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Abstract: In this paper, ultrasonic attenuation of engineering materials is evaluated comprehensively,
covering metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. After verifying
two reliable experimental methods, 336 measurements are conducted and their results are tabulated.
Attenuation behavior is determined over broadband spectra, extending up to 15 MHz in low
attenuating materials. The attenuation spectra are characterized in combination with four power
law terms, with many showing linear frequency dependence, with or without Rayleigh scattering.
Dislocation damping effects are re-evaluated and a new mechanism is proposed to explain some of the
linear frequency dependencies. Additionally, quadratic and cubic dependencies due to Datta–Kinra
scattering and Biwa scattering, respectively, are used for some materials to construct model relations.
From many test results, some previously hidden behaviors emerged upon data evaluation. Effects of
cold working, tempering, and annealing are complex and sometimes contradictory. Comparison to
available literature was attempted for some, but most often prior data were unavailable. This collection
of new attenuation data will be of value in materials selection and in designing structural health
monitoring and non-destructive inspection protocols.

Keywords: ultrasonic attenuation; damping factor; metals; ceramics; polymers; fiber-reinforced
composites; wood; rocks; dislocation damping; Mason–McSkimin relation; Rayleigh scattering;
Datta–Kinra scattering; Biwa scattering

1. Introduction

Non-destructive evaluation (NDE) methods based on stress wave propagation have contributed
to quality assurance and failure prevention in many industries [1–3]. The methods include ultrasonic
testing (UT), which uses active interrogation of target components, and acoustic emission (AE) testing,
which relies primarily on “acoustic” signals emitted from the target. In recent years, their roles
have expanded into continual monitoring and preventive maintenance of wide-ranging products and
infrastructures, offering useful tools for structural health monitoring [4–7]. As the size of structures
being inspected increases, the attenuation of stress waves becomes a concern, especially for components
of modern fiber-reinforced composites and other high damping materials. In a preceding report [7],
a section was devoted to collecting available data on structural alloys, polymers, and fiber-reinforced
composites. Despite long-standing scientific and engineering interests in this subject going back to
the work of Mason and McSkimin in the 1940s [8], available ultrasonic attenuation data were found
to be limited. Most of the attenuation values collected in [7] were for longitudinal waves, while
the data for transverse waves were even more sparse, lacking an adequate theoretical foundation,
as appropriate diffraction correction has been unavailable. As data from some reports were given
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as ranges in [7], the total tabulated data count exceeded 80, but this number was still less than 200
for only about 40 different types of materials. Most polymer data, with about 50 being available
in [9–11], were not included, in part because the test frequency was in the low kHz region or below
and was often unidentified. Technical standards for their measurements and validation were also
inadequate [12,13]. In order to fill the gap in the presently inadequate database, a study was initiated
examining experimental techniques and which culminated with a comprehensive report.

Papadakis [14,15] provided a thorough review of this subject and application examples of a
buffer rod method, which he and his colleagues had developed earlier [16]. Their method and its
variations have been used by many works cited in [7], including ASTM Standard C1332 [12], as well as
in [17–26]. Margetan et al. [27] published a tutorial for another approach for attenuation measurement,
namely the immersion methods. While these methods require advanced ultrasonic instrumentation
capable of precise sensor–sample alignment, water coupling allows the inspection of curved surfaces
of engineering components. Margetan and his coworkers [28–31] applied the methods to detect the
hard inclusions in aerospace Ti alloys and to evaluate the cleanliness of steel samples.

Here, it is necessary to define terms that will be used, as wave attenuation is characterized using
several different parameters. Attenuation coefficient α is often used in UT and AE to represent an
exponential decay. Taking the initial and attenuated wave amplitude in the displacement, Ao and A,
and the propagation distance, x, we have

A = Ao exp (−α x). (1)

The commonly used unit for α is dB/m. However, it is sometimes convenient to use Np/m,
whereby 8.686 dB = 1 Np. Np stands for Neper, a non-dimensional unit that is useful in numerical
computation. In this work, only longitudinal waves are considered and no subscript is used for wave
types. Previously in [7], α was denoted by αp. This α is related to the damping (or loss) factor η by
η = αλ/π, where λ is the wave length and α is given in the unit of Np/m. Here, 2πη is the ratio of energy
dissipated per cycle to maximum energy stored per cycle; η is often denoted as Q−1 in seismology [32]
and in electrical engineering, and η is also equal to the loss tangent, tan δ. This tan δ is defined as the
ratio of the imaginary part (E”) to the real part (E’) of a complex elastic modulus, E* = E’ − iE”, with
i2 = −1.

The damping factor (or loss tangent) is often used in dealing with vibration damping at lower
frequencies, especially in polymers, where attenuation arises from viscous damping or hysteretic
behavior. When η is independent of frequency, the attenuation coefficient due to viscous damping, αd,
is given by

αd = Cd f = π η/λ = π η f/vL, (2)

where f is the frequency and vL is the longitudinal wave velocity; that is, attenuation coefficient αd

increases linearly with frequency, with Cd as a constant for attenuation due to damping of longitudinal
waves. This αd, which is proportional to frequency, was initially attributed to elastic hysteresis [8],
and early works on damping factors (η = Q−1) of metals were tabulated in [32]. The damping
phenomena were also called internal friction, for which log decrement ∆ = ln (Ao/A) was commonly
used and ∆ = π η.

The origin of αd was correlated to dislocation damping in metals [33,34], known as the
Koehler–Granato–Lücke (KGL) theory. Dislocation damping is attributed to phonon and electron
drags in dislocation oscillations, thermoelastic damping, and mode conversion losses. This and related
topics were thoroughly reviewed in [35–37], and most available experimental data were compiled in
a handbook by Blanter et al. [37]. Additional works on ultrasonic absorption not cited in [37] also
demonstrated that (i) magnetic damping effects constitute the bulk of αd in a steel [38], (ii) dislocation
damping increased with plastic strain in Al single crystals [39], and (iii) αd in pure Fe diminished
with annealing [40]. Material damping at lower frequencies is an important issue in structural design.
Sugimoto provided a review with a compilation of the Q−1 values vs. tensile strength for 25 alloys [41].
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More recently, Blanter and Golovin [42] gave an updated review of this topic and covered high
damping metals in depth. In a book on high intensity ultrasound technology, Abramov [43] provided
damping data and showed that the damping factors of common metals, such as Al, Cu, Ni, Fe, and Zn,
exceed 0.01 at high strain amplitudes in excess of 10−4; that is, these metals under high intensity
ultrasound (below ~100 kHz) have damping factors higher than that of polymethyl methacrylate
(PMMA) under normal ultrasonic test conditions (i.e., strain amplitude of ~10−7). Methods for testing
high damping materials were reviewed in [44]. These works demonstrated that materials with low
ultrasonic attenuation, such as Al, Mg, and Fe-Cr alloys, can double as high damping materials at low
frequencies and at high strain amplitude [41–44].

For polymers, this hysteresis effect comes from molecular rearrangements [9,10]. An example of
the frequency dependence of this hysteretic damping is shown in Figure 1 for PMMA. In this plot,
data points from multiple sources are combined, including Kline [19], Pouet and Rasolofosaon [24],
Carlson et al. [25], and Treiber et al. [26], resulting in a linear regression fit with Cd = 85.9 dB/m/MHz
(shown by the blue dotted line). The data points formed two groups, with a smaller slope for
Kline’s older collected data from six studies and a larger slope for another group that was more
recent [24–26]. Data from both groups exhibited linear frequency dependence in the MHz range.
However, the damping factor started to increase below 1 MHz by a factor of 3 to 5, showing a maximum
at 50 Hz (3 Hz for torsional vibration) [7]. For rocks, attenuation studies covered similarly wide
frequency ranges, and αd was found to show linear frequency dependence from 1 kHz to 1 MHz; that
is, Q values were constant [45].
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Scattering is another cause of wave attenuation. Rayleigh scattering that depends on the fourth
power of frequency, f4, arises from random scattering centers, such as grain boundaries and distributed
second phase particles [8]. This occurs when the distance between scattering centers, d, is much less
than λ, or λ >> d. For single phase alloys, polycrystalline grain size is used as d, which is of the order
of 10 to 100 µm for most structural metallic alloys. Thus, this Rayleigh scattering effect, denoted by the
attenuation coefficient due to scattering, αs, becomes significant above 5 to 10 MHz. Because of the 4th
power frequency dependence, this attenuation effect shows a steep decrease with decreasing frequency,
often becoming negligible in the low MHz region. This behavior was reported by [8,18,20,46]. Using a
constant CR for Rayleigh scattering, we have

αs = CR f4. (3)
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Mason and McSkimin [8] used the sum of αd and αs to represent their attenuation data for
large-grained Al. This is given as

α = αd + αs = Cd f + CR f4, (4)

and will be referred to as the Mason–McSkimin relation.
Stanke and Kino [47] formulated a unified theory, which provides a smooth transition between

three types of scattering in Rayleigh, stochastic, and geometric regions. Stochastic scattering gives
f2-dependence, and is applicable when the wave length λ is of the order of the mean spacing of
scattering centers, such as grain boundaries and second-phase particles; this is above 20 MHz for
typical metals. The geometric scattering types appear to be insignificant in usual NDE applications
below 20 MHz and are not considered in this work. Other power law attenuation effects may exist and
can be described as αn = Cn fn. This has been used when it is needed to fit experimental observation.
It is known that water attenuation follows the quadratic form, while other liquids exhibit slightly
lower n values [1,48,49]. For the case of n = 2, attenuation can also arise from dislocation damping in
crystalline solids [20,33–36], with α written as

α = C2 f2. (5)

That is, the KGL theory predicts quadratic frequency dependence, and it is necessary to investigate
the mechanisms of dislocation damping, which predict the linear frequency dependence, as in the case
of polymer damping. This will be discussed in the next section.

Another quadratic frequency dependence of attenuation was observed in particulate–epoxy
composites. Kinra et al. [50] observed a sharp rise in attenuation with frequency using 0.3-mm diameter
glass spheres finely distributed in epoxy matrix. The α data for the case of 0.451 volume fraction is
plotted in Figure 2a after converting the unit for α into dB/m. A second-order polynomial curve fits the
data well, with R2 = 0.987. This is a combination of Equations (2) and (5), or

α = Cd f + C2 f2, (6)

with Cd = 36.3 dB/m/MHz and C2 = 545 dB/MHz2. This will be referred to as the Datta–Kinra relation
(with or without Cd term), as it is based on theoretical works by Datta [51,52]. These types of spectra
were seen for gray cast iron data, in addition to 26 other cases.

For unidirectional fiber-reinforced composites, Biwa and coworkers [53,54] modeled longitudinal
wave attenuation in the normal fiber direction and provided graphical data of a scattering cross-section
vs. frequency (both in normalized values). Reading selective data points from [53] and converting
the frequency for the case they analyzed, Figure 2b shows the results. Biwa data can be fitted well
(R2 = 0.998) to a cubic frequency dependence, or

α = C3 f3, (7)

with C3 = 550 dB/m/MHz3. Again, the damping term is usually non-zero, giving the Biwa relation
given by

α = Cd f + C3 f3. (8)

In the present study, this Biwa relation fitted to eight out of 13 observed composite attenuation
datasets in the surface normal direction. In one of them (Kevlar composite), the cubic spectrum
(Equation (7)) best described the attenuation.
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Figure 2. (a) Attenuation coefficient vs. frequency for a composite of 0.3-mm diameter glass spheres
in epoxy matrix. The volume fraction of glass sphere was 0.451. Data reads from Kinra et al. [50].
Quadratic frequency dependence of α (blue dotted curve) fits the data. (b) Modeled scattering
cross-section vs. frequency for a unidirectional fiber-reinforced composite in the normal fiber direction
by Biwa [53]. Data reads from his plot shown in red circles fitted with a cubic frequency dependence.

In early attenuation studies of metals, viscous damping effects were shown to be low by Mason
and McSkimin [8] and others (see [7,14] for earlier works). Krautkramer’s book [1] listed α values
as less than 10 dB/m at 2 MHz for most structural alloys (except for copper-based alloys) in the first
edition in 1969. In subsequent years, research activity on this topic, especially below 5 MHz, has been
sparse. In addition to absorption studies noted above [37–39], Smith et al. [18] separated αd terms
of steels of various carbon (C) contents. The levels of attenuation were low, with Cd values of 0.7
to 3.5 dB/m/MHz. In most other attenuation studies, only the scattering terms have been examined.
However, some works reported results showing that it is unwise to ignore the damping term. Figure 3
gives some examples. Observed attenuation coefficients are plotted as circles (in blue or red) for a
low-C steel (Figure 3a, with data from [55]) and for pure niobium (Figure 3b, with data from [56]).
For steel, Ahn and Lee [55] normalized 0.2% C steel samples at 900 and 1100 ◦C, and obtained α

values for 5 to 9 MHz, fitting them using a power law, with n measuring approximately 1.5. However,
such power law fits have no rational basis from existing theories. These data sets can be modeled
using the Mason–McSkimin relation (Equation (4)), assuming that the low-frequency region possesses
linear frequency dependence from damping, while the Rayleigh scattering law is obeyed at higher
frequencies. The fitted data points are shown by blue or red + symbols, while blue or red dots represent
the extension of the linear fit at low frequencies. In the niobium (Nb) case, the data from Zeng et al. [56]
is plotted in Figure 3b, indicating α values for two grain sizes (blue for 32 µm and red for 60 µm). Here,
available Nb data jumps from 9 to 20 MHz, giving two frequency bands. Zeng et al. [56] compared their
data sets with the Stanke–Kino theory [47], but no match was achieved. Using the Mason–McSkimin
relation, it is possible to combine damping and scattering components, as shown by blue or red +

symbols in Figure 3b. The match was poorer than for steel, however, as the frequency range extends to
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27 MHz in this Nb study. While the combined damping–scattering attenuation apparently rationalizes
the observed behavior, no theoretical basis is currently available to explain the level of damping,
including the KGL theory noted above [33–37].
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Mason–McSkimin fit represented by + marks, and the linear component represented by dots. (a) The
0.2% C steel normalized at 900 (blue) and 1100 ◦C (red). Data read from Ahn and Lee [55]. (b) Nb with
two different grain sizes: 32 (blue) and 60 µm (red). Data read from Zeng et al. [56].

