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Abstract: Recently, we often see the environment where many one-to-one Wireless Local Area
Networks (WLANs) exist in a small area. In this environment, the network throughput of certain
WLAN reduces significantly because of the interference from other networks (i.e., inter-network
interference). The inter-network interference is the effect of carrier-sensing activities when there are
ongoing transmissions in neighbor networks. This paper presents analytical expressions using airtime
concept, which newly take into account the inter-network interference, for network throughputs
of WLANs. There are existing works that similarly address the WLAN’s carrier-sensing duration.
However, they either consider a simple interference model or assume the simultaneous transmission
time is negligible. Different from them, we consider the significant impact of simultaneous
transmission. As a result, our analytical model can precisely express each network carrier-sensing
duration by subtracting the simultaneous transmission time. More specifically, we have successfully
obtained each network throughput by expressing frame-existence probabilities concerning each
network’s End Device (ED). We also confirm the validity of the analysis by comparison with
simulation. The analytical results and the simulation results agree well.

Keywords: WLAN; interference; carrier-sensing; IEEE 802.11; throughput analysis

1. Introduction

Recently, due to the popularity of mobile Wi-Fi routers and Wi-Fi-based Bring Your Own Device
(BYOD), the Wireless Local Area Network (WLAN) environment, which has a one-to-one relationship
between an access point (AP) and a device, is increasing. For example, on business trips, the usage of a
portable Wi-Fi router or enabling a tethering function on a cell phone (sharing the Internet via Wi-Fi) is
widespread. Moreover, multiple players normally use wireless (i.e., Wi-Fi-based) remote controllers
for a competition (e.g., Nintendo switches). Another example is related to the Olympic Games in 2020.
To prepare for that, Japan plans to offer a vast number of wireless routers for foreign visitors. Each
router has wireless broadband interfaces (i.e., 5G, LTE, mmWave) to the Internet while sharing the
Internet connection via Wi-Fi. In such an environment, many WLANs are coexisting in a small area.
In each network, the AP-device distance is so close that the networks are within the carrier-sensing
range of their neighbor. Therefore, the throughput of specific WLAN reduces significantly because of
the interaction of carrier-sensing. Constructing mathematical models is an effective way of clarifying
that phenomenon.
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There have been many analytical models for WLANs’ performance [1–8]. The most famous one is
presented by Bianchi [1]. In Bianchi’s model, expressing the Backoff-Timer (BT) decrement makes it
possible to reveal the node operation in each time slot with the saturated condition. In [2], the authors
have applied the queuing theory to Bianchi’s model to express the node behavior in the non-saturation
state. The works in [3–6] include several extended versions of the model. The Bianchi model is,
however, not applicable to express the network characteristic when considering the inter-network
interference. That is because that model assumes all nodes of WLAN are in the same carrier-sensing
range. When the number of networks in the same carrier-sensing range is large, it is difficult to
express the carrier-sensing duration due to the simultaneous transmission. A potential approach
for expressing that simultaneity is applying the airtime concept as in [9–14]. The airtime concept is
useful for revealing the frame collisions due to hidden nodes and the carrier-sensing duration at each
node [9–12]. Moreover, it is possible to express transmission probability, carrier-sensing duration and
frame-existence probability concerning each node in simple forms.

In [13], the authors show the network performance when saturation and non-saturation nodes
coexist. Moreover, the analysis in [14] can be applied in various network topologies, including
multi-hop ones. However, the previous works typically consider the main reason for throughput
decrement is the frame collisions without the consideration of simultaneous transmission [1–22].
Moreover, most of the existing models appraise the interference (i.e., including carrier-sensing and
frame collision) but within one network. Hence, they do not apply to the investigated networks.
Several previous airtime models can express the carrier-sensing duration. However, they omit the
simultaneous transmission time because the effect caused by the simultaneous transmission in such
scenarios is negligible. We aim to derive analytical models that precisely express each network
carrier-sensing duration by subtracting the simultaneous transmission time.

This paper proposes analytical expressions of WLANs’ throughputs using the airtime concept with
the consideration of inter-network interference. Each network throughput can be obtained successfully
by expressing transmission duration, carrier-sensing duration, idle duration, and frame-existence
probabilities concerning the impacts of neighboring networks. We have applied the expressions for
three network scenarios including two string topologies and a grid one. We have also conducted
extensive evaluations of the investigated scenario. The validities of the analytical expressions are
confirmed from quantitative agreements between analytical and simulation results.

