clearly existed in the images. On the other hand, the SAIF method derived the best fusion
result. There was a considerable difference between the indicator reuslts and the human eye congition.
It was speculated that the square effect exerted less influence on the ratings of the indicdators. In the
lab image fusion results, the five indicators showed the DctVarCv derived the best fusion results. The
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subejctive human eye observation deemed DctVar and SAIF results to be the poorest, with suqare
effect and halo lines in the head region. The DctVarCv and the study derived the best fusion results. In
the leopard image fusion results, the seven indicadtors showed SAIF derived the best fusion result, but
the respecitve indidactors were basically quite approximate. The subjecitve eye observation deemed
the respective methods derived the same results. In the toy image fusion results, the six indicators
sshowed DctVarCv derived the best fusion result. The subejctive eye observation deemed the study
and SAIF derived the best fusion result, while the square effect existed in the DctVar and DctVarCv in
the details. Therefore, it was speculated that the indicators were unable to determine the influence of
the square effect.

Table 5. List of lab fusion results and fusion quality indicators.

Lab Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.26 1.22 1.27 1.18 DctVarCv (4) > This study (3) > DctVar (2) > SAIF (1)

QTE 0.43 0.417 0.427 0.418 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QNCIE 0.843 0.841 0.844 0.839 DctVarCv (4) > This study (3) > DctVar (2) > SAIF (1)

QG 0.73 0.74 0.73 0.72 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QM 2.34 2.7 2.695 2.398 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QSF -0.03 -0.01 -0.03 -0.03 DctVar (4) > DctVarCv (3) > This study (2) > SAIF (1)

QP 0.784 0.674 0.799 0.795 DctVarCv (4) > SAIF (3) > This study (2) > DctVar (1)

QS 0.95 0.948 0.951 0.956 SAIF (4) > DctVarCv (3) > This study (2) > DctVar (1)

QC 0.802 0.786 0.798 0.791 This study (4) > DctVarCv (3) > SAIF (2) > DctVar (1)

QY 0.98 0.92 1 0.95 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QCV 5 18 5 8 DctVar (4) > SAIF (3) > This study (2) > DctVarCv (1)

QCB 0.72 0.65 0.76 0.72 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

Total score 31 26 39 24

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).

Table 6. List of toy fusion results and fusion quality indicators.

Toy Proposed
Method DctVar DctVarCv SAIF Optimum

QMI 1.17 1.16 1.2 1.06 DctVarCv (4) > This study (3) > DctVar (2) > SAIF (1)

QTE 0.431 0.419 0.43 0.436 SAIF (4) > This study (3) > DctVarCv (2) > DctVar (1)

QNCIE 0.836 0.836 0.837 0.831 DctVarCv (4) > This study (3) > DctVar (2) > SAIF (1)

QG 0.63 0.62 0.65 0.63 DctVarCv (4) > This study (3) > SAIF (2) > DctVar (1)

QM 1.5 2.1 2 1.7 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QSF -0.11 -0.08 -0.11 -0.11 DctVar (4) > DctVarCv (3) > SAIF (2) > This study (1)

QP 0.771 0.695 0.824 0.821 DctVarCv (4) > SAIF (3) > This study (2) > DctVar (1)

QS 0.934 0.931 0.936 0.948 SAIF (4) > DctVarCv (3) > This study (2) > DctVar (1)

QC 0.8 0.756 0.823 0.816 DctVarCv (4) > SAIF (3) > This study (2) > DctVar (1)

QY 0.94 0.86 0.98 0.95 DctVarCv (4) > SAIF (3) > This study (2) > DctVar (1)

QCV 32 35 31 29 DctVar (4) > This study (3) > DctVarCv (2) > SAIF (1)

QCB 0.73 0.66 0.77 0.76 DctVarCv (4) > SAIF (3) > This study (2) > DctVar (1)

Total score 27 23 41 29

Optimum rule: Index headed the table with maximum points. Normalized mutual information (QMI); Fusion
metric based on Tsallis entropy (QTE); Nonlinear correlation information entropy (QNCIE); Gradient-based fusion
performance (QG); Image fusion metric based on a multiscale scheme (QM); Image fusion metric based on spatial
frequency (QSF); Image fusion metric based on phase congruency (QP); Piella’s metric (QS); Cvejie’s metric (QC);
Yang’s metric (QY); Chen–Varshney metric (QCV); Chen–Blum metric (QCB).
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Overall, the respective methods showed advantageousness. Under the premise that the square
effect was not considered, the DctVar and DctVarCv results under various indicator rations produced
advantageous results. Moreover, under subjective observations, the image details were also sound.
Without taking into account the halo effect, SAIF had the best details. Compared to other methods,
the study was almost unaffected by the square effect and the halo effect, while DctVar and DctVarCv
showed strong square effect. Under subjective observations, it already severely affected the fusion
results. In the subjective rating of details, the study was the same as SAIF. However, in terms of
indicator ratings, the study received 18 best ratings, which was superior to SAIF with 15 best ratings.
Further, the study was not affected by the halo effect; thus the relatively more stable fusion result.