Since the damping term was not often utilized after 1960 outside the composite field, one of the
objectives of the present study is to examine how broadly the Mason–McSkimin relation exists in
various materials. It is anticipated that more detailed studies on dislocation effects, including atomistic
or molecular dynamic simulations, will be required to establish improved quantitative mechanisms
for damping. The extent of applicability of Datta–Kinra and Biwa relations is also of interest as these
have not been tested with real attenuation data. These three relations (Mason–McSkimin, Datta–Kinra,
and Biwa) are named in this report. Other aims of this work are to experimentally obtain the attenuation
coefficients (α) of a wide range of materials in the low MHz range (below 15 MHz), so as to present
them in tabular form, to give information that is useful in material selection, and to provide rational
interpretation of attenuation behavior. This information will also aid in improving model calculations
for distance–amplitude curves for UT and predicting the detectability of AE signals on large structures.
Over 300 samples were used, mainly based on the availability in the author’s laboratory, as well as
some new acquisitions. Experimental procedures describe transmission difference methods used for
attenuation measurements without requiring the reflectivity of interfaces. The Results and Discussion
section provides separate tables for different types of materials, metals (steels, non-ferrous alloys,
and cast iron), polymers and wood, fiber-reinforced composites, and ceramics and rocks. This part
covers general observations and includes comments on peculiar material behavior observed for some
groups, such as cold-worked metals and cast iron. Also noteworthy is a transition discovered in
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mortar spectral results, which changed from the Mason–McSkimin to Datta–Kinra spectrum when
void content exceeded 20%. This represented a change from independent to multiple scattering.

2. Dislocation damping

Dislocation damping has been analyzed based on the Koehler vibrating string model [33].
Koehler–Granato–Lücke (KGL) formulation showed a linear frequency dependence of damping factor
η below the resonance frequency of around 20 MHz [34–36]. In terms of attenuation coefficient α, this
becomes quadratic frequency dependence through Equation (1). Heiple and Birnbaum [57] derived an
explicit equation for this linear part between logarithmic decrement (∆ = π η) and angular frequency.
The logarithmic decrement for Cu was measured in multiple studies at kHz frequencies. At 20 to 25 kHz,
∆ was found to vary on the low side, ranging from 0.001 [58] to 0.0037 [57] and as high as 0.08 [59], with
a median value of 0.007. This ∆ range agreed with the prediction of the KGL model using the dislocation
drag factor obtained from theory, experiments and atomistic simulations [60–62]. Low-frequency
internal friction studies used a strain amplitude range of 10−7 to 10−5 [58–60], but one study used an
amplitude of up to 3 × 10−4 [58]. In ultrasonic attenuation studies, the strain amplitude is slightly lower
at 10−6 to 10−7, since most transducers can only generate 1 to 10 nm peak output [63] and samples are
over 10 mm. The two approaches cover comparable strain amplitude ranges. These kHz data were
extrapolated to 1 MHz and converted to α values to compare them with ultrasonic attenuation. The α

values from internal friction studies were 0.22 to 8.65 dB/m and the median α was 1.5 dB/m at 1 MHz.
In contrast, ultrasonically obtained α values for Cu were 3–100 times higher and typically exhibited
the linear frequency dependence (except in two cases in a slightly cold-worked plate). The linear
frequency dependence of α was the dominant feature of the present study for various solids. Thus,
it is necessary to explore another source of dislocation damping that depends linearly on frequency.

When pinned dislocation segments are cyclically stressed, they oscillate, as shown in Figure 4a.
It is assumed that they have a constant segment length, L, and are distributed uniformly in space.
Low lattice resistance for dislocation motion in solids with non-local bonding is also assumed, as shown
by Gilman [64]. Starting from a straight line at stress position 0 and at time 0, each segment bows
out to the left in the first quarter-cycle under applied stress (Figure 4b) and becomes a series of circle
segments at position 1 and time 1. Between 0 and 1, stress increases to the positive peak and work is
added by moving the dislocation segments while lengthening the segments, which increases the elastic
energy stored in the solid medium. The added work, shown in Figure 4c, is lost as heat. Between times
1 and 2, the dislocation returns to the straight line (position 2). This is driven by the shrinkage of the
lengthened dislocation as the dislocation segments are moving against positive stress. This is repeated
from positions 2 to 4 in reverse manner, again generating energy loss in the form of work done by the
moving dislocation segments, pushed by negative applied stress. As will be shown below, dislocation
motion is quasi-static, but the dislocation drag term still acts against the motion. For each cycle, energy
loss occurs twice during the positive and negative half-cycles, contributing to damping, which is
proportional to frequency. This linear behavior originates from the work caused by dislocation motion
during each half-cycle. The amount of work caused by the bow-out process can be calculated from the
basic dislocation theory [65]. A bowed-out segment with Burgers vector magnitude, b, is shown in
Figure 5 under shear stress τ acting on the slip plane. The distance of the bow-out is equal to length
from A to B, defined as [AB]. Here, square brackets indicate length. L is equal to [CD], and the radius
of the curvature of the bowed-out segment (arc CBD) is denoted as R = [OB] = [OC] = [OD]. The angle
2θ is defined by lines OC and OD. For this geometry, R is given by

R = (L/2)/sin θ. (9)
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The force on the bowed-out segment (arc CBD) is equal to τ bL, and this is balanced by the
opposing components of the line tension (= 2aT Gb2 sin θ), where aT is a line-tension constant of 0.5
and G the shear modulus. Expressing stress using a strain aS with the shear modulus G, or τ = aS G,
and using Equation (9), we have [65]

τbL = aS GbL = 2aT Gb2 sin θ = 2aT Gb2L/2R, (10)

which reduces to
aS R = aT b, (11)
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which relates the strain amplitude aS to R; that is, given aS and pinned segment length L, the values of
θ and R can be determined, allowing one to calculate the area of the bow-out AB (bounded by ACBD),
as below.

AB = R2(2θ − sin 2θ)/2 (12)

This leads to the work done by each bow-out by multiplying τ b/2 = aS Gb/2. Here, a factor of half
is needed because applied stress is cyclic, and another factor of half is also needed since the second
quarter-cycle contributed no work. It should also be noted that AB/L corresponds to the average
distance of dislocation motion. When the work done per half-cycle, aS Gb AB/4, for each elemental
volume of L3 is doubled (for positive and negative motion) and divided by L3, the unit volume value
of work done per cycle is obtained. The applied strain energy per unit volume per cycle is G aS

2/2.
The ratio of work done to the applied strain energy gives the damping factor η at the strain amplitude
aS by adding 2π in the denominator, since η = (energy loss)/2π (stored energy). Then, one gets

η = (aS Gb AB/2)/(2π GaS
2L3/2) = b AB/2π aS L3. (13)

For aT = 0.5, G = 26 GPa, b = 0.3 nm, and L = 10 µm, the work done, applied strain energy, and
damping factor were calculated for aS of 2 × 10−8 to 10−5 and plotted in Figure 6.
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For the strain amplitude range of 2 × 10−8 to 10−5, η values remain almost unchanged at 0.027.
This is a very high value for metals and is high even for polymers. When the wave length of Al is used
at 1 MHz, the η value corresponds to α = 117 dB/m. The range of aS is wide and the maximum aS

corresponds to stress, which is one-third of the Orowan stress of unstable bow-out (or break-away
stress). Here, the maximum bow-out distance was 0.86 µm under 260 kPa, indicating the maximum
dislocation velocity was 3.4 m/s at 1 MHz excitation. This is about 1000 times slower than the shear
wave velocity of Al (3.1 km/s) and the dislocation motion can be regarded as quasi-static. On the
other end of low aS, the maximum bow-out under 0.52 kPa was 2.1 nm, with a dislocation velocity of
8.4 mm/s. Still, the same level of damping is predicted. Such dislocation velocities were well below the
velocities limited by the dislocation damping coefficient, B. Hikata et al. [60] experimentally obtained
B = 5.0 × 10−6 Pa·s at 300 K, while Olmsted et al. [61] found B = 1.4 × 10−5 Pa·s at 342 K via a molecular
dynamics (MD) approach. Another MD result [62] gives B = 2.8 × 10−5 Pa·s at 100 K (averaging
screw and edge values). At 260 kPa, these B values predict dislocation velocities of 5.5 to 156 m/s,
all exceeding the maximum dislocation velocities needed in the proposed bow-out mechanism of
dislocation damping; that is, the bow-out damping mechanism operates in the quasi-static regime.

When L is reduced to 1 µm, η values are almost unchanged at 0.027. Each elemental volume
contributes less, but their number increase by 1000-fold. When aT is reduced, dislocation becomes
flexible and damping increases substantially. Lower values of aT (of 0.1 to 0.5) are sometimes used in
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atomistic calculations [66]. At aT = 0.1, the work done is 90% of the applied elastic energy, increasing η

by five-fold; that is, η varies in proportion to aT. It appears that low line tension of aT below 0.1 is
unrealistic. Thus, as long as dislocations are mobile with low stress, oscillating dislocations provide
the basis for rationalizing the linear frequency-dependent damping behavior. However, the lack of
effect of pinning length reduction on η values is surprising, as this was initially thought to offer a clue
in understanding cold working effects. The explanation of two contradictory cold working effects will
have to be sought elsewhere [67].

The dislocation bow-out mechanism proposed above is based on shear deformation, so the
attenuation is for the shear wave propagation. However, the attenuation also applies to the longitudinal
wave mode, as the normal and shear stresses (or strains) are related via the Taylor factor, M (or 1/M) [68].
Consequently, the strain energy and external work terms are unaffected by the coordinate transformation
involved; that is, the attenuation coefficients from dislocation damping are identical in the longitudinal
and shear modes of wave propagation. Mason and McSkimin [8] and Papadakis [41] made the
only known direct comparison of attenuation coefficients between the longitudinal and shear modes,
reporting 2.5- to 8-fold increase for the shear attenuation for five metallic materials. However, most of
these were taken at 10–15 MHz, where the Rayleigh scattering caused the attenuation. Further study is
needed to find if similar differences persist at lower frequencies, as was the case of 2017 Al alloy [8].
If so, the above prediction of the bow-out mechanism will have to be reconsidered.

Many mechanisms can lower attenuation to the ranges of observedαvalues, including higher lattice
resistance to dislocation, dislocation–dislocation interactions, solute atmospheres, and distribution
of the second phase. However, the dislocation bow-out mechanism introduced here does provide
a new approach to account for the linear frequency dependence of the attenuation coefficient in
non-viscoelastic solids. The main limitation of this mechanism is its inability to explain the attenuation
of hard solids. These have low dislocation mobility due to their intrinsic strength and their linear
attenuation behavior remains unresolved.

3. Materials and Experimental Procedures

Attenuation measurements were conducted on solid samples with two parallel surfaces. Over 300
tests were completed and their results will be reported in the following sections. Most materials
tested were on hand from previous research or instructional work, with detailed characteristics for
some, but without for most. About a dozen samples were newly acquired for testing, mainly of
rocks and wood materials to supplement existing stock. While some had known sources, chemical
compositions, and heat treatment history, most were only identifiable by material types. In order to
provide indications of material conditions, hardness tests (Vickers and Rockwell) were conducted for
metal samples. For others, density was measured. The longitudinal wave velocity was determined
for all, giving additional clues to material conditions. In limiting cases when multiple samples are
available, heat treatment was applied to find the effects of microstructural changes on attenuation.
However, metallography was not used, as suitable sample preparation facilities were unavailable.

Attenuation measurements were utilized through transmission setups. This method uses damped,
wideband transducers, as in the buffer rod methods of Papadakis et al. [16], and relies on two
transducer setups, as in [26]. However, the present method avoids using the reflectivity parameter in
the attenuation calculation [16,26]. The present approach uses setups shown schematically in Figure 7a.
Also included is a photograph of one of the jigs used to hold samples (with an Al rod shown) and
transducers (Figure 7b). Setup 1 is used for direct contact of the transmitter and receiver, giving the
voltage output V1 from the receiver as a result of transmitter excitation by a pulser. This is often
called face-to-face testing. Setup 2 contains sample 1 between the transmitter and receiver, while
Setup 3 contains sample 2 between the transmitter and receiver. These yield V2 and V3, respectively,
in response to pulser excitation. By applying a fast Fourier transform (FFT) on V1, V2, and V3, one
gets the corresponding frequency domain spectra R1, R2, and R3, expressed in dB (in reference to 0 dB
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at 1 V). Expressing the transmitter output (in reference to 0 dB at 1 nm) and receiver sensitivity (in
reference to 0 dB at 1 V/nm) as T and R (also in dB), one obtains

R1 = T + R (14a)

R2 = T − α X1 − D1 − Tc + R (14b)

and R3 = T − α X2 − D2 − Tc + R, (14c)

where X1 and X2 are the thickness of samples 1 and 2, D1 and D2 (= –20 log D) are the diffraction
corrections of samples 1 and 2 (D is given in Equation (15) below), and Tc is the transmission coefficient
of the sample going from the transmitter to the receiver (Equation (16)). The diffraction loss D for
sample thickness x using two circular transducers of the active radius, a, is given by [69]

D = {[cos(2π/s) − J1(2π/s)]2 + [sin(2π/s) − J1(2π/s)]2}0.5, (15)

where s = x vL/f a2, with vL being the longitudinal wave velocity. This is due to Rogers and van
Buren [69], who integrated the Lommel integral for a circular piston motion received over the same
sized area, located at distance x. D is frequency-dependent and was first obtained numerically by
Seki et al. [70]. Notice that the D calculations relied on the isotropic elasticity theory. In materials
with highly anisotropic elastic moduli, such as unidirectional fiber composites, this condition is absent
and D is omitted, as it leads to overcorrections. Diffraction correction in more complicated conditions
can be obtained by combining multiple Gaussian beams from a piston source [71]. Tc arises from the
differences in acoustic impedances of the transducer face (Zt) and sample (Zs), and is given by [1]

Tc = (4Zt Zs)/(Zt + Zs)2 (16)
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Figure 7. (a) Schematics of the attenuation experiment, including from top, pulser, 1: direct contact
test, 2 and 3: through-transmission test 1 and 2. (b) Photograph of one of the test jigs with an Al
sample, using two 10 MHz transducers. Transducers are manually aligned and pressed together using
a 12.7-mm diameter, 0.8-mm pitch bolt on top of a steel hemisphere. Finger-tightening of the bolt
generates ~200 N force.



Appl. Sci. 2020, 10, 2230 12 of 52

This expression for Tc assumes the usual condition of the planar wave front. Because the transducer
face material is alumina (Zt = 38 Mrayl), Tc may be omitted when a sample has Zs larger than 30 Mrayl
(for an error of 0.1 dB), unless attenuation values are low. Both Dn (n = 1 or 2) and Tc are expressed in
dB. Dn is frequency-dependent, while Tc is assumed to be a constant. Note that Dn increases linearly
with frequencies below 0.1 to 2 MHz for the typical experimental conditions used in the present study.
Here, Dn values often exceeded observed attenuation effects and useful attenuation data were only
obtained in the near-field region, where Dn values varied slowly with frequency (e.g., at f >2 MHz for
66 mm Al and >0.2 MHz for 10 mm PMMA).