The rest of the paper is organized as follows. Section 2 introduces motivation and background.
Our general analysis is presented in Section 3. Section 4 details the proposed model for different
network scenarios. Section 5 includes the evaluation results. Finally, Section 6 concludes the paper.

2. Background and Motivation

2.1. IEEE 802.11 Distributed Coordination Function Background

The IEEE 802.11 Distributed Coordination Function (DCF) is the fundamental mechanism for
medium access in WLANs. IEEE 802.11 DCF is a random access scheme, based on the carrier sense
multiple access with collision avoidance (CSMA/CA) protocol. In the IEEE 802.11 DCF, a transmission
node senses a wireless channel before transmitting data. If the channel is used by a transmission
process, the channel’s state is busy. That means the neighbor nodes, which are in the carrier-sensing
range, are transmitting. The node hence defers the transmission process until the channel becomes idle.

The first step of transmitting an IEEE 802.11 frame is the Backoff-Timer (BT) decrement, during
which the initial value of BT is randomly chosen between 0 and the Contention Window (CW).
Transmission nodes decrease their BT values only when the channel is in the idle state. If the channel
is busy, the decrement of BT will be stopped. If the BT reaches zero, the node starts to transmit a
frame, whose duration is expressed as DATA frame. An Acknowledgement (ACK) frame is sent
from the receiver to the sender after waiting for the Short Interframe Space (SIFS) interval if the data
transmission is successful. The sender confirms the transmission success by receiving the ACK frame
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from the reception node. If the ACK frame will not arrive at the sender, it recognizes that the frame
transmission is failed. Moreover, the sender renews CW value and resets the initial value of BT.

2.2. Inter-Network Interference

As previously mentioned, our considered scenario contains many one-to-one networks, each of
which includes an End Device (ED) and the AP. Figure 1 shows an example with three networks. In
each WLAN, the distance between the ED and the AP is so close that the neighbor networks are within
the ED’s carrier sensing range. There are ED1 and ED3 in the carrier-sensing range of ED2. On the
other hand, ED1 and ED3 have the positional relationship where they cannot detect communication
with each other. Therefore, ED1 or ED3 can transmit when the other is transmitting. ED2 cannot
decrement the BT because of transmission detection of ED1 or ED3. It is seen from Figure 2 where
transmission opportunity of ED2 decreases.

Figure 1. Scenario with inter-network interference.

Figure 2. An exemplary effect of inter-network interference.

2.3. Motivation to Use Airtime Concept

To properly understand the aforementioned problem, it is essential to consider the interaction
of carrier sense. When there is a frame transmission in a network (e.g., Network 1), the other that
is out of the carrier-sensing range of Network 1 may also have a transmission. In that case, there
is a possibility of having simultaneous transmissions in the networks. It is impossible to get the
simultaneous transmission time from the previous analytical models, except the ones with the airtime
concept. However, it is difficult to consider that the airtime concept is applied to WLAN analysis
because the airtime concept was proposed for expressing the hidden node collisions and carrier-sensing
relationships. The analysis of WLANs with airtime concept was proposed in [13], in which the network
nodes are assumed to be in saturation and non-saturation heterogeneous conditions. Moreover, the
analysis in [14] can express dynamics of various network topologies including multi-hop network and
WLANs by using airtime concept. It is also effective to use another extended version of Markov-chain
model to express the BT-decrement and frame-transmission states.

However, the analysis in [13] is based on the assumption that there are all nodes in the same
carrier-sensing range per one network. Ref. [14] and earlier works [1–13] have a strict condition that is
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the main reason for network throughput decreasing is the frame collision. The frame collisions do not
occur in the context mentioned in Section 2.2. Therefore, it is necessary to consider the carrier sensing
duration. More specifics, the reason of network throughput decreasing is only during the carrier
sensing duration. We aim to use the airtime concept to newly express the carrier-sensing duration and
the simultaneous transmission time for understanding carrier-sensing duration intuitively.