The NVG images in Figure 5m,n were used to test fusion quality. The fusion results of DctVar,
DctVarCv, and SAIF methods were as shown in Figure 15a–d. Results showed that the image results
using the DctVar method presented many squares that were completely unusable. Hence, the study
was significantly superior to the DctVar method. In the surrounding of the focus stripe of DctVarCv,
there was a large square, while a circular halo rose in the center for the SAIF. Therefore, the fusion test
results of NVG images pointed out the study was also superior to DctVarCv and SAIF.
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In addition to the night vision goggle image explored above, this study also observed night
vision goggle images fusion with different focal lengths. The result were as shown in Figures 16–18.
Intuitively, the fusion results showed that the method proposed in this study has still some incomplete
treatments in the peripheral edge area. Otherwise, compared to our methods, it was more advanced
than other methods and the discussion was also consistent with the previous paragraph.



Appl. Sci. 2020, 10, 2178 15 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 21 

 

(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 

 

(d) SAIF 

Figure 15. The fusion result of the NVG image (60 and 96 degrees). 

 

(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 
 

(d) SAIF 

Figure 16. The fusion result of the NVG image (61 and 96 degrees). Figure 16. The fusion result of the NVG image (61 and 96 degrees).Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 21 

 

(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 

 

(d) SAIF 

Figure 17. The fusion result of the NVG image (62 and 96 degrees). 

 
(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 

 

(d) SAIF 

Figure 18. The fusion result of the NVG image (63 and 96 degrees). 

Figure 17. The fusion result of the NVG image (62 and 96 degrees).



Appl. Sci. 2020, 10, 2178 16 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 21 

 

(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 

 

(d) SAIF 

Figure 17. The fusion result of the NVG image (62 and 96 degrees). 

 
(a) Proposed method 

 

(b) DctVar 

 

(c) DctVarCv 

 

(d) SAIF 

Figure 18. The fusion result of the NVG image (63 and 96 degrees). Figure 18. The fusion result of the NVG image (63 and 96 degrees).

3.3. Autofocus Results

The image sources are the NVG images introduced in the description of the tested images section.
According to the process introduced in the autofocus using sparse matrix section, an experiment was
performed and Equation (9) was carried out for computing. The statistical result was as shown in in
Figure 19a. The lowest point was the frame with the best sharpness. In the example, the 96th frame
was the sharpest frame. The image in this frame is Figure 19c. In order to compare the accuracy of the
sharpness in this study, Figure 19b was the same source image. The normalized gray-level variance
sharpness method proved that the autofocusing application of NVG was effective. According to the
calculation result using the normalized gray-level variance sharpness method, the 96th frame was
also the one with the best sharpness. Figure 19d is the image in the vicinity of the sharpest point.
Compared to Figure 19c, the 90th frame showed obvious differences, proving the robustness of the
method in this study and the normalized gray-level variance sharpness method. The method in this
study featured the advantages of simple and easy-to-understand computing. In Equation (9), only
the sum of the sparse matrices corresponding to the respective images needed to be computed, and
the least value was sought as the best sharpness point. This part also validated the concept that “the
corresponding frame information in the sparse matrix serves as a reference for sharpness” proposed in
the autofocus using sparse matrix section.
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4. Conclusions

The decomposition process of the deep semi-NMF model was employed in this study to obtain the
sparse and low-rank matrix information, based on which information the autofocusing requirements
were completed. Additionally, the simple calculation can be completed using the sparse matrix.
Experimental results also proved that under NVG images, the autofocusing method and the traditional
normalized gray-level variance sharpness method derived the same calculation results, both deriving
the sharpest image frame. Furthermore, in solving the multifocus problem arising from mechanism
errors, taking into account the 12 image fusion indicators and the square effect and halo, overall
experimental results proved that the method in this study was superior to the other three methods in
terms of image testing. On top of it, 18 best ratings were obtained under the image fusion indicator
rations. Finally, the autofocusing and image fusion algorithm put forth in this study possessed
substantive value in terms of enhancing automated testing equipment process.
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