By using two of the three equations (Equations (14a), (14b), and (14c)) given above, one gets

α = (R2 + D1 − R3 − D2)/(x2 − x1) (17a)

α = (R1 − R2 − D1 − Tc)/x1 (17b)

α = (R1 − R3 − D2 − Tc)/x2. (17c)

As Equations (17b) and (17c) are equivalent, two distinct methods can be utilized. The first
uses setups 2 and 3 with Equation (17a). This approach cancels out the effects of the transmission
coefficient due to acoustic impedance mismatch. Coupling layer effects are also canceled. The second
method utilizes setups 1 and 2 with Equation (17b). These two approaches will be called transmission
difference methods 1 and 2, with TDM-1 and TDM-2 as abbreviated terms. That is, TDM-1 uses two
sample thicknesses, x1 and x2, with setups 2 and 3, and obtains the value of α from Equation (17a).
In contrast, TDM-2 uses one sample thickness, x, with setups 1 and 2 (or 3). The value of α comes from
Equations (17b) or (17c). This is more convenient than TDM-1 because only one sample is needed,
but requiring the use of Tc. Preparing two samples of different thicknesses is not practical for materials
that are difficult to machine, but the effects of one extra coupling layer remain.

There is no direct way to measure the value of Tc, but when attenuation results are obtained by
using both TDM-1 and TDM-2, the value of Tc can be estimated. By comparing the estimated and
calculated Tc, a transmission coefficient correction (TCC) is obtained. This requires adjusting the Tc

value in the determination of α by TDM-2, so that its result matches the TDM-1 result. TCC can be
applied to TDM-2 results from similar test conditions. In Section 4.1, three materials will be tested
using TDM-1 and TDM-2. Results will be compared between them. If these two sets provide good
agreement in the values of α, TDM-2 may be used in lieu of TDM-1, utilizing calculated Tc values.
It was found that comparison provided no matching α values, but TDM-2 gave α values of 10% to 25%
lower than those from TDM-1 tests. The differences were corrected by applying a TCC term of 2 to 7 dB.
Even when TCC is not used, α values from TDM-2 can be treated as approximations. Thus, α values of
most materials will be measured using TDM-2. Whenever multiple samples are available, TDM-1 will
be used, since its results were less sensitive to the inadequacy in sample preparation and provided more
reliable attenuation spectra with minimal couplant effects. The variability of reflectivity coefficients
was shown by Generazio [25] and Treiber et al. [26] under different conditions. This indicates that
transmission methods, such as TDM-1 and TDM-2, with no reflectivity terms are preferable.

The diffraction loss D from Equation (15) depends on the transducer radius (a) through the
s-parameter (s = xvL /fa2), sometimes known as the Seki parameter [70]. For this work, four
transducers with an element radius of 6.35 mm were used. These were an Olympus V111 and V103,
Panametrics V1030 (Olympus NDT, Waltham, MA, USA), and NDT Systems C16 (from NDT Systems,
Huntington Beach, CA, USA). Their nominal center frequencies are 10, 1, 10, and 2.25 MHz, respectively.
For most experiments, the V111 and V1030 pair was used, but other pairings of low-frequency
transducers were also used when the attenuation was high. Additionally, two Olympus transducers
with a 12.7-mm radius—V104 (2.25 MHz) and V107 (5 MHz)—were used to determine the transmission
coefficient correction (TCC). Examples of the face-to-face responses (V1 waveforms and R1 spectra)
are shown in Figure 8a,b. Careful alignment was essential in maximizing receiver output. In order
to achieve good transducer–sample coupling with Vaseline couplant, it was necessary to apply
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approximately 200 N force for at least 30 min. Longer holding times were needed for setup 2 (and 3)
before the output was stabilized. Peak-to-peak receiver voltages for direct contact were 7 to 10 V into a
PicoScope 5242D (14 bit, 8 ns intervals, input impedance of 1 MΩ; Pico Technology, St. Neots, UK),
showing useful signal levels to 15 MHz for pairs of 10 MHz transducers. Despite its low resonance
frequency, C16 provided adequate transmitter output to 14 MHz, except at anti-resonance dips. FFT was
performed with Noesis software (Enviroacoustics, Athens, Greece, ver. 5.8).
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Figure 8. (a) Waveforms of direct contact tests (voltage output, V1). V1030 to V111 (blue); V111 to V1030
(red); C16 to V111 (green). (b) Corresponding frequency spectra (R1 of Equation (14a)). Color code the
same as in (a).

4. Results and Discussion

4.1. Comparison of TDM-1 and TDM-2

Two test methods, TDM-1 and TDM-2, were used on three polymeric materials with varying
acoustic impedance. These were PMMA, polycarbonate (PC), and polyvinylchloride (PVC), as these
had large values of transmission coefficient, Tc (PMMA: 10.4 dB, PC: 12.2 dB, PVC: 10.6 dB). These tests
were conducted to determine values of transmission coefficient corrections (TCC) needed to adjust
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the attenuation coefficients from TDM-2 in-line with those from TDM-1, which are independent of
transmission coefficient, Tc.

Figure 9a illustrates results of the two methods for PMMA samples with x1 = 9.0 mm and
x2 = 45.6 mm. The thick sample was made from the same 9.0 mm plate as the thin sample, using epoxy
glue measuring approximately 40 µm per adhesive layer. The blue, brown, and red curves represent
R1, R2, and R3 FFT spectra, respectively, corresponding to the outputs of direct contact, and with
thin and thick samples. The difference between R1 and R3 is given by the blue dotted curve, and the
brown dotted curve shows diffraction correction D2 for the thick sample. Note that these two were
close to each other below 1 MHz, where attenuation was low (for some transducer pairs of larger or
smaller radii, differences were larger, indicating that a = 6.35 mm is an appropriate choice.) Purple
and green curves show attenuation results for TDM-1 and TDM-2 for the propagation distances of
(x2 − x1) for TDM-1 and of x2 for TDM-2. For the TDM-2 data, a Tc value of 10.4 dB was included
in the computation of Equation (17c). In both cases, diffraction correction was applied according to
Equation (15). Linear regression fits for these curves are plotted by purple and green dotted lines.
When the slopes of the linear equations are normalized by propagation distance, α values are obtained
with Equation (2) using Cd, measured in dB/m/MHz, as follows (also in Table 1):
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and x2 = 45.6 mm. Blue dotted curve: R1–R2; brown dotted curve: D2; purple curve: α for transmission
difference method 1 (TDM-1); green curve: α for transmission difference method 2 (TDM-2). Purple and
green dotted lines are linear regression fits for purple and green curves, respectively. (b) As in (a), but
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Table 1. Comparison of attenuation coefficients between TDM-1 and TDM-2 methods.

Material x1 x2 Cd: TDM-1 Cd: TDM-2 Cd: TDM-2 with TCC TCC R2: TDM-1 R2: TDM-2 R2 TDM-2 Notes

mm mm dB/m/MHz dB/m/MHz dB/m/MHz dB with TCC
PMMA 9.0 18.2 94.0 74.6 93.3 2.00 0.947 0.929 0.777
PMMA 9.0 24.3 93.8 86.8 94.2 2.50 0.949 0.952 0.852
PMMA 9.0 27.1 86.2 75.5 86.6 1.90 0.959 0.952 0.916
PMMA 9.0 38.6 89.4 81.3 89.3 2.30 0.935 0.96 0.901
PMMA 9.0 43.2 98.7 88.3 98.6 3.00 0.971 0.927 0.852
PMMA 9.0 45.6 92.3 83.7 92.9 2.80 0.962 0.937 0.878
PMMA 9.0 48.1 91.0 81.3 90.6 3.00 0.985 0.964 0.938
PMMA 9.0 47.4 95.0 85.7 94.6 2.90 0.941 0.96 0.924
PMMA 9.0 38.6 82.3 59.8 82.7 4.70 0.947 0.928 0.78 12.7 mm *
Average 91.41 79.67 91.42 0.955 0.945 0.869

Std Dev ** 4.92 8.81 4.74
PVC 4.5 17.5 224 206 223 1.84 0.991 0.956 0.929
PVC 4.5 13.5 245 200 245 5.03 0.993 0.971 0.936
PVC 4.3 13.5 248 163 248 7.25 0.93 0.918 0.664 12.7 mm *

Average 239.0 189.7 238.7 0.963 0.947 0.865
PC 2.3 16.5 638 581 639 3.20 0.983 0.991 0.981

* A pair of larger transducers with a 12.7-mm radius was used for these two tests; ** Std Dev indicates standard deviation. PMMA, polymethyl methacrylate; PVC, polyvinylchloride; PC,
polycarbonate; Cd, damping coefficient; TDM, transmission difference method; TCC, transmission coefficient correction.



Appl. Sci. 2020, 10, 2230 16 of 52

Cd = 92.3 (R2 = 0.962) for TDM-1 and Cd = 83.7 (R2 = 0.937) for TDM-2.
Both TDM-1 results for Cd and R2 were higher than those of TDM-2. The difference of R2 values

was small, but deviations were much higher in TDM-2, implying that careful slope estimation is needed
based on FFT spectral behavior. In the present case, both R2 and R3 spectra showed broad reduction
over 2 to 6 MHz, producing a positive deviation for the green curve. In this case, the regression fit for
TDMA-2 appears justified, although α for TDM-2 was lower than α for TDM-1.

Figure 9b shows a similar graph, again for the two methods, but this time the thick sample came
from a different plate with a thickness of 43.2 mm. TDM-2 results for the thick sample used the Tc term
as required. For these cases, Cd values (in dB/m/MHz) were obtained as follows:

Cd = 98.7 dB/m (R2 = 0.971) for TDM-1 and Cd = 88.3 (R2 = 0.927) for TDM-2.
Results were slightly improved compared to those in Figure 9a. In both comparisons, Cd values

were within 9 to 10 dB/m/MHz. The second comparison also indicates that when their properties are
similar, TDM-1 can still be used even with different raw stocks.

Seven additional comparison tests were conducted and all the results are summarized in Table 1.
From these nine sets of attenuation spectra, the average Cd value was 91.4 ± 4.9 dB/m/MHz for TDM-1
and 79.7 ± 8.8 dB/m/MHz for TDM-2, with an 11.4% higher Cd value for TDM-1. One of the PMMA
tests used a set of larger transducers (12.7 mm diameter), which produced a much lower α value
for TDM-2. The obtained TDM-1 α value was close to the average of three recent studies [24–26],
which was 103.3 dB/m/MHz. The averaged TDM-2 value was between the average data in Figure 1
(85.9 dB/m/MHz) and averaged Cd value of 75.1 dB/m/MHz from the older studies collected by
Kline [19]. The averages of R2 values were close, although visually TDM-1 plots were closer to straight
lines. In all the attenuation spectra, no effect of scattering induced attenuation was observed for the
amorphous polymers evaluated.

These test data were utilized to determine values of transmission coefficient corrections (TCC).
Once a TCC is obtained, the TDM-1 attenuation coefficient can be estimated from TDM-2 tests.
The results in dB were tabulated along with the corrected TDM-2 Cd values (see Table 1). For eight
PMMA tests using 6.4-mm diameter transducers, the TCC ranged from 1.9 to 3 dB, while it was 4.7 dB
for the larger transducer pair; that is, the TDM-2 test could not approximate the TDM-1 test using
12.7-mm transducers without applying TCC, as its error was almost 40% without correction. However,
the use of TCC is always recommended whenever the amount of attenuation through a sample is low.

Two more polymers, PVC and PC, were tested similarly by comparing TDM-1 and TDM-2.
The attenuation spectra after distance normalization are shown in Figure 10. The attenuation data
shown used Equations (17a) and (17c) by dividing amplitude difference spectra ((R2 + D1 − R3 −

D2) for TDM-1 and (R1 − R3 − D2 − Tc) for TDM-2 with the propagation distances of (x2 − x1) for
TDM-1 and of x2 for TDM-2. PVC results with x1 = 4.5 mm and x2 = 17.5 mm are plotted in dark
blue and blue curves extending to 10 MHz, while PC data with x1 = 4.6 mm and x2 = 9.4 mm are in
dark red and red curves up to 8 MHz. For the PC tests, an NDT System C16 transmitter was used,
producing anti-resonance dips at 5 MHz causing oscillations. The attenuation spectra were fitted to
linear frequency dependence as before and Cd values in dB/m/MHz (R2 values) were as follows (also
in Table 1):

PVC: Cd = 239 (R2 = 0.963) for TDM-1 and Cd = 190 (R2 = 0.947) for TDM-2.
PC: Cd = 638 (R2 = 0.983) for TDM-1 and Cd = 581 (R2 = 0.991) for TDM-2.
Here, values for PVC are averaged data. For both PVC and PC, results for α values from the two

methods matched from 10% to 25%, which were comparable with PMMA. All four R2 values for PVC
and PC were slightly better than the corresponding R2 values in PMMA. Thus, these cases also support
the use of calculated Tc in the TDM-2 method for approximation. However, the use of TCC, which
ranged from 1.8 to 7.3 dB, provides a good estimate of TDM-1 attenuation data. The largest TCC was
for a pair of 12.7-mm diameter transducers. This means the TCC application is mandatory when a
larger transducer pair is used.
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From the results for three polymeric materials, linear frequency-dependent attenuation behavior
can approximate observed data up to 5 to 10 MHz. This approximation corresponds to a constant
damping factor η for these polymers in the low MHz region. It was noted that η for PMMA peaked
at 50 Hz and reached an apparent asymptote of ~0.01 at 1 to 10 MHz [7]. However, available data
are inadequate to conclude a constant η. Upon close inspection, all the TDM-1 plots of α vs. f
consistently exhibited positive deviations from the linearity at low frequencies. Possible variation of
η with frequency needs to be probed by using a single starting material. This requires varying the
thickness and obtaining well-prepared samples.

This section shows that TDM-1 is the superior method for measuring attenuation coefficients,
but the more convenient TDM-2 can be used for approximate determination of α values when multiple
samples are not readily available. For PMMA, measured α values were close to the averaged literature
values and their frequency dependence was well represented by linear behavior, except systematic
deviations were noticeable at lower MHz frequencies. No scattering effects were found. The correction
method for the transmission coefficient was demonstrated with 13 examples for three polymers.

4.2. Attenuation Behavior of Ferrous Alloys

Pure iron and 46 types of iron-based alloys were tested. For five alloys, multiple samples were
used with different heat treatments, while directional effects were also evaluated for plate samples
when it was possible to identify three directions. TDM-2 was used in all but three cases, when a
short sample was prepared from a long rod. Since the transmission coefficients for this group are
small (~0.06 dB), TDM-2 was deemed adequate in this regard. In comparing the observed data with
the literature values of attenuation coefficients, the varied material processing conditions make this
difficult. However, the range of observed α values overlaps with those of reported data. At 5 MHz,
Table 2 shows the range to be 8 to 855 dB/m, while it was 10 to 340 dB/m in the collected list [7], which
covered about 20 steel grades.
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Table 2. Attenuation coefficients and material parameters for ferrous materials.