3. General Concept of Throughput Analysis with Inter-Network Interference

This paper proposes analytical expressions of network throughput for WLANs using the airtime
concept with the consideration of inter-network interference. We aim to analytically obtain each
network throughput by expressing transmission time, carrier-sensing duration, idle time, and
frame-existence probabilities concerning each ED. Our analysis is based on the following assumptions:

1. ED in each network generates user datagram protocol (UDP) frames to the AP (uplink) following
the Poisson distribution.

2. The condition of the physical layer is ideal. Therefore, transmission failures occur due to only
frame collisions in the medium access control (MAC) layer.

For better understanding, we show the mathematical symbols of this paper in Table 1. Each
network node is in one of three states (transmission, carrier-sensing, or idle). The transmission airtime
is defined as the time-share of frame transmissions, which includes the duration of both the successful
and failed transmissions. Then the transmission airtime of Node i denoted as Xi is as follows:

Xi = lim
Time→∞

Si
Time

, (1)

where Si is the parameter related to the airtime concept for IEEE 802.11, initially introduced in [9]. Si
represents the total duration during which Network i is in the state of DATA frame or ACK frame
transmission, SIFS, or DIFS in the time interval of [0, Time].

Because of the carrier-sensing, any transmission within Network i’s carrier-sensing range leads
to channel busy. This paper considers the interaction of carrier sensing at each network. Specifically,
we examine the overlaps of the multiple transmissions among other networks, which are within the
carrier-sensing range of Network i. We use a new function to define Yi, which is the carrier-sensing
airtime value (number) of Network i. Yi can be expressed as

Yi = f (Xh, γi,h), h ∈ v(i)

= ∑
h∈v(i)

Xh(1− γi,h)− ∑
h1<h2

Xh1(1− γi,h1)Xh2(1− γi,h2)

+ ∑
h1<h2<h3

Xh1(1− γi,h1)Xh2(1− γi,h2)Xh3(1− γi,h3)− ...

+ (−1)|v(i)|−1 ∏
h∈v(i)

Xh(1− γi,h), (2)

where v(i) is the set of networks within the carrier-sensing of Network i. h is one of the elements in set
v(i). In other word, Network h is in the carrier-sensing range of Network i. hs in h1, h2...hs...h|v(i)| is
the s-th smallest element of v(i). |v(i)| is the number of elements of set v(i). When the back-off timers
of both Network i and its adjacent one become zero in the idle state, the two networks will transmit
frame simultaneously. The simultaneous transmission probability, in this case, is calculated as γi,h.
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Table 1. Mathematical Symbols.

limTime→∞ The limit value as Time approaches ∞

Si The transmission duration of Network i in [0, Time]

Xi The transmission airtime of Network i

Yi The carrier-sensing airtime of Network i

f () The function to represent Yi
ine v(i) The set of networks within the carrier-sensing of Network i

|v(i)| The number of elements of set v(i)

h1, h2...hs...h|v(i)| hs is the s-th smallest element of v(i)

∑
h∈v(i)

The sum over all elements h in the set v(i)

∏
h∈v(i)

The product over all elements h in the set v(i)

Zi The idle airtime of Network i

Ei The throughput of Network i

P The payload size of a data frame

T The period of successful transmission of a data packet

Vi The BT-decrement for one frame-transmission success of Network i

Gi The transmission probability when Network i is in the idle state under the saturation condition

CWmin The minimum contention-window value

σ The slot time

qi
′ The frame-existence probability of Network i in the non-saturation condition

qi The frame-existence probability of Network i

Oi The offered load of Network i

λi The frame occurrence rate in Network i

τi The frame transmission probability at the idle state of Network i

∑
k∈v(a)∩v(b)

The sum over all elements k in the set v(a) ∩ v(b)

∏
k∈v(a)∩v(b)

The product over all elements k in the set v(a) ∩ v(b)

Ui,h The probability that Network i is in the idle state when its neighbor Network h is in the idle state

γi,h The simultaneous transmission probability of Network i and Network h

v(a) ∩ v(b) = {5} Only Network 5 is within the carrier-sensing range of Network a and b

Then the idle airtime of Network i, Zi, is defined as

Zi = 1− Xi −Yi. (3)

Note that Zi includes the backoff period in the airtime analysis.
Let Ei be the throughput of Network i, then from (1),

Ei = Xi
P
T

, (4)

T = DIFS + DATA + SIFS + ACK in which DATA, ACK are transmission time of only one DATA
frame, only one ACK frame, respectively. P is the payload size of a data frame.