Test Material * Cd CR α at 5 MHz Velocity Thickness Vickers HN Notes

No. dB/m/MHz dB/m/MHz4 dB/m mm/µs mm
F1 Pure Fe 129.0 645.0 6.05 72.1 174 Cold-worked
F2 Pure Fe 125.8 629.0 6.08 30.2 91 Annealed
F3 A36 steel 12.4 62.0 5.90 59.8 159
F4 1020 91.1 455.5 5.75 13.5 206 Water-quenched
F5 1020 76.9 384.5 5.73 13.2 172 WQ + tempered
F6 1020 51.5 257.5 5.85 13 151 WQ + tempered
F7 1020 23.4 117.0 5.87 12.6 139 WQ + tempered
F8 1020 18.8 1.50 × 10−2 103.4 5.85 13.3 114 Annealed
F9 1020 9.8 1.41 × 10−2 57.8 5.91 31.8 100 Annealed
F10 1020 7.6 8.60 × 10−3 43.4 5.87 139 100 Annealed
F11 1020 7.5 5.74 × 10−3 41.1 5.87 31.8/139 100 Annealed TDM-1
F12 Low-C steel 0.0 (4.84: n = 2) 243.8 5.93 66.4 161 Same as F13, F14
F13 Low-C steel (T) 0.0 (9.62: n = 2) 241.0 5.70 61.1 161
F14 Low-C steel (S) 18.4 3.96 × 10−2 111.1 5.86 31.0 161
F15 Low-C steel (T) 6.8 1.60 × 10−3 34.8 5.81 25.0 126 Annealed
F16 Low-C steel (S) 22.5 112.5 5.90 31.0 126 Same as F15
F17 Low-C steel (T) 29.0 145.0 5.88 37.8 158
F18 Low-C steel (S) 21.6 7.88 × 10−3 178.5 5.84 19.0 110 Annealed
F19 F30 (1025) 81.6 408.0 5.82 16.3 311 Water-quenched
F20 F30 (1025) 51.6 258.0 5.77 15.3 287 Water-quenched
F21 F30 (1025) 36.3 181.5 5.81 15.5 252 Normalized
F22 F30 (1025) 66.0 330.0 5.78 16.0 197 WQ + tempered
F23 F30 (1025) 14.3 71.5 5.83 15.4 180 WQ + tempered
F24 F50 (1030) 99.3 496.5 5.75 15.1 576 Water-quenched
F25 F50 (1030) 40.3 201.5 5.73 15.6 418 WQ + tempered
F26 F50 (1030) 40.9 204.5 5.79 15.7 390 WQ + tempered
F27 F50 (1030) 61.0 305.0 5.78 16.3 350 Water-quenched
F28 F50 (1030) 33.3 166.5 5.79 15.0 266 WQ + tempered
F29 F50 (1030) 40.2 201.0 5.78 15.2 244 WQ + tempered
F30 F50 (1030) 12.3 61.5 5.80 15.3 196 WQ + tempered
F31 F50 (1030) 42.1 210.5 5.86 16.3 154 WQ + tempered
F32 Medium-C steel 7.0 34.9 5.88 52.2 258
F33 Medium-C steel 10.8 54.0 5.82 52.2 237 Oil-quenched
F34 Medium-C steel 39.8 199.0 5.71 14.0 393
F35 4340 6.9 34.4 5.86 45.3 244
F36 4340 ESR (S) 27.7 2.85 × 10−3 140.3 5.84 28.5 232
F37 4340 ESR (S) 13.2 66.0 5.83 28.5 210 Annealed
F38 4340 6.0 30.0 5.86 61.0 315
F39 4340 (T) 9.1 45.7 5.92 79.0 315 Same as F38
F40 4340 (S) 8.2 41.1 5.85 25.2 315 Same as F38
F41 4340 7.4 37.0 5.87 105.5 417
F42 4340 (T) 2.5 12.5 5.86 50.8 417 Same as F41
F43 4340 (S) 26.7 133.5 5.83 25.3 417 Same as F41
F44 4142 5.5 1.25 × 10−3 28.0 5.92 60.3 321 Same as F43-F51
F45 4142 (T) 25.5 127.5 5.75 18.9 321
F46 4142 (T) 49.6 248.0 5.75 18.9 529 WQ
F47 4142 (T) 13.2 66.0 5.80 18.9 487 WQ + tempered
F48 4142 (T) 15.9 79.5 5.79 18.9 473 WQ + tempered
F49 4142 (T) <3 – 5.78 18.9 327 OQ
F50 4142 (T) <6 – 5.78 18.9 295 OQ + tempered
F51 4142 (T) 13.2 66.0 5.75 18.9 164 OQ + tempered
F52 1060 (X) 10.0 50.0 5.65 10.0 260 Railcar wheel
F53 1060 15.3 76.5 5.93 54.3 198 Rail steel
F54 1060 (T) 8.3 41.6 5.88 46.0 201 Rail steel
F55 Rail - head 23.3 116.5 5.93 75.0 342 Same as F56
F56 Rail - Foot 27.0 135.0 5.88 74.0 355
F57 1078 30.4 1.77 × 10−2 163.1 5.70 25.3 291
F58 HSLA 4.6 22.8 5.81 75.0 132 Same as F59, F60
F59 HSLA (T) 4.9 24.5 5.86 71.2 132
F60 HSLA (S) 15.4 77.0 5.85 50.1 132
F61 HSLA (S) 24.8 124.0 5.77 12.5 267 Welten 80C
F62 A533B 9.48 47.4 5.88 118.3 189
F63 A533B (T) 9.74 48.7 5.9 122.0 189 Same as F62
F64 A533B (S) 24.6 123.0 5.82 25.4 189 Same as F62
F65 A533B (T) 7.7 38.5 5.90 122.0 189
F66 A533B 7.1 35.4 5.91 60.7 189 Same as F67
F67 A533B (S) 12.1 60.5 5.80 24.3 189
F68 1Cr-1Mo-V 6.4 31.9 5.88 60.8 240 Same as F69
F69 1Cr-1Mo-V (S) 17.6 88.0 5.85 24.6 240
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Table 2. Cont.

Test Material * Cd CR α at 5 MHz Velocity Thickness Vickers HN Notes

F70 Tool steel W1 <2 – 5.89 52.1 293
F71 Tool steel M2 (T) 68.9 344.5 5.78 12.7 785
F72 Tool steel T8 (T) 56.7 283.5 5.75 12.7 850
F73 Hardness block1 25.3 126.5 5.92 14.8 460
F74 Hardness block2 27.0 1.69 × 10−2 145.6 5.92 14.8 666
F75 Hardness block3 25.7 128.5 5.92 14.8 434
F76 Hardness block4 28.4 142.0 5.92 14.8 695
F77 Hardness block5 37.2 186.0 5.92 14.8 659
F78 301 6.7 33.5 5.92 25.4 214 Magnetic
F79 301 5.9 3.05 × 10−3 31.5 5.92 101.5 214 Magnetic
F80 301 5.6 3.34 × 10−3 30.2 5.92 25.4/101.5 214 Magnetic, TDM-1
F81 301 5.0 3.28 × 10−3 27.7 5.92 25.4/76.2 214 Magnetic, TDM-1
F82 302 18.6 93.0 5.87 43.7 251
F83 302 (T) 33.2 1.99 × 10−2 178.4 5.75 60.2 213
F84 302 4.0 1.00 × 10−3 20.8 5.73 77.4 339 Magnetic
F85 304 1.5 1.10 × 10−3 8.1 5.72 479.0 321 Magnetic
F86 304 21.2 7.78 × 10−3 110.9 5.75 77.0 193
F87 304 (T) 22.0 9.98 × 10−3 116.2 5.72 50.1 193 Same as F86
F88 304 (S) 38.2 8.92 × 10−3 196.6 5.83 19.0 193 Same as F86
F89 304L (S) 23.4 1.36 × 10−2 125.5 5.65 25.6 199
F90 316 11.9 2.33 × 10−3 61.0 5.69 26.8 368
F91 321 61.8 309.0 5.78 34.0 196
F92 321 (S) 49.3 246.5 5.67 25.3 295
F93 321 (S) 39.7 198.5 5.65 25.2 145
F94 430 9.9 49.4 5.81 24.3 312
F95 440A (S) 39.5 197.5 5.85 19.0 541
F96 A286 (S) 170.9 854.5 6.29 11.2 146 Solution-treated
F97 A286 18.5 1.57 × 10−1 190.8 5.72 101.5 319 Aged
F98 A286 (T) 41.6 1.25 × 10−1 285.9 5.73 46.4 319 Same as F97
F99 A286 (S) 98.7 7.88 × 10−2 542.8 5.62 15.2 319 Same as F97

F100 17-4PH 9.0 4.19 × 10−3 47.6 6.10 238.3 360 Solution-treated
F101 17-4PH 34.7 173.5 5.84 25.4 412 Aged at 480 ◦C, 2 h

* L direction when no direction is given. Cd, damping coefficient; CR, Rayleigh scattering coefficient; α, attenuation
coefficient; WQ, water quenched; OQ, oil quenched; ESR, electro-slag remelted; HSLA, high strength low alloy; HN,
hardness number.

For this group, α values mostly exhibited two frequency dependencies of the linear type
(Equation (2)) and the Mason–McSkimin relation (Equation (4)). Two examples for the two types
are shown in Figure 11. Here, the α values are given as dB/m after normalization of propagation
distances. Figure 11a gives two widely used steel grades—4340 (UNS 43400) shown by the blue
curve and 1020 (UNS G10200) in red. Note that UNS stands for unified numbering system. For 4340
steel, the linear regression fit is also given as a blue dotted line, which is given by Equation (2)
with Cd = 9.14 dB/m/MHz (R2 = 0.936). In this case, the linear frequency dependence was observed to
15 MHz. For 1020 steel, the linear region was limited to 6 MHz, above which additional attenuation
from Rayleigh scattering became significant. A best fit curve according to the Mason–McSkimin
relation is plotted by a dashed red curve and its linear part is shown by a red dotted line. This curve
fitting was performed by visual estimate of good fit and its R2 value was 0.995 using the definition
of R2 = 1 − (squared residual sum)/(squared total sum) [72]. The fitted curve in terms of frequency f
(MHz) is

α (dB/m) = 7.63 f + 0.00861 f4. (18a)
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fit (dotted line). Klinman data [73] for ferritic-pearlitic medium-C steels are plotted in green. (b) A286 
austenitic stainless steel in solution-treated (blue) and hardened (red) conditions. The α spectra are 
plotted with a linear fit (blue and red dotted lines) and Mason–McSkimin dashed curve (red). A 
possible quadratic fit is also shown as the purple dashed curve. 

The next examples are shown in Figure 11b. The material is A286 austenitic stainless steel (UNS 
S66286), which can be precipitation-hardened. Both solution-treated and hardened conditions were 
tested. This steel showed the highest and second highest attenuation among the ferrous group. The 
solution-treated A286 showed linear dependence (blue curve), while hardened A286 showed 
combined linear and f4 dependence (red curve). Linear regression and visually estimated fits 
provided the following expressions of 

α (dB/m) = 170.9 f. (19a) 

and 

α (dB/m) = 98.68 f + 0.0788 f4. (19b1
4) 

Note that at 10 MHz, both equations give similar α values (1709 and 987 + 788 = 1775 dB/m). 
These are plotted in blue dots and red dashes, with the linear part of Equation (19b) given in red dots. 
The CR value for the hardened A286 alloy was approximately ten times larger than that of 1020 steel. 
For Equation (19a), the regression fit gave R2 = 0.990, while the R2 value for visually fitted Equation 
(19b) was 0.974. Although the meaning of R2 for the latter is complex, the fitted expression models 

Figure 11. Attenuation coefficients vs. frequency. (a) The 4340 steel curve shown in blue with a linear
fit (dotted line) and 1020 steel shown in red with Mason–McSkimin fitted dashed curve and a linear fit
(dotted line). Klinman data [73] for ferritic-pearlitic medium-C steels are plotted in green. (b) A286
austenitic stainless steel in solution-treated (blue) and hardened (red) conditions. The α spectra are
plotted with a linear fit (blue and red dotted lines) and Mason–McSkimin dashed curve (red). A possible
quadratic fit is also shown as the purple dashed curve.

The attenuation data from Klinman et al. [17,73] is also plotted in this figure in green circles, with
the fitted expression given as

α (dB/m) = 16.0 f + 0.03 f4. (18b)

These data are for a medium-C steel (C = 0.38%) with a ferritic-pearlitic microstructure. The ferrite
grain size was 56 to 60 µm and pearlite content was 27%. This data further reinforces the viability of
the Mason–McSkimin relation, which combines damping and Rayleigh scattering [8].

The next examples are shown in Figure 11b. The material is A286 austenitic stainless steel
(UNS S66286), which can be precipitation-hardened. Both solution-treated and hardened conditions
were tested. This steel showed the highest and second highest attenuation among the ferrous group.
The solution-treated A286 showed linear dependence (blue curve), while hardened A286 showed
combined linear and f4 dependence (red curve). Linear regression and visually estimated fits provided
the following expressions of

α (dB/m) = 170.9 f. (19a)
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and
α (dB/m) = 98.68 f + 0.0788 f4. (19b)

Note that at 10 MHz, both equations give similar α values (1709 and 987 + 788 = 1775 dB/m).
These are plotted in blue dots and red dashes, with the linear part of Equation (19b) given in red
dots. The CR value for the hardened A286 alloy was approximately ten times larger than that of 1020
steel. For Equation (19a), the regression fit gave R2 = 0.990, while the R2 value for visually fitted
Equation (19b) was 0.974. Although the meaning of R2 for the latter is complex, the fitted expression
models the observed frequency dependence well from 3.5 to 12.5 MHz. These examples represent two
different frequency dependencies occurring in nearly all ferrous materials. For the hardened A286
alloy, another spectral function can also represent the observed response. This is a quadratic-type
function (Equation (5)), given by

α (dB/m) = C2 f2 = 18.24 f2, (19c)

with an R2 value of 0.985, indicating a better fit than the Mason–McSkimin relation. This quadratic
spectrum is shown in Figure 8b by a purple dashed curve. This quadratic relation is of the
form of the Datta–Kinra scattering [50–52]. Both solution-treated and aged A286 steel samples
typically showed dispersed Laves phase particles, with average spacing of under 20 µm [74]. Thus,
the Datta–Kinra scattering of the Laves particles can possibly explain the quadratic spectrum. However,
the solution-treated samples showed the linear spectrum without the scattering term but with
intermetallic particles still present. More work is needed here. The quadratic spectrum was also found
to describe observed spectra in several more cases of low-C steel, Cu, and brass plates. This is a seldom
observed frequency dependence for metallic alloys that will be discussed further.

Table 2 presents the attenuation data for 101 tests. For each test, the test number and results for
Cd, CR, α value at 5 MHz, wave velocity (vL), thickness (or length), and Vickers hardness number are
listed, along with the condition of the sample. When the CR column is blank, only the linear frequency
dependence of α was observed. The C2 value is given here in parentheses when applicable. As the
Rayleigh scattering term can be ignored at 1 MHz, the Cd value equals the α value at 1 MHz. Observed
α values at 1 MHz ranged from 1.5 dB/m for 304 stainless steel (test F85; UNS S30400) to 170.9 dB/m
for A286 steel (test F96, see Figure 11b above). Two other tests (pure iron) showed α values at 1 MHz
exceeding 100 and ten more tests gave α > 50 dB/m at 1 MHz. In three cases, α values were low and
only estimated ranges were given (tests F49, F50, and F70). Most structural steels showed α values at 1
MHz of 5 to 30 dB/m. Most of the austenitic stainless steels belonged to this group of relatively low
attenuation steels.

Tests on cold-worked plates revealed anisotropic and unusual attenuation responses. Tests F12
and F13 of a low-carbon steel plate produced different attenuation spectra. These spectra can be fitted
to α = C2f2 or the quadratic spectrum that was seen for A286 steel (see Figure 11b). This quadratic
dependence, which is well-known for water, now has two mechanisms to explain the attenuation in
solids; that is, dislocation-based theory [33–37] and Datta–Kinra scattering [50–52], as introduced in
Section 1. It was also used to describe the attenuation spectra of two plates of Cu, a brass rod and a
brass plate, Al–SiC composites, and in ten cast iron cases, as will be shown later. Tests F12 and F13
corresponded to the longitudinal (L) and transverse (T) directions of the lightly cold-worked steel plate
(Vickers hardness 164), giving

α (dB/m) = 4.84 f2, (R2 = 0.975) (20a)

and
α (dB/m) = 5.91 f2. (R2 = 0.990) (20b)
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For these two equations, small linear terms can be added without changing R2 values
much. However, the thickness (S) direction of the same plate sample (test F14) yielded the usual
Mason–McSkimin relation of

α (dB/m) = 18.4 f + 0.0306 f4. (R2 = 0.977) (20c)

When this plate was annealed (850 ◦C, 1 h), reducing the Vickers hardness to 126, the quadratic
spectrum for the T direction (test F15) disappeared, becoming the Mason–McSkimin type, except
with a weak Rayleigh term. The spectrum for the S direction (test F16) showed the linear frequency
dependence, losing the Rayleigh scattering contribution, as given below:

α (dB/m) = 6.8 f + 0.0016 f4. (R2 = 0.652) (21a)

α (dB/m) = 22.5 f. (R2 = 0.915) (21b)

Four of these spectra are shown in Figure 12. Model equations gave moderate to good fits (R2

values of 0.915 to 0.990), except for Equation (21a), as the attenuation levels were very low. It appears
that the observed behaviors of the in-plane directions, L and T, come from quadratic damping
effects introduced by cold rolling [20,35,36,57], but more work is needed to clarify the underlying
dislocation mechanisms.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 58 
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Figure 12. Anisotropic attenuation spectra of a cold-worked, low-carbon steel plate with curve
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(Equation (21a)); red: thickness direction, CW condition (Equation (21b)).

Reduction in attenuation in the annealed condition was higher for the T direction and it increased
with frequency. The S direction also showed frequency-dependent reduction in α values above 6 MHz,
but the amount of the reduction was about one-third that observed in the T direction. These changes in
α can be attributed to reduced dislocation densities after annealing, in accordance with the findings
of [39,40]. However, the observed anisotropy in the amount of reduction in α values requires additional
effects for reconciliation. Another apparent disagreement was noted for pure iron cases. Tests F1 and
F2 for pure Fe gave comparable high attenuation. Apparently, annealing for test F2 (800 ◦C, 1 h) was
inadequate, unlike the 1080 ◦C annealing temperature used in [40].

In the above examples, cold working (CW) increased attenuation levels, corresponding to a higher
hardness number and higher α value. Annealing decreased both hardness and attenuation. This will
be referred to as the type-p CW effect.
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In 302 and 304 stainless steels, the opposite effect of cold working was observed; that is, CW
decreased the attenuation effect (higher hardness number and lower α value), which will be called the
type-n CW effect. This behavior was also observed in copper, nickel, and a beta-Ti alloy (Beta-III), which
will be shown in the next section. The case of 304 stainless steel (UNS S30400) is the most dramatic.
Test F85 showed the lowest α value measured in all of the ferrous alloys tested, and this sample had a
Vickers hardness of 321, corresponding to 20% to 25% plastic deformation [75]. In practical terms, this
steel was in the quarter-hard condition. Softer 304 stainless steel samples (tests F86-F88) gave more
than ten-times higher attenuation. These had Vickers hardness values of 193 to 199, corresponding to
the no deformation case in [75], but this was higher than the Vickers hardness of 129 listed for soft 304
stainless steel [76]. In 302 stainless steel (UNS S30200), the same trend was evident as with tests F82
and F83 (low hardness and high α), compared to test F84 (high hardness and low α). Such attenuation
behavior may possibly be rationalized if residual dislocations in annealed states are highly mobile,
while this dislocation damping is suppressed in work-hardened states from interlocking conditions.
Inboth stainless steels, interstitial segregation to dislocations is unlikely and no carbide precipitation
occurs, offering no possible mechanism for dislocation locking. This differs from a low-C steel that has
interstitial C atoms forming the Cottrell atmospheres [77]. The resultant dislocation locking reduces α.
The cold-worked 304 sample was weakly magnetic due to strain-induced martensitic transformation.
The pre-martensitic state may possibly contribute to attenuation, but this effect is absent in 302 steel
samples, as all the 302 steel samples are faintly magnetic. In any event, copper and Beta-III Ti alloy
have no magnetism and only dislocations can explain observed changes in damping behavior with or
without prior deformation. This dislocation-related attenuation has received scant attention in recent
decades and more work is certainly needed to elucidate its base cause. The concept of two different
attenuation levels for high or low dislocation density makes no sense if all dislocations behave equally.
Thus, some currently unknown dislocation interactions are needed to vary the damping contributions,
and no rational account for the contradictory observations can be offered at present.

Anisotropic directional effects on attenuation were found in eight more cases, in addition to the
cold-worked steel plate. These occurred in two 4340 plates (tests F38-F40 and F41-F43; UNS G43400),
4142 (tests F44 and F45; UNS G41420), a high-strength, low-alloy (HSLA) steel (tests F58-F60), two
A533B pressure vessel steel plates (tests F62-F64, F66, and F67), a 1Cr-Mo-V turbine rotor steel (tests
F68 and F69), and 304 stainless steel (tests F86-F88). Their α values at 1 MHz in the through-thickness
(S) direction were 1.7 to 10.7 times higher than the longitudinal (L) or transverse (T) direction of the
same sample, except for one case of 4340 steel. The S direction in rolled steel plates often has reduced
ductility from non-metallic inclusions (mainly MnS) that are flattened by hot rolling, which contribute
to lamellar tearing and heightened acoustic emission activities [78,79]. The acoustic emission is a
manifestation of the decohesion of MnS inclusion during loading. On the other hand, one heat-treated
4340 (tests F38-F40) did not show this anisotropy. This difference is expected from better impurity
control for high-strength steels, with dispersed spherical oxide inclusions being more common [78].
Further tests on the electro-slag remelted (ESR) 4340 plate (tests F36 and F37) may offer additional
clues, as it showed medium α values.

In addition to the CW and directional effects on attenuation discussed in the previous paragraphs,
the presence of some phase transformation products increased attenuation in low- to medium-carbon
steels. The effects of heat treatment were examined using three grades of steels (1020, F30, and F50).
These steel samples were water-quenched and had high hardness for respective C levels (estimated to
be 0.2, 0.25, and 0.3%C), with the initial Vickers hardness values being 206, 311, and 576 (from Vickers
tests at 1 kg load; tests F4, F19, and F24). These showed high α values at 1 MHz of 91.1, 81.6, and
99.3 dB/m, respectively. With tempering, the Vickers hardness gradually decreased to 114, 180, and
196, while α values at 1 MHz also dropped to 18.8, 14.3, and 12.3 dB/m, respectively. These changes are
shown in Figure 13, along with the data for brass, which showed a similar decrease with annealing (to
be discussed in the next section). For most cases of steel tempering (or annealing of brass), the linear
frequency dependence was retained. Tempering of low- to medium-carbon steels results from carbide
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precipitation and the loss of dislocations from displacive phase transformation [77,80]. It appears that
high attenuation in acicular ferrite and martensite from water quenching arises from high dislocation
densities in these fine microstructures. As tempering progresses, dislocation densities gradually
decrease, causing the loss of dislocation-induced damping. Simultaneously, fine carbide precipitation
reduces the dislocation mobility, contributing to reduced damping. This is similar to the type-p CW
effect discussed above.
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When C levels were higher in hardness calibration blocks (tests F73-F77), hardened conditions
with Vickers hardness values of 434 to 695 produced only moderate attenuation of α values at 1 MHz
of 25 to 37 dB/m. These blocks are typically heat-treated into tempered martensite for increased
stability in hardness, which is likely to lead to C segregation at dislocations, unlike in the as-quenched
hypoeutectoid steels discussed above. Such segregation suppresses dislocation damping. In the present
study, this aspect was explored further using 4142 steel samples (tests F46-F48). Water quenching
(WQ) caused increased hardness (Vickers 529) and a higher α value (49.6 dB/m), followed reduction of
these values upon tempering at 200 ◦C (test F47) and 400 ◦C (test F48). However, changes were smaller
than in lower C steels discussed above. On the other hand, when the same 4142 steel sample was
oil-quenched (OQ), its hardness increased moderately to a Vickers value of 327 (test F49), but its α value
was reduced to a level not measurable using 19-mm thick samples (only maximum level of α estimated
as 3 dB/m). Tempering at 400 ◦C hardly affected the α value, but tempering at 700 ◦C increased it
to 13.2 dB/m, which is comparable to the range of α values of annealed structural steels (tests F50
and F51). The different responses to quenching speed are expected to arise from the transformation
products—martensite for fast WQ and bainite for moderate OQ [77]. High dislocation densities remain
in martensite, together with super-saturation of C interstitials, while fine carbide distributions were
formed in bainite with lower dislocation densities, stabilized by C interstitials [80].

Low attenuation of medium- to high-C steels (4150 and 52100) was observed in earlier works [81,82].
For 1% C bearing steel (52100), Papadakis found α values at 5 MHz (the lowest frequency used) of 5 to
9 dB/m [81]. In most of his plots, α values did not decrease much below 10 MHz in contrast to the
high slope with frequencies above 10 MHz. Papadakis’ study on 4150 steel [82] reported 11.9 dB/m at
1.8 MHz for a ferritic-pearlitic microstructure, again showing a flattened frequency dependence below
10 MHz. For bainite, the α value was 6.8 dB/m at 14 MHz (the lowest frequency used for hardened 4150
steel samples). These results are consistent with α values found in the present study. On the other hand,
martensitic microstructures showed even lower α values, which reached 3 dB/m when extrapolated
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down to 10 MHz from data at 22 MHz and higher. This trend was also observed in an earlier study [83].
This low value for martensitic 4142 disagrees with the present results. In Papadakis [82], the martensitic
samples were oil-quenched in the form of a 5 cm bar stock and machined out of the center portion.
If the bar was a square bar measuring 5 cm by 5 cm, the cooling speed was much lower than needed for
martensitic transformation throughout the bar, producing bainite in the mid-section of the “martensitic”
samples. Unfortunately, no hardness data were reported. In this case, the earlier work does not
contradict the present high attenuation results for martensitic microstructures. Still, further work on
martensitic and bainitic samples is desirable. For practical consideration, low attenuation results for
bainite are welcome, since many structural steels are most commonly utilized in applications with
heavy sections, such as pressure vessels [80].

Another noteworthy observation is the contrast between two of the precipitation hardening
stainless steels, A286 and 17-4PH. In the solution-treated conditions, A286 showed the highest
attenuation (see Figure 11b), while 17-4PH showed α = 9.0 dB/m at 1 MHz with the addition of the
f4-scattering effect. This steel belongs to the lowest attenuation group of ferrous alloys. In the aged
conditions, α decreased in A286 but increased in 17-4PH. The observed precipitation effects were
opposite in these two alloy steels. No rational explanation can be given at present and repeat tests
with various heat treatments are needed for clarification.

Rayleigh scattering with the 4th power frequency dependence appeared in 26 out of 101 tests,
as shown in Table 2. Over a half of these tests were for stainless steels and one-quarter of the tests
were for annealed low-C steels. The stainless-steel group contains single-phase materials, except for
the nano-scale precipitates in aged 17-4PH (test F101). Grain boundaries are the commonly accepted
source of Rayleigh scattering. The latter group of low-C steels is expected to have ferritic-pearlitic
microstructures, with ferrite grain boundaries acting as scattering centers. Similar attenuation
spectra were reported by Klinman et al. [73] (see Figure 11a), and they attributed the entire observed
attenuation to Rayleigh scattering. However, the Mason–McSkimin relation can describe their spectra
more rationally, with the addition of the f-dependent damping term at lower frequencies.

This section presents the attenuation behavior of ferrous alloys. Most structural steels exhibited
low to medium attenuation coefficients composed of the f-dependent damping term and f4-dependent
term due to Rayleigh scattering or the Mason–McSkimin relation. The Rayleigh term is limited to
one-quarter of the samples tested, consisting of ferritic-pearlitic low-C steels and austenitic stainless
steels. CW and phase transformation resulted in vast changes in α values, with two contradictory CW
effects—type-p and type-n. The CW effects require further studies to fully understand the observed
behavior. Precipitation hardening effects also showed contrasting behavior. Another urgent task is
obtaining a quantitative explanation of the observed damping, since existing dislocation-based theories,
including the proposed bow-out damping, are inadequate.