According to [21], we also define Gi as the transmission probability when Network i is in the idle
state under the saturation condition, then

Gi =
Ri

Vi
=

1
W0

, (5)
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where Ri and Vi are the mean number of frame transmission attempts and the average slot number of
BT-decrement for one frame-transmission success, respectively. Additionally, W0 is

W0 = CWmin, (6)

where CWmin is the minimum contention-window value. It is known from [19] that at the saturation
condition the relationship between the transmission and idle airtime is

Xi =
GiTZi

σ
, (7)

where σ is the slot time.
In the non-saturation condition, it is necessary to derive the frame-existence probability qi

′, which
is the probability that Network i having at least one frame is in the idle state. Because the BT-decrement
is carried out only when the node in the idle state, Network i decreases the BT in whole time is

qi
′Zi = λiσVi =

σOiVi
P

, (8)

where qi
′ is the frame-existence probability in the non-saturation condition; λi is the frame occurrence

rate; Oi = λiP is the offered load. Additionally, σVi means the average time of BT-decrement for one
successful transmission of a frame. (8) is based on the fact that the frame-occurrence number same as
the frame-transmission number in the non-saturation condition.

From (8), it is possible to express the frame-existence probability qi as

qi =

{
qi
′, non− saturation

1, saturation
(9)

Because of qi
′ < 1 from its definition, it can be rewritten as

qi = min
(
1, qi

′) = min
(

1,
σOiVi
PZi

)
, (10)

which is valid for both the saturation and non-saturation states. The min function prevents qi from
exceeding 1. By using λi, we have also another expression of transmission airtime as

Xi = λiRiT. (11)

From (5), (8), and (11), we have

Xi =
qiZiGiT

σ
. (12)

Finally, the general expression of the frame transmission probability at the idle state (denoted
as τi) can be obtained from (7), (10) and (11) as

τi = qiGi =
σXi
ZiT

. (13)

The derivation and explanation of the Equations (5)–(13) have been also presented in [11–14].
Our analysis aims to consider the channel states of each network. From (2), we use v(i) to denote

the set of networks within the carrier-sensing of Network i, and Network h indicates the element of
a set v(i). Network i is in the idle state or the carrier-sensing state when its adjacent network (e.g.,
Network h) can decrement back-off timer. When Network h is in the idle state, the probability Ui,h that
the state of Network i in the idle state is

Ui,h = 1− f (Xj, γi,j); j 6= h; j, h ∈ v(i). (14)
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When the back-off timers of both Network i and its adjacent one become zero in the idle state, the
two networks will transmit frame simultaneously. Let γi,h be the simultaneous transmission probability
in this case. Then, we have

γi,h = Ui,h · τi, (15)

where τi is the frame transmission probability at the idle state, h is the elements in the set v(i).

4. Throughput Analysis of String and Grid Topology Considering Inter-Network Interference

4.1. Analysis of String Network Topology

In a 1 × n string topology as in Figure 3, only one network is within the carrier-sensing range
of the leftmost or rightmost network. When an adjacent network of the leftmost one is in the idle
state, the network does not have a carrier sensing or transmission events. Hence, the probability of
the leftmost network in the idle state is 1. That happens similarly to the rightmost network. Except
for those cases, Network (i− 1) and Network (i + 1) are within carrier-sensing range of Network i.
Hence, at Network i, the carrier-sensing network number is two.

Figure 3. Carrier-sensing range of each network in string-topology.

From (14), assume that Network (i− 1) is in the idle state, Network i is never in the transmission
state. Therefore, there will be two possibilities of Network i’s state: idle or carrier-sensing. The
carrier-sensing state of Network i can be caused by the transmission of either Network (i − 1) or
Network (i + 1). That is because the two networks are in the carrier-sensing range of Network i in
the string topology. However, we have assumed that Network (i− 1) is in the idle state; therefore,
the carrier-sensing state of Network i is only caused by the transmission state of Network (i + 1). The
accurate expression of the probability can be

Ui,i−1 = 1− Xi+1

1− Xi
. (16)

Ui,i+1 is the probability that the state of Network i is in the idle state, when Network (i− 1) is in
the idle state. It can be derived in the similar way.