4.3. Attenuation Behavior of Non-Ferrous Alloys

This section covers the attenuation behavior of non-ferrous alloys and metal matrix composites.
Table 3 summarizes 99 test results. Each row provides the test number; results of Cd, CR, and α values
at 5 MHz; wave velocity (vL); thickness (or length); Vickers hardness number; and condition of the
sample. As with the iron-based materials, α values were primarily dependent on frequency in a linear
manner or the Mason–McSkimin relation, in combination with the linearly dependent damping term
with Rayleigh scattering of the 4th power of frequency. An example of the test results for a large
(307 mm × 305 mm × 156 mm) block of Al 2024 (UNS A92024) is given in Figure 14a. The attenuation
spectra from both TDM-1 and TDM-2 showed good to moderate linearity, with R2 values of 0.974 and
0.928, respectively. Seven tests showed high attenuation of above 100 dB/m at 1 MHz. These included
low melting point metals (Cd, Pb, and Zn), a Cu single crystal, two large-grained Ni3Al cast ingots,
and a soft Ni alloy. The Cu single crystal orientation is <111>, it has a moderately high hardness,
and showed high attenuation. This appears to be the type-p CW effect. Ni3Al cast ingots have large
grain diameters of 5 to 10 mm and high attenuation is expected. Some grain boundary separation
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seems to be present as well. Al alloys, pure Mg, and Mg alloy showed low attenuation, as expected
from early works [8,27], while most other structural alloys had low to medium levels of attenuation,
in agreement with general expectations [1]. Only limited comparison with past data is possible, as a
previous review found only nine α values [7]. Using Cd values, the Mason data values for pure Mg [8]
were one-half to three-quarters of the values from tests N66-N68, while the Papadakis values for brass
360 [46] was one-quarter or less of the values from tests N48-N58. These early works used directly
bonded quartz transducers, achieving low-loss measurements. Even though Papadakis showed the
equivalence of using low-loss quartz and damped transducers [14–16], this aspect may need further
evaluation. A recent work by van Pamel reported α values for Inconel 617 at 1.8 to 2.7 MHz [84].
At 2 MHz, he reported α = 27 dB/m, which compares to observed α values of 7.2 and 31 dB/m at 2 MHz
for cold-worked Inconel 625 in the L direction (tests N76,N77), matching well with test N77. In this
comparison, the test methods and alloy types were similar, but test materials may have had different
processing conditions. In the S direction, the attenuation of the 625 alloy was twice as large (test N78).
In another Ni alloy with Ni3Al strengthening (Waspaloy), Ohtani et al. [85] found shear attenuation
coefficient of 15.1 dB/m/MHz. This value is comparable to α values of solution-strengthened Inconel
617 and 625, discussed above.
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Figure 14. (a) The attenuation spectra for a large Al 2024 block with TDM-1 (purple) and TDM-2 (green)
along with linear fits (dotted lines). Also shown are spectra for direct contact (blue), for a thin sample
(brown), and for a 307 mm distance (red). (b) Quadratic attenuation spectra for a Cu plate. Red: L
direction, quadratic fit (Equation (22a)); blue: T direction, quadratic fit (Equation (23a)).
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Table 3. Attenuation coefficients and material parameters for nonferrous materials.

Test Material Cd CR α at 5 MHz Velocity Thickness Vickers HN Notes

No. dB/m/MHz dB/m/MHz4 dB/m mm/µs mm
N1 Al 2011 6.4 31.8 6.23 48.1 103.0
N2 Al 2011 1.4 5.60 × 10−3 10.5 6.25 135.0 155.0 T6- temper
N3 Al 2014 5.6 1.90 × 10−3 29.2 6.35 69.2 155.0 T6 temper
N4 Al 2014 3.2 16.0 6.32 45.2 145.0
N5 Al 2024 6.6 32.9 6.38 307.0 164.0 T3 temper
N6 Al 2024 7.0 35.2 6.38 10.6/307 164.0 Same as N5 TDM-1
N7 Al 2024 1.7 1.49 × 10−3 5.8 6.36 154.2 170.0 T3 temper
N8 Al 2024 2.8 23.5 6.35 50.7 153.0 T36 temper
N9 Al 2024 6.8 34.0 6.35 49.5 162.0 T851 temper
N10 Al 6061 4.0 20.2 6.38 31.0 109.0 T6 temper
N11 Al 6061 3.1 15.6 6.40 598.0 115.0 T6511 temper
N12 Al 6061 2.9 14.4 6.40 598/10.6 115.0 Same as N11 TDM-1
N13 Al 2024 6.5 14.0 6.35 50.7 153.0 N8 annealed
N14 Al 6061 14.4 72.0 6.35 212.0 78.0 Annealed
N15 Al 6061 14.4 72.0 6.35 212/10.6 78.0 Annealed TDM-1
N16 Al 7049 (T) 8.7 43.7 6.25 188.7 168.0 T6 temper
N17 Al 7049 6.9 34.7 6.21 45.8 128.0 T7 temper
N18 Al 7075 15.0 75.0 6.25 110.0 197.0 T651 temper
N19 Al 7075 5.7 28.4 6.25 75.0 180.0 T6 temper
N20 Al 7075 (T) 5.9 1.64 × 10−3 30.6 6.26 76.0 180.0 Same as N19
N21 Al 7075 (S) 10.8 54.0 6.23 37.0 180.0 Same as N19
N22 Al 7075 6.1 30.5 6.28 153.0 177.0 T6 temper
N23 Al 7075 (T) 9.5 47.4 6.27 152.5 177.0 Same as N22
N24 Al 7075 (S) 10.7 53.5 6.20 38.3 177.0 Same as N22
N25 Cd 269.0 2.50 × 10−1 1501.3 2.72 42.7 14.5
N26 Cu single crystal 133.0 665.0 5.16 12.4 69.6 <111> direction
N27 OFHC Cu 32.0 160.0 4.46 103.1 77.6
N28 OFHC Cu 25.3 126.5 4.47 81.5 77.6
N29 Cu 110 (S) 39.0 1.33 × 10−2 203.3 4.60 12.8 101.6
N30 Cu 110 41.6 208.0 4.64 51.5 100.0
N31 Cu 110 33.0 165.0 4.62 34.6 94.0 Same as N30
N32 Cu 110 43.5 217.5 4.67 34.6 77.0 Annealed
N33 Cu 110 0.0 (6.05: n = 2) 151.3 4.70 48.5 99.0
N34 Cu 110 (S) 35.4 1.30 × 10−2 185.1 4.57 12.7 99.0 Same as N33
N35 Cu 110 0.0 (15.5: n = 2) 387.5 4.73 23.5 54.1 Annealed
N36 Cu 110 (S) 66.9 1.73 × 10−2 345.3 4.62 12.7 54.1 Same as N35
N37 Cu 110 10.1 (8.47 × 10−2: n = 2) 52.6 4.72 49.5 86.1
N38 Cu 110 0.0 (4.53: n = 2) 113.3 4.67 90.5 97.5
N39 Cu 110 (T) 0.0 (6.85: n = 2) 171.3 4.66 75.9 97.5 Same as N38
N40 Cu 110 (S) 44.0 1.48 × 10−2 229.3 4.62 50.5 97.5 Same as N38
N41 Brass 260 0.0 (4.50: n = 2) 112.5 4.55 95.0 91.0
N42 Brass 260 (T) 0.0 (5.13: n = 2) 128.3 4.54 90.3 91.0 Same as N38
N43 Brass 260 (S) 60.2 2.84 × 10−2 344.0 4.49 19.0 91.0 Same as N38
N44 Brass 260 42.1 3.28 × 10−2 231.0 4.52 45.8 85.8 Annealed
N45 Brass 260 (S) 58.9 2.92 × 10−2 312.8 4.53 19.0 85.8 Same as N44
N46 Brass 280 0.0 (7.97: n = 2) 199.3 4.28 52.6 177.0
N47 Brass 280 15.7 (1.89: n = 2) 125.6 4.32 105.6 157.0
N48 Brass 360 43.8 219.0 4.31 12.1 149.0 CW
N49 Brass 360 43.9 1.31 × 10−2 227.7 4.26 11.4 128.0 Annealed
N50 Brass 360 40.2 201.0 4.44 12.1 100.0 Annealed
N51 Brass 360 29.9 149.5 4.40 11.6 97.0 Annealed
N52 Brass 360 18.3 91.5 4.35 11.7 87.0 Annealed
N53 Brass 360 61.6 308.0 4.30 12.5 124.0 CW
N54 Brass 360 35.4 177.0 4.25 12.5 114.0 Annealed
N55 Brass 360 39.2 196.0 4.22 12.4 87.0 Annealed
N56 Brass 360 42.9 1.80 × 10−2 225.8 4.31 21.2 121.0
N57 Brass 360 26.3 2.62 × 10−2 147.9 4.37 18.9 107.0
N58 Brass 360 31.5 157.5 4.36 31.7 97.5
N59 Cu-Be 53.1 265.5 4.92 25.4 141.0 Solution-treated
N60 Cu-Be 54.3 271.5 4.94 31.3 191.0 Aged
N61 NarloyZ 35.6 178.0 4.67 25.3 97.0 3%Ag-0.5%Zr
N62 Cu-Zr 56.7 4.03 × 10−2 308.7 4.69 33.5 88.9 0.15%Zr
N63 Cu-Al2O3 23.3 116.5 4.55 43.0 97.8 0.2% Al2O3
N64 Cu-Al2O3 19.0 95.0 4.54 51.0 110.0 0.2% Al2O3
N65 Cu-Ag-Zr 24.2 8.91 × 10−3 126.6 4.75 35.9 110.0 1.1%Ag-0.11%Zr
N66 pure Mg 6.6 32.9 5.81 161.0 40.5 99.95%
N67 pure Mg 5.3 26.7 5.81 76.0 40.5 99.95%
N68 pure Mg 4.4 21.8 5.82 76/161 40.5 99.95% TDM-1
N69 Mg AZ61 2.0 9.9 5.78 100.6 91.4
N70 Ni 200 60.4 2.60 × 10−2 318.3 5.72 46.0 115.0
N71 Ni 200 45.4 1.73 × 10−2 237.8 5.73 86.5 122.0
N72 Ni 200 16.1 80.5 5.75 38.0 234.0
N73 Ni 211 123.0 6.10 × 10−2 653.1 5.81 45.7 80.7
N74 Ni composite 26.3 131.5 6.13 45.7 972.0
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Table 3. Cont.

Test Material Cd CR α at 5 MHz Velocity Thickness Vickers HN Notes

N75 Monel 400 34.0 170.0 5.47 36.8 275.0
N76 Inconel 625 3.8 19.0 5.81 164.3 305.0
N77 Inconel 625 15.5 1.08 × 10−2 84.3 5.83 46.2 317.0
N78 Inconel 625 (S) 26.5 9.41 × 10−3 138.4 5.84 34.2 317.0
N79 Inconel 718 15.7 2.22 × 10−3 79.9 5.79 152.5 460.0
N80 Inconel 718 (S) 56.3 1.83 × 10−1 395.9 5.82 14.2 152.0
N81 Ni-13%Al (Ni3Al) 417.0 2085.0 6.51 27.0 263.0 Cast ingot end
N82 Ni-13%Al (Ni3Al) 165.0 825.0 6.45 27.8 280.0 Cast ingot middle
N83 Pb 433.0 2165.0 2.24 15.0 50.7
N84 Ti-6-4 25.3 126.5 6.11 67.2 386.0
N85 Ti-6-4 38.5 192.5 6.11 21.8 330.0
N86 Ti-6-4 35.5 177.5 6.11 60.3 313.0
N87 Ti-6-6-2 14.5 4.30 × 10−3 75.2 6.02 117.3 359.0
N88 Ti-8-1-1 (S) 29.6 148.0 6.24 30.7 486.0
N89 Ti Beta III 57.8 289.0 5.41 46.1 278.0
N90 Ti Beta III 69.8 1.76 × 10−2 360.0 5.42 18.8 277.0
N91 Ti Beta III 17.7 2.92 × 10−2 106.8 5.42 11.3 339.0 10% cold-rolled
N92 Zn Zamak3 158.0 1.11E+01 7702.5 4.38 63.3 43.0 As-cast
N93 W 13.3 66.5 5.23 75.0 299.0
N94 2124 Al-SiCw

* 0.0 (0.367: n = 2) 0.0 6.38 119.0 78.0 14.1% whisker
N95 2124 Al-SiCw (S) 0.0 (0.023: n = 2) 0.0 6.29 12.9 78.0 Same as N94
N96 2124 Al-SiCp

* 12.2 4.87 × 10−3 61.3 7.59 164 130.0 30% particle
N97 2124 Al-SiCp (S) 19.4 1.00 × 10−2 97.6 7.25 12.9 130.0 Same as N96
N98 Be-25% Al** 9.5 47.5 10.1 63.3 148,0
N99 Be-25% Al (S) 20.9 104.5 10.1 19.2 148.0 Same as N98

* Al-SiCw and Al-SiCp indicate whisker- and particle-reinforced metal matrix composite in as-extruded condition
with density of 2.785 and 2.90, respectively. ** Be-25%Al is Al-matrix composite with Be particles, for which density
= 2.06. Cd, damping coefficient; CR, Rayleigh scattering coefficient; α, attenuation coefficient; HN, hardness number.

Attenuation spectra that cannot be fitted to Equation (2) or Equation (4) were found on Cu plate
(UNS C11000) and brass plate (UNS C26000) samples. A copper plate (90.5 mm × 75.9 mm × 50.5 mm)
showed quadratic frequency dependencies in the longitudinal (L) and transverse (T) directions (tests
N38 and N39 in Table 3), similarly to the case of the low-C steel (tests F12-F14) discussed previously.
In the L direction, three models were compared to the observed spectrum as follows:

α (dB/m) = 4.53 f2, (R2 = 0.985) (22a)

α (dB/m) = 7.84 f + 3.90 f2, (R2 = 0.977) (22b)

α (dB/m) = 1.57 f2.5. (R2 = 0.993) (22c)

The first model gave a good fit according to the R2 values, while the f2.5-dependence provided the
best fit. In the T direction, model equations are

α (dB/m) = 6.73 f2, (R2 = 0.985) (23a)

α (dB/m) = 13.18 f + 5.00 f2, (R2 = 0.973) (23b)

α (dB/m) = 13.52 f1.677. (R2 = 0.995) (23c)

As in the L direction, the f2-dependence provided a good (not the best) fit, which was chosen
for correlation with dislocation damping. The best-fitting power law curves (Equations (22c) and
(23c)) were not selected, since no theoretical basis exists. The observed attenuation curves with fitted
quadratic (f2) models of Equations (22a) and (23a) are shown in Figure 14b, using squared frequency
as the abscissa (and using the linear regression to find constants for Equations (22a) and (23a)).
This quadratic behavior may be due to the KGL theory, but the dominance of the linear behavior makes
it difficult to assign the KGL-based spectra to a small number of cases. Attenuation followed the usual
Mason–McSkimin relation in the thickness (S) direction. Since this Cu plate was finished by cold-rolling
processes with an increased Vickers hardness, CW effects caused the anisotropic attenuation with
quadratic spectra for the in-plane directions. There were two other cases of lightly cold-worked 70-30
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brass plates (tests N41- N43; UNS C26000). For the L and T directions, the quadratic spectra did offer a
similar moderate fit, namely,

α (dB/m) = 4.50 f2, (R2 = 0.934) (24a)

α (dB/m) = 5.13 f2, (R2 = 0.946) (24b)

and the Mason–McSkimin relation again was found to have a good fit in the S direction:

α (dB/m) = 60.2 f + 0.0284 f4, (R2 = 0.987) (24c)

In both Cu and brass plates, the amount of CW was small, as the Vickers hardness values were
97.5 and 91, and large changes in grain structures are unlikely. This implies that the anisotropy is
related to dislocation behavior, but specific mechanisms are unavailable. Another cold-worked Cu
plate sample was cut into two pieces. One piece was annealed, reducing the Vickers hardness from 99
to 54. Both of them were tested in the L and S directions (tests N33-N36). These two samples in the L
direction showed the quadratic behavior, but annealing reduced attenuation by more than a factor of
two in terms of C2 values. Annealing also reduced attenuation in the S direction, but the attenuation
spectrum followed the Mason–McSkimin relation. The quadratic behavior was also observed in 60-40
brass (tests N46,N47; UNS C28000). These 60-40 brass samples were heavily cold-worked, showing
twice the Vickers hardness of annealed alloy. In the present study, it is shown that quadratic attenuation
spectra were found in cold-worked plates of steel, Cu, and brass, suggestive of a common dislocation
damping mechanism from the KGL formulation [33–37].