The carrier-sensing airtime is the time-share when the network is in the carrier-sensing state.
Basically, the carrier-sense airtime of Network i is the total transmission airtime of the carrier-sensing
nodes. From (2), the carrier-sensing airtime of Network i could be obtained accurately.

Yi = Xi−1(1− γi,i−1) + Xi+1(1− γi,i+1)

− Xi−1(1− γi,i−1)Xi+1(1− γi,i+1)

1− Xi
. (17)
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Note that, Xi−1 and Xi+1 equal to 0 when Network i is the leftmost, rightmost network,
respectively. The final component in the right-hand side of (17) denotes the overlap time between
Network (i− 1) and (i + 1) when Network i does not transmit.

4.2. Analysis of Grid Network Topology

In the grid topology, depending on a network position, the number of networks within the
carrier-sensing range is different. Therefore, it is necessary to consider the carrier-sensing airtime and
the simultaneous transmission time following the network number in the carrier-sensing range. If
Network i is in the m × n grid network topology, the network number could be two, three, and four.
For the sake of easy presentation, this section investigates the case of m = n = 3. With the other values
of m, n, we can similarly deduce each network state.

4.2.1. Two Carrier-Sensing Networks

As shown in Figure 4, in the investigated topology, Network 1, 3, 7, and 9 are in accord with
this case. Since the four networks share the same characteristics, we consider only Network 1 in the
following. From (14), when the state of Network 2 is idle, the probability of Network 1 being in the
idle state can be expressed as in (18).

U1,a = 1− Xb

1− ∑
k∈v(a)∩v(b)

Xk ∏
h∈v(k)

(1−γh,k)

+ ∏
k∈v(a)∩v(b)

Xk ∏
h∈v(k)

(1−γh,k)

(1−Y1)−1

;

a, b ∈ v(1), a 6= b.

(18)

We use v(i) to denote the set of networks within the carrier-sensing of Network i, which is the same

as the following, such as v(a), v(b), v(k) and so on. ∏
k∈v(a)∩v(b)

[
Xk ∏

h∈v(k)
(1− γh,k)

]
(1− Y1)

−1 is the

overlap transmitting time between Network 1 and 5.
Network 2 and Network 4 is in the carrier-sensing range of Network 1. From (2), the

carrier-sensing airtime of Network 1 can be transformed as (19).

Y1 = ∑
i∈v(1)

Xi(1− γ1,i)

−
∏

i∈v(1)
Xi(1− γ1,i)

1− ∑
k∈v(i)

[
Xk ∏

h∈v(k)
(1− γh,k)

]
+ ∏

k∈v(i)

[
Xk ∏

h∈v(k)
(1− γh,k)

]
(1−Y1)−1

. (19)

The final member of the right-hand side denotes the overlap transmitting time between Network 2
and 4 when Network 1 and 5 do not transmit.
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Figure 4. Carrier-sensing range of each network in grid-topology.

4.2.2. Three Carrier-Sensing Networks

As shown in Figure 4, Network 2, 4, 6 and 8 are in accord with this case. Due to the position
similarity, we only consider Network 2. In this case, v(2) includes Network 1, 3, 5. Hence, when a 6= 5,
the probability of Network 2 being in the idle state is

U2,a = 1− Xb
1− X2

− X5

1−Ya
+

XbX5

(1−Ya)(1−Yb)
;

a, b ∈ v(2), a 6= b, b 6= 5. (20)

We know Network 2 is within Network a and Network b’s carrier-sensing range. Because Network
2 does not transmit, the probability of Network b transmitting in this condition is Xb

1−X2
. Network 2

and one other (Network c) are within the carrier-sensing range of Network a and Network 5. When
Network 2 and Network a are in the idle state, Network c does not transmit either. In this case, the
probability X5

1−X2−Xc
is not enough, because of considering the simultaneous transmission time of

Network a and Network 5. The correct expression is X5
1−Ya

. The final component of the right-hand side
in (20) denotes the overlap time between Network b and Network 5. When a = 5, U2,5 is

U2,5 = 1− X1

1−Y1
− X3

1−Y3
+

X1X3

(1−Y1)(1−Y3)
. (21)

Similar to in (20), the rightmost component of (21) shows the probability of overlap time between
Network 1 and Network 3. We know Network {2, 4}, Network {2, 6} are within the carrier-sensing
range of Network {1, 5}, Network {3, 5}, respectively. In the former condition, the probability of
Network 5 transmitting is X1

1−Y1
. In the latter, the probability is X3

1−Y5
.