These Cu and brass plates also exhibited anisotropic directional effects similar to those of ferrous
plates. The directional anisotropy was also found in two plates of Al 7075 (tests N19-N24; UNS A97075)
and in Inconel 625 (tests N77,N78; UNS N06625). In all cases, the S direction had higher attenuation.
Flattened grain microstructures in Al 7075 are known to cause exfoliation corrosion damages [86] and
act as large effective grain sizes in the S direction. Similar microstructures were not documented in Cu
and brass, but are plausible as the processing methods are similar. These flattened microstructures
lead to higher attenuation. Attenuation behavior due to anisotropic distribution of inclusions was
studied by Margetan et al. [28–30], as noted earlier.

Aluminum alloy samples showed low attenuation of less than 10 dB/m at 1 MHz in 19 of 24 tests.
These low α values were always for hardened conditions of T3 and T6 temper. Two higher α values
were found in annealed 6061 alloy (UNS A60610), while 6061-T6 showed lower α values by a factor of
3 to 5. One 2024-T6 sample (test N8) was annealed (at 370 ◦C, 1 h), after which the α value more than
doubled (test N13). While the sample count is small, it appears that annealed Al alloys have higher
α values in comparison to the hardened conditions. This hardening originated from precipitation,
but the attenuation behavior is common with the type-n CW effect discussed in the previous section.

The effects of annealing were evaluated using two sets of cold-worked brass 360 samples (UNS
C36000, tests N48-N55). In the hardened conditions, α values were high (e.g., tests N48 and N53 (Vickers
values of 149 and 124) had α values of 43.8 and 61.6 dB/m, respectively, at 1 MHz). With annealing,
both α values and hardness decreased, as plotted in Figure 13 (in purple triangles), exhibiting the type-p
CW effect. This finding seems to imply that higher dislocation densities in cold-worked conditions
contribute to more damping, increasing the α values. As seen in Table 3, CR terms are zero, except in
one case (test N49), indicating Rayleigh scattering has no influence on cold-working effects in brass.

Some samples of Cu, Ni, and a beta-Ti alloy (Beta-III, UNS R58030) also received cold working
and showed increased hardness values with low α values (type-n behavior). Two Cu samples were
annealed to reduce hardness, allowing direct comparison between the two states. Higher α values
resulted, again showing the type-n CW effect. For three cold-worked Ni 200 samples (UNS N02200)
plus one Ni 211 sample (UNS N02211), a clear trend was visible of low α values with high hardness.
In beta-III Ti (UNS R58030), 10% cold working increased the hardness and reduced α values by nearly
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a factor of four (test N91). In contrast with the brass tests given above, these were not as systematic,
yet a clear trend emerged. Table 4 summarizes the available data, albeit with limited data counts.
This observed trend was opposite to the annealing effects found in brass, where α values decreased
with decreased hardness of the test samples. The type-n behavior is more difficult to rationalize in
terms of the dislocation damping, since it is difficult to rationalize the fact that more dislocations cause
less damping. At this stage, no plausible mechanisms exist and new explanations or mechanisms must
be found for both types of cold work effects.

Table 4. Vickers hardness and attenuation coefficient.

Cu CW Cu Annealed Cu CW Cu Annealed

Vickers Hardness 99 54.1 94 77
〈values at 1 MHz 35.4 66.9 33 43.5

Test No. N34 N36 N31 N32
Ni 200 CW Ni 200 CW Ni 200 CW Ni-211 annealed

Vickers Hardness 234 122 115 80.7
〈values at 1 MHz 16.1 45.4 60.4 123

Test No. N72 N71 N70 N73
Beta-III 10%CW Beta-III ST Beta-III ST

Vickers Hardness 339 278 277
〈values at 1 MHz 17.7 57.8 69.8

Test No. N91 N89 N90

The last group of six tests examined the attenuation behavior of three metal matrix composites
(MMCs). Tests N94 and N95 used an extruded plate of 2124 Al matrix with 14.1 wt% SiC whiskers
(ARCO Silag Div., Green, SC, USA). Their attenuation spectra above 8 MHz showed quadratic
dependence of the Datta–Kinra type, but attenuation was absent at lower frequencies. Attenuation
was much higher in the extrusion direction than in the thickness direction. This difference reflects the
alignment of whiskers (0.1 to 1 µm in diameter and 0.4 to 4 µm in length). Next, the MMC plate was
reinforced by SiC particulates at 30 wt%. This plate was also finished by extrusion with the 2124 Al
matrix (made at DWC Specialty Composites, Chatsworth, CA, USA). SiC particles had a platelet shape,
with sizes ranging 5-10 µm and aspect ratios ranging from 1 to 4 (see [87] for their mechanical and
AE behavior). This MMC showed higher attenuation than most Al alloys, but the general trend was
similar to the others, despite the presence of a large amount of SiC particles. The third MMC comprised
75% Be particles by weight and had the lowest density (2.06), except for Mg. This was an experimental
MMC made at Lockheed Aircrafts (Burbank, CA, USA). The attenuation was linear in frequency and
attenuation coefficients were moderate. This group showed low to moderate attenuation levels.

The attenuation spectra of most non-ferrous metallic materials were in-line with the linear frequency
spectra or Mason–McSkimin relation, indicating dislocation damping and Rayleigh scattering as the
main mechanisms. The levels of attenuation were low in Al and Mg, but most others were comparable
to typical ferrous alloys. However, available sample materials did not include certain alloy groups
known for their high attenuation, such as cast brass and bronze samples. Two cold-worked plates
in the in-plane orientations showed anisotropic behavior with quadratic frequency spectra, which
was most likely a form of dislocation damping in these homogeneous materials. This behavior is
predicted by the KGL theory [33–37], but the limited appearance of quadratic spectra makes this
explanation less than convincing. The quadratic frequency spectra of Cu and brass are expected to
vanish with annealing if they follow the trend found for low-C steel. In one test (test N35), this did
not occur, indicating the need for further work. Other anisotropic attenuation behavior was observed,
appearing to arise from mechanical processing steps, since the thickness direction typically showed
higher attenuation. This behavior seems to be previously unreported.
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4.4. Attenuation Behavior of Cast Iron

Twenty-one cast iron samples were tested and their attenuation parameters are given in Table 5,
using the same format as in Tables 2 and 3. Here, two columns are added. One is for C2, since
11 samples had the quadratic spectra. Another is for damping factor, which is calculated using
Equation (1). However, when the Cd term vanishes, it is improper to use damping factors. For these
cases, apparent damping factor, [η], is obtained assuming a linear attenuation spectrum below 1 MHz.
These values are in brackets to distinguish them from normally obtained η values. All but two samples
were supplied by the Iron Casting Research Institute (Columbus, OH, USA). Additionally, one sample
was a continuously cast gray iron bar of 490 MPa class (FC-50; Nippon Chuzo, Kawasaki, Japan) and
another was a common gray iron from a broken vise. These represent four types of cast iron, namely
gray iron, ductile (nodular) iron, malleable iron, and compacted graphite iron [88]. They all have
a ferrite matrix with varying morphologies of graphite. In gray iron, graphite appears as irregular,
interconnected flakes. During slow cooling, carbon in molten iron separates and forms graphite
flakes that are interconnected within each eutectic cell, resulting in the characteristic flake shape.
In ductile iron, graphite is changed into nodular shapes by the addition of controlled amounts of Mg
and Ce, while compacted graphite iron is of the intermediate type between gray and ductile irons.
The malleable iron sample was of the ferritic type and was heat-treated from white cast iron, forming
irregular graphite nodules in the ferrite matrix. Twenty other samples were in as-cast condition. Two of
the as-cast samples were mislabeled; that is, ductile A and ductile B showed the majority of their
graphite to be in flakey forms, so they should be grouped with gray irons. In fact, their wave velocities
were comparable to the gray iron of class 20 to 40. The hardness values were low to moderate, with
Vickers values ranging from 111 to 322. Their α values at 5 MHz were in the range of 147 to 1325 dB/m,
with low values found in ductile, malleable, and compacted graphite types, while high values were
observed in gray irons. Papadakis [89] conducted attenuation measurements of ductile iron with α

values of 200 to 500 dB/m at 10 MHz. These are in the same range as the lower α values found in
malleable and ductile irons (tests I17–I21), but much lower than α values observed for some gray irons
(tests I1–I4).

Representative attenuation spectra for cast iron are shown in Figure 15a,b. Two types of spectral
behavior were observed. One followed the Mason–McSkimin relation (Equation (4)), as given in
Figure 15a. Plotted in Figure 15a are the spectra for ferritic malleable iron (blue), ductile iron (60-45–10
grade, red; 80-55-06 grade, green), compacted graphite (dark blue), and high-strength gray iron (dark
red). Each plot is accompanied by a modeled spectrum according to the Mason–McSkimin relation,
given as a dashed curve of the same color. Matches between the observed and model spectra were
good. The other spectral behavior was the quadratic relation (Equation (5)), as plotted in Figure 15b.
Similar to spectral plots of Figure 11b, the abscissa of Figure 15b is frequency squared (in MHz2) and
the slope is equal to C2 (in dB/m/MHz2). The plots are listed in order of increasing steepness, as follows:
gray class 50 (blue), gray class 60 (dark blue), ductile A (dark red), ductile B (green), gray class 20 (red),
and gray piston ring (purple). Each observed spectrum is accompanied by a dotted line for the linear
regression (with R2 values of 0.992-0.998, except for 0.971 for class 20). The quadratic fits were very
good, with nine spectra showing R2 values 0.992 or higher. It should be noted that when attenuation
spectra deviate from linear frequency dependence, the damping factor and other related terms such as
Q−1 are no longer independent of frequency. One needs to use caution when estimating ultrasonic
attenuation from damping factors or the Q−1 values obtained at low kHz frequencies reported in
references [37,41–43].
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Table 5. Attenuation coefficients and material parameters for cast iron.

Test Material Cd C2 CR α at 5 MHz Damping Velocity Thickness Vickers HN Notes

No. dB/m/MHz dB/m/MHz2 dB/m/MHz4 dB/m factor mm/µs mm
I1 Common Gray Iron 7.15 × 101 1787.5 [0.01150] 4.39 12.2 158 As-cast
I2 Mighty Bar 50 1.02 × 101 255.0 [0.00181] 4.83 304.0 208 Continuous cast
I3 Gray class 20 3.50 × 101 875.0 [0.00573] 4.47 25.0 145 As-cast
I4 Gray class 30 2.57 × 101 642.5 [0.00447] 4.75 25.8 250 As-cast
I5 Gray class 40 A 1.34 × 101 335.0 [0.00230] 4.68 25.5 214 As-cast
I6 Gray class 40 B 1.42 × 101 355.0 [0.00253] 4.86 25.4 257 As-cast
I7 Gray class 50 1.34 × 101 335.0 [0.00245] 5.00 25.1 322 As-cast
I8 Gray class 60 1.87 × 101 467.5 [0.00343] 5.00 24.8 242 As-cast
I9 Gray piston ring 3.96 × 101 990.0 [0.00624] 4.30 25.3 166 As-cast

I10 Ductile A 2.37 × 101 592.5 [0.00404] 4.65 24.4 171 As-cast
I11 Ductile B 2.73 × 101 682.5 [0.00453] 4.53 26.9 314 As-cast
I12 Fine Gray 59.3 5.92 × 10−1 666.5 9.34 × 10−3 4.30 25.3 111 As-cast
I13 High-Strength Gray A 40.2 4.62 × 10−1 489.8 6.92 × 10−3 4.70 25.5 267 As-cast
I14 High-Strength Gray B 24.7 6.70 × 10−1 542.3 4.16 × 10−3 4.60 28.3 240 As-cast
I15 Ductile piston ring 42.8 3.82 × 10−3 216.4 8.86 × 10−3 5.65 25.6 220 As-cast
I17 Ductile 60-45-10 31.8 8.93 × 10−3 164.6 6.49 × 10−3 5.57 25.7 168 As-cast
I18 Ductile 80-55-06 41.0 8.38 × 10−3 210.2 8.47 × 10−3 5.64 25.0 282 As-cast
I19 Compacted Graphite A 31.9 1.96 × 10−2 171.8 6.24 × 10−3 5.34 25.0 197 As-cast
I20 Compacted Graphite B 31.8 7.05 × 10−2 203.1 6.00 × 10−3 5.15 28.3 265 As-cast
I21 Malleable-ferritic 28.5 7.90 × 10−3 147.4 5.76 × 10−3 5.52 24.0 145 Heat treated
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Figure 15. Representative attenuation spectra for cast iron. (a) Ductile and malleable iron with
Mason–McSkimin relation: ferritic malleable iron (blue); ductile iron (60-45-10 grade, red); ductile iron
(80-55-06 grade, green); compacted graphite (dark blue); high-strength gray iron (dark red). (b) Gray
iron with quadratic spectra: gray class 50 (blue); gray class 60 (dark blue); ductile A (dark red); ductile
B (green); gray class 20 (red); gray piston ring (purple).

Rayleigh scattering due to nodular graphite, amounting to 16% volume at the eutectic composition
of 4.3% C, was verified quantitatively by Papadakis [89]. Note that Ying and Truell [90] treated the
case of independent scattering of spherical particles and derived the same f4-dependence of Rayleigh
scattering. In addition, the damping from the ferrite matrix contributes to the linear part, with a slope
of 25 to 60 dB/m/MHz, as tabulated in Table 5. This part is expected to include transmission loss
through graphite particles, since their volume cannot be ignored at 16%.