From (2) we derive the carrier-sensing airtime of Network 2 as follows.

Y2 = ∑
i∈v(2)

Xi(1− γ2,i)−

∏
k∈v(2)

k 6=5

Xk(1− γ2,k)

1− X2

− ∑
k∈v(2)

k 6=5

Xk(1− γ2,k)X5(1− γ2,5)

1−Yk
+ ∏

i∈v(2)

Xi(1− γ2,i)

(1−Yi)
. (22)
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In (22) the simultaneous time of Network 1 and Network 3 is

∏
k∈v(2)

k 6=5

Xk(1−γ2,k)

1−X2
, because in such

condition there is no transmission in Network 2. Because of no transmission in Network {2, 4} and
Network {2, 6}, the simultaneous time of Network 1 (or Network 3) and Network 5 can be expressed

as Xk(1−γ2,k)X5(1−γ2,5)
1−Yk

. The last line in (22) denotes the overlap time between Network 1, Network 3,
and Network 5.

4.2.3. Four Carrier-Sensing Networks

As shown in Figure 4, Network 5 is in accord with this case. There are Network {2, 4, 6, 8} within
carrier-sensing range of Network 5. From (14), the probability that the state of Network 5 is idle can
be expressed as (23). v(a) ∩ v(b) = {5} means only Network 5 is within the carrier-sensing range
of Network {a, b}. We can see the pairs of Network {2, 8}, or Network {4, 6} meet this condition.
Moreover, when {a, b} is {2, 8} then Network c is only Network 4 or Network 6, and vice versa.

U5,a = 1−∑ Xc

1− ∑
k∈v(a)∩v(b)

Xk ∏
h∈v(k)

(1−γh,k)

+ ∏
k∈v(a)∩v(b)

Xk ∏
h∈v(k)

(1−γh,k)

(1−Ym)−1

− Xb
1−YaYb

+ ∏ Xc
(1−∏ Yc)(1−Ya)

+ ∑ XbXc
(1−YaYb)(1−Yc)

−

∏
l∈v(5)

l 6=a

Xl(1−γ5,l)

(1−YaYb)∏(1−Yc)
;

v(a) ∩ v(b) = {5} , c ∈ v(5), a 6= b, b 6= c, a 6= c, m = k, m 6= 5.

(23)

For the easy presentation, we explain the value of the second component in (23) in the case of
a = 2. Network {5, 7, 9} are within Network 8’s carrier-sensing range. Moreover, Network 2 and
Network 8 are in the carrier-sensing state when Network 5 does not transmit. That can be expressed
(1−Y2Y8). The probability of Network 8 transmitting in this condition is X8

1−Y2Y8
. The probability of

Network c simultaneous transmitting can be expressed as X4X6
(1−Y4Y6)(1−Y2)

in the forth component in (23),
because c equals 4 or 6. We consider the relationship of Network 2 and Network {4, 6}. From that,
we can know Network {1, 3, 5} are in the carrier-sensing range of Network {2, 4, 6}. In this condition,
(1− Y4Y6) means Network 5 does not transmit. (1− Y4Y6)(1− Y2) means Network {1, 3, 5} do not
transmit. Other components are calculated similarly as the ones in the previous sections. We can
express U5,4,U5,6, and U5,8 using the similar method.

From (2), the carrier-sensing airtime of Network i could be obtained accurately in (24).

Y5 = ∑
i∈v(5)

Xi(1− γ5,i)

− ∑
j/∈v(5)

∏
l∈v(j)

Xl(1− γ5,l)

1− ∑
k∈v(l)

[
Xk ∏

h∈v(k)
(1− γh,k)

]
+ ∏

k∈v(l)

[
Xk ∏

h∈v(k)
(1− γh,k)

]
(1−Yj)−1

− ∑
Xa(1− γ5,a)Xb(1− γ5,b)

1−YaYb
+ ∑

Xa(1− γ5,a)Xb(1− γ5,b)Xc(1− γ5,c)

(1−YaYb)(1−Yc)

−
∏

i∈v(5)
Xi(1− γ5,i)

(1−YaYb)∏(1−Yc)
; v(a) ∩ v(b) = {5} , c ∈ v(5), a 6= b, b 6= c, a 6= c. (24)

Specifically, when Network a and Network b transmit simultaneously, only Network 5 is within
their carrier-sensing ranges, and we know Network 5 does not have transmission. In (24), (1−YaYb)
means Network 5 does not transmit in this condition. Therefore, the simultaneous transmission
time of Network a and Network b is Xa(1−γ5,a)Xb(1−γ5,b)

1−YaYb
. In the case of three networks, for example,

Network {a, b, c} transmit simultaneously. When a = 2; b = 4; c = 6, Network {1, 3, 5} are within the
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carrier-sensing range of Network {a, b, c}. (1−Y2) means Network 1 and 3 do not transmit. (1−Y4Y8)

presents the condition of Network 5 without transmission. (1 − Y4Y8) presents the condition of
Network 5 without transmission. Therefore, the simultaneous transmission time of Network {2, 4, 6} is
X2(1−γ5,2)X4(1−γ5,4)X6(1−γ5,6)

(1−Y4Y6)(1−Y2)
. Using the similar method, the simultaneous transmission time of Network

Network {a, b, c} is Xa(1−γ5,a)Xb(1−γ5,b)Xc(1−γ5,c)
(1−YaYb)(1−Yc)

. Other components are calculated similarly as the ones
in the previous sections.

5. Performance Evaluation

For showing the validity of the analytical expressions, in the previous section, we compare the
analytical results with the simulation ones in this section. The simulator is our in-house implementation,
in which the wireless networks operate following the IEEE 802.11 standard. Note that our simulator
has been efficiently applied in several previous works [11–17]. Moreover, we have published the
simulator’s source codes on the website in [23]. Table 2 gives system parameters, which are used in
the simulations and analytical predictions. The parameters basically follow the IEEE 802.11a standard.
Each inter-network’s distance is 30 m.

Table 2. System Parameters.

Data payload 1500 bytes
PHY header 24 bytes
MAC header 24 bytes

ACK size 10 bytes

Data rate 54 Mbps
ACK bit rate 24 Mbps

DATA 252 µs
DIFS 34 µs
SIFS 16 µs

Slot time (σ) 9 µs

CWmin 15
CWmax 1023

Retry limit (K) 7

Inter-network distance 30 m
Transmission range 40 m

Carrier-sensing range 40 m

5.1. Scenario 1: String Topology, N = 3

In Scenario 1, there are three networks which are installed linearly. Figure 5a–c show the network
performance as a function of the offered load. It is seen from Figure 5a that the throughput increases in
proportion to the offered load in the range of 0 ≤ O ≤ 13.3 Mbps. This is because all the networks
are in the non-saturation state. The observation is confirmed from Figure 5b, where we can see that
frame-existence probabilities of all the nodes are less than one in the range. The frame-existence
probability of Network 2 reaches one first at O = 13.3 Mbps. For O ≥ 13.3 Mbps, the frame-existence
probabilities of networks except Network 2 still increase. It leads to the increment of the carrier-sensing
probabilities, which are confirmed from Figure 5c. As a result, the throughput of Network 2 decreases
as the offered load increases in the saturation condition. It is also seen from Figure 5b that all networks
are saturated when O = 28.1 Mbps. Therefore, the network throughput with respect to each network
keeps the constant value in the range of O ≥ 28.1 Mbps. From Figure 5c, it is confirmed that the
degradation of throughput in Network 2 is caused by the bias of carrier-sensing.
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Figure 5. Network characteristics of analytical (lines) and simulation (plots) results as a function of the
offered load for Scenario 1. (a) Throughput. (b) Frame-existence probability. (c) Carrier-sense airtime.