The attenuation behavior shown in Figure 15b must be separately considered from those quadratic
spectra found earlier in cold-worked steel, Cu, and brass, since no cold work exists in cast iron.
Because of the presence of interconnecting flakey graphite in gray iron (including two samples that
were incorrectly labeled as “ductile” iron), the effective size of graphite flakes may be larger than the
optically measured flake length by a few tenths of a millimeter. A possible explanation of the observed
f2-dependence for gray iron is the Datta–Kinra relation [50–52] without damping (Equation (5)). Here,
attenuation is caused by multiple scattering from inclusions, namely interconnected graphite flakes.
Acoustic impedance of graphite is 12.5 times smaller than iron, making graphite flakes good scattering
sources. Repeated wave reflections are expected due to graphite connectivity. However, no quantitative
analysis exists and further study is needed to verify this mechanism. Another possible source of
attenuation is absorption effect. Rose and Hsu [91] demonstrated that the surface reflection spectrum
from random granular surfaces follows a quadratic relation. When graphite flakes cover the wave
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path across the planar wavefront, the reflection from an acoustic impedance mismatch produces
transmission loss or attenuation. Within a gray iron sample, multiple graphite flake layers contribute
to successive reflection and transmission at many interfaces. Experimentally, such an interface can
be viewed in fractographs or on etched surfaces [88,92]. The laser profilometer result for a gray iron
fracture surface was given in Nakae [93] and is reproduced in Figure 16. As the intervals of height
oscillations are 0.2–0.5 mm, Rose–Hsu theory is relevant for gray iron cases as well. While quantitative
analysis needs to follow, this can account for the quadratic attenuation spectra observed for gray irons.
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Figure 16. Surface contour of the fracture surface of gray cast iron using a high-resolution laser
profilometer. Reproduced from Nakae [93] with the permission of Japan Foundry Engineering Society,
Tokyo, Japan.

Some correlations between hardness and attenuation levels may exist. For gray irons, attenuation
at 5 MHz trends down with increasing hardness (shown by red circles in Figure 17). For stronger gray
irons, microstructures are refined and higher amounts of flakes are converted to nodular forms by faster
cooling. In contrast, non-gray irons showed a different trend, with α values at 5 MHz rising slightly
with higher hardness (indicated by + marks in Figure 17). In the non-gray irons, attenuation changes
were small and were not affected strongly by microstructural refinements. Quantitative analysis of
nodular effects is required for clarification.
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Next, it is important to compare the observed damping factors with those determined at low
frequencies [94], since high damping properties are important in many cast iron applications [88].
For gray irons, η values ranged from 0.0019 to 0.016, while ductile iron showed η values ranging
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from 0.00014 to 0.00063. Additionally, η values of 0.006 to 0.031 were reported at a higher strain
amplitude [94]. These values are generally comparable to the η and [η] values in Table 5, indicating the
frequency effect on η is small.

This section reported the attenuation behavior of four types of cast iron samples. For high-strength
nodular irons of ductile and ferritic malleable types, attenuation was low and was found to be
comparable to some steels. Gray irons, with some exceptions, did show high attenuation as expected,
especially above 5 MHz. Most gray iron samples showed quadratic frequency dependence, while
the other three cast iron types and gray iron samples with finer microstructures followed the
Mason–McSkimin relation. The Rayleigh scattering term of the latter was previously analyzed
quantitatively as scattering from nodular graphite particles [89], but the quadratic response requires
further studies. Two possible mechanisms are suggested. One involves using the Datta–Kinra multiple
scattering theory [50–52], while the other is based on Rose–Hsu theory [91]. This mechanism relies on
f2-dependent reflections from random surfaces, which correspond to interconnected graphite flakes.
This and other aspects of observed attenuation require future investigation for elucidation.

4.5. Attenuation Behavior of Organic Materials

This section reports the attenuation characteristics of engineering polymers and wood. The results
are tabulated in Table 6. An extra column is added as in Table 5 for the values of the damping
factor, η, since this is often used in the polymer field. The apparent damping factor, [η], is used for
quadratic spectra found in some wood results (with a linearity assumption at frequencies below 1 MHz).
Most organic materials showed linearly dependent frequency spectra, although several exceptions
were found for wood samples. Attenuation data and representative spectra for PMMA, PC, and PVC
are given in Table 1 and Figures 9 and 10. For these three samples and eight other polymers, α values
at 1 MHz ranged from 91 (PMMA) to 1471 dB/m (poly-tetra-fluorinated ethylene, PTFE). The range
of observed η values was from 0.008 (PMMA) to 0.077 (neoprene). These results agree with values
reported elsewhere within a factor of two or better [11,24,95]. Among the η values of nine materials
listed in [95], five matched with the present results, while the rest were within a factor of two (either
higher or lower). Among six α values in [24], three matched within 20%, while the rest were within a
factor of two. The Kaye–Laby table [11] from varied sources gave poorer agreements, but one of four
was well-matched, while the other three were again within a factor of two. A part of the discrepancies
certainly arose from different material origins used in various works, but the present results were
always within the bounds of literature values. This fact offers additional confidence in the methodology
and data of this work.

For epoxy resins, reliable attenuation measurements are available. Kinra et al. [50] found Cd values
of 373 to 391 dB/m/MHz for TRA-CASR3012 epoxy using an immersion method. Watanabe et al. [96]
reported 338 dB/m/MHz for JER epoxy (matrix resin for Mitsubishi 340 prepreg). These values are 25%
to 45% higher than in test O9, but are within the expected range for epoxy resins. Note that the epoxy
used for test O9 was a high-strength resin designed for wear resistance, as it was used as an AE sensor
face plate.

Tests O12 to O41 were performed on 14 wood samples from 12 wood species. Nine samples were
old stock, which were kept indoors for many years. The estimated length of storage is listed in the notes
column in Table 7. As these samples were of natural origin, the data obtained need to be used with
caution, as many factors can alter the microstructural conditions. The attenuation values of most wood
samples showed linearly dependent frequency spectra, with α values at 1 MHz ranging from 174 (pine)
to 5455 dB/m (pine plywood, surface normal direction). Note that α values at 1 MHz numerically equal
Cd + Cn values in Table 7. For example, white oak has values of 415, 2667, and 760 dB/m for the three
directions. Here, four of the wood samples can best be fitted to quadratic attenuation spectra, while
two cases had the Rayleigh scattering term. The scattering term was small at 1 MHz, but increased
rapidly with frequency. Hardwoods seemed to have lower α values. Some softwood samples showed
high attenuation, but pine gave the lowest α value among the wood samples.
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Table 6. Attenuation coefficients and material parameters for organic materials.

Test Material Cd Cn α at 1 MHz Damping Velocity Thickness Density Notes

No. dB/m/MHz dB/m/MHzn dB/m factor mm/µs mm Mg/m3

O1 PMMA 91 91 0.008 2.40 0.95 TDM-1 Average
O2 PVC 224 224 0.019 2.33 4.5/17.5 1.40 TDM-1
O3 PC 638 638 0.053 2.25 2.3/16.5 1.20 TDM-1
O4 Poly-tetra-fluorinated ethylene 1471 1471 0.071 1.31 3.4/6.8 2.19 TDM-1
O5 High density polyethylene 446 446 0.042 2.59 24.2 0.91
O6 Ultrahigh molecular weight PE 256 256 0.023 2.40 10/21.7 0.95 TDM-1
O7 Polypropylene 452 452 0.043 2.61 9.4 0.90
O8 Nylon 6/6 269 269 0.026 2.67 27.3 1.14
O9 Epoxy 274 274 0.028 2.75 9.1 1.39

O10 Bakelite 312 312 0.029 2.50 9.3 1.36
O11 Neoprene 1297 1297 0.077 1.61 6.4 1.34
O12 Red oak (L) 607 607 0.131 5.90 44.0 0.78 20 years
O13 Red oak (C/R) 2632 2632 0.174 1.80 37.8 0.78 Same as O12
O14 Red oak (R) 1577 1577 0.138 2.38 19.0 0.78 Same as O12
O15 Red oak (C) 2104 2104 0.177 2.30 17.3 0.72 10 years
O16 Red oak (C) 2182 2182 0.184 2.30 8.5/17.3 0.72 TDM-1 10 years
O17 White oak (L) 415 82.8 (n = 4) 498 0.080 5.24 42.2 0.68 40 years
O18 White oak (C/R) 2667 2667 0.159 1.63 29.7 0.68 Same as O17
O19 White oak (R/C) 0 760 (n = 2) 760 [0.067] 2.41 18.7 0.68 Same as O17
O20 Aromatic red cedar (R) 707 707 0.066 2.56 7.4 0.53 20 years
O21 Birch (L) 317 317 0.069 5.94 48.0 0.66 46 years
O22 Birch (C) 1533 1533 0.123 2.19 15.0 0.66 Same as O21
O23 Birch (R) 1719 1719 0.153 2.43 32.0 0.66 Same as O21
O24 Birch (R/C) 0 922 (n = 2) 922 [0.096] 2.84 6.5 0.71
O25 Cherry (L) 366 366 0.074 5.53 38.3 0.58
O26 Cherry (C/R) 1842 1842 0.117 1.73 38.0 0.58 Same as O25
O27 Cherry (R/C) 635 17.2 (n = 4) 652 0.054 2.34 18.9 0.58 Same as O25
O28 Maple (L) 364 364 0.076 5.68 54.6 0.69
O29 Maple (C/R) 1228 1228 0.087 1.93 52.2 0.69 Same as O28
O30 Maple (R/C) 0 747 (n = 2) 747 [0.059] 2.15 27.0 0.69 Same as O28
O31 Pine (L) 174 174 0.037 5.82 43.0 0.50 10 years
O32 Pine (R) 2583 2583 0.174 1.84 18.0 0.50 Same as O31
O33 Poplar (R/C) 0 702 (n = 2) 702 [0.055] 2.15 6.2 0.58
O34 Japanese red cedar (L) 452 452 0.104 6.26 33.6 0.39 30 years
O35 Japanese red cedar (C) 3044 3044 0.272 2.44 11.5 0.39 Same as O34
O36 Japanese red cedar (R) 1733 1733 0.155 2.44 27.7 0.39 Same as O34
O37 Japanese cypress (R) 1495 1495 0.127 2.32 9.5 0.45
O38 Paulownia tomentosa (C) 3926 3926 0.304 2.11 6.8 0.28 30 years
O39 Pine plywood (in plane) 1322 1322 0.266 5.49 58.9 0.52 Same as O40
O40 Pine plywood (surface normal) 5455 5455 0.304 1.52 6.5/17.5 0.52 TDM-1
O41 Pine plywood (surface normal) 4914 4914 0.274 1.52 17.5 0.52 Same as O39

PMMA, polymethyl methacrylate; PVC, polyvinylchloride; PC, polycarbonate; PE, polyethylene; Cd, damping coefficient; Cn, n-th order attenuation coefficient; α, attenuation coefficient.
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Table 7. Attenuation coefficients and material parameters for fiber-reinforced composite materials. GFRC, glass-fiber-reinforced composite; CFRC,
carbon-fiber-reinforced composite; KFRC, Kevlar-fiber-reinforced composite.

Test Material * Cd Cn
** Damping Velocity Thickness Density Notes

No. dB/m/MHz dB/m/MHzn factor mm/µs mm Mg/m3

R1 GFRC rod 74.6 0.014 4.96 117.0/33.5 1.97 TDM-1
R2 GFRC rod 72.6 0.013 4.96 117.0 1.97
R3 GFRC rod 84.2 0.015 4.95 117.0 1.97
R4 GFRC T 173 5.946 (n = 3) 0.019 3.07 55.5 1.97
R5 GFRC pultruded 121 0.022 5.06 7.0/48.8 2.07 TDM-1
R6 GFRC pultruded 119 0.022 5.06 13.2/48.8 2.07 TDM-1
R7 GFRC pultruded 99.1 0.018 5.06 25.4/48.8 2.07 TDM-1
R8 GFRC pultruded 106 0.020 5.06 48.8 2.07
R9 GFRC pultruded 118 0.022 5.06 25.4 2.07

R10 GFRC plate L 231 0.042 4.95 48.3 1.82
R11 GFRC plate T 396 27.083 (n = 3) 0.043 2.96 24.0 1.82
R12 GFRC plate S 189 45.946 (n = 3) 0.021 2.99 18.5 1.82
R13 GFRC plate XP L 202 0.031 4.15 24.8 1.81
R14 GFRC plate XP S 441 0.046 2.84 27.2 1.81
R15 CFRC AS4 UD L 91.0 0.031 9.32 36.6 1.53
R16 CFRC AS4 UD T 247 4.938 (n = 3) 0.029 3.16 24.3 1.53
R17 CFRC AS4 UD S 196 0.023 3.15 20.0 1.53
R18 CFRC G50 UD L 110 0.046 11.30 13.3/28.7 1.58 TDM-1
R19 CFRC G50 UD L 99.7 0.041 11.30 28.7 1.58
R20 CFRC G50 UD L 100 0.041 11.30 13.3 1.58
R21 CFRC G50 UD T 129 0.013 2.83 29.0 1.58
R22 CFRC G50 UD S 148 0.015 2.79 28.9 1.58
R23 CFRC AS4/PMR15 L 155 0.064 11.33 14.5 1.45
R24 CFRC AS4/PMR15 T 1052 279.00 (n = 3) 0.084 2.17 19.0 1.45
R25 CFRC AS4/PMR15 S 865 151.35 (n = 3) 0.073 2.30 18.5 1.45
R26 CFRC T700 UD(3) L 68.6 0.0316 (n = 4) 0.023 9.19 23.7 1.48
R27 CFRC T700 UD(3) T 825 0.088 2.91 18.9 1.48
R28 CFRC T700 UD(3) S 1733 0.169 2.66 15.5 1.48
R29 CFRC T700 UD(10) L 95.3 0.032 9.28 40.2 1.48
R30 CFRC T700 UD(10) S 862 191.57 (n = 3) 0.084 2.65 26.1 1.48
R31 CFRC T700 QI IP 1245 0.313 6.86 14.7 1.48
R32 CFRC T700 QI S 1606 0.164 2.79 19.3 1.48
R33 KFRC IP 1406 0.273 5.29 32.0 1.34
R34 KFRC S 0 369.57 (n = 3) 0.000 2.72 9.2 1.34

* L indicates direction parallel to fibers (0◦ in usual notation). S indicates the surface normal (90◦ in usual notation, but distinguished from transverse (T) in case of plate). IP indicates
in-plane direction. Here, the directions are limited to 0◦ and 90◦ only. Note: ** n = 2 for the listing without the value of n. Cd, damping coefficient; Cn, n-th order attenuation coefficient; α,
attenuation coefficient; XP, cross ply; UD, uni-directional; QI, quasi-isotropic.
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The wood samples are all anisotropic because of the nature of tree growth. The vertical tree
growth direction will be referred to as longitudinal (L), the center to surface direction as radial (R),
and the normal direction relative to these two directions as circumferential (C). These terms are the
same as those used for rods or piping [97]. Eight samples were tested in two or three directions.
The longitudinal direction always coincided with the length direction, but the surface normal for
transverse directions of a sample were usually rotated away from the R or C direction, caused by the
tree growth. For intermediate cases, the more dominant direction was given first. The L direction
always showed the lowest attenuation among the three (or two) directions. The attenuation usually
increased by between two and five times (15-fold in pine; tests O31 and O32) in R or C directions.

For large anisotropic effects, as seen in wood samples, it is likely that the usual isotropic elasticity
analyses are inapplicable. By calculating transmission coefficients