5.2. Scenario 2: String Topology, N = 4

Scenario 2 includes four linear networks. Figure 6a–c show the network throughput,
frame-existence probability, carrier-sense airtime, as functions of offered load, respectively. We can
observe from Figure 6a that the throughputs increase in proportion to the offered load in the range of
0 ≤ O ≤ 13.3 Mbps. The reason is similar to the one in the previous section (i.e., networks being in the
non-saturation state). We also have same confirmation as in Figure 6b, where within the range all the
probabilities are less than one. However, the frame-existence probabilities of Network 2 and 3 reach
one at O = 13.2 Mbps. For O ≥ 13.2 Mbps, meanwhile the frame-existence probabilities of the other
networks still increase. Therefore, carrier-sensing probabilities increase as seen in Figure 6c. As a result,
the throughputs of Network 2 and 3 decrease as the offered load increases in the saturation condition.
It is also seen from Figure 6b that all networks are saturated at O = 20.5 Mbps. Therefore, the network
throughputs keep the constant value in the range of O ≥ 20.5 Mbps. From Figure 6c, it is confirmed
that the degradation of throughput in Network 2 and 3 is also caused by the bias of carrier-sensing.
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Figure 6. Network characteristics of analytical (lines) and simulation (plots) results as a function of the
offered load for Scenario 2. (a) Throughput. (b) Frame-existence probability. (c) Carrier-sense airtime.

5.3. Scenario 3: Grid Topology

In Scenario 3, there are nine networks installed in a grid shape. Figure 7a–c show the network
performance as a function of offered load. Figure 7a shows that similar to the string topologies
the throughputs increase in proportion to the offered load in the range of 0 ≤ O ≤ 13.6 Mbps.
Within that range, the frame-existence probabilities of all the nodes are less than one because all the
networks are in non-saturation state as in Figure 7b. In this case, the frame-existence probability
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of Network 2 reaches one at O = 12.75 Mbps, and Network 5 reaches one at O = 13.6 Mbps.
However, the throughput of Network 5 continues to increase as the offered load increases although
the frame-existence probability of Network 5 reaches one at O = 13.6 Mbps. Because Network 2
loses the transmission opportunities when the offered load increases, Network 5 gets the transmission
opportunities. For O ≥ 13.6 Mbps, the frame-existence probabilities of networks except Network
2 and 5 still increase. Therefore, the carrier-sensing probabilities increase, which can be confirmed
from Figure 7c. As a result, the throughput of Network 2 decreases as offered load increases in the
saturation condition. It is also seen from Figure 7b that all networks are saturated at O = 26.0 Mbps.
From Figure 7c, it is confirmed that the degradation of throughput in Network 2 is also caused by bias
of carrier-sensing. However, we observe the throughput of Network 5 does not increase markedly at
12.75 Mbps ≤ O ≤ 13.6 Mbps. Because the frame-existence probability of Network 5 reaches one at
O = 12.75 Mbps first. It is faster than Network 2. The carrier sensing duration of Network 5 decreases
and Network 2 increases at O = 11.8 Mbps. Although the frame-existence probability of Network 5
reaches one first, Network 5 gets more the transmission opportunities at O = 11.8 Mbps. When the
frame-existence probability of Network 2 reaches one at O = 13.6 Mbps, the throughput of Network 5
increases markedly.
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Figure 7. Network characteristics of analytical (lines) and simulation (plots) results as a function of the
offered load for Scenario 3. (a) Throughput. (b) Frame-existence probability. (c) Carrier-sense airtime.

It is seen that in all the Figures 5–7 the analytical predictions well agree with the simulation results.
That confirms the validities of the analytical expressions in this work. Not only that the results in all
the scenarios show the large variation of network throughput caused by the carrier-sensing effect.
Therefore, our findings can provide a convenient tool to understand the variation.

6. Conclusions

This paper has proposed the analytical expressions of one-to-one WLAN’s throughput under the
impact of inter-network interference. The analysis, which uses the airtime concept, can provide each
network throughput by expressing the simultaneous transmission time, carrier-sensing duration, and
frame-existence probabilities concerning each network. We have applied the analytical expressions
in three scenarios, including the two string topologies and a grid one. The validity of the analytical
expressions has been confirmed from the quantitative agreements between the analytical and
simulation results.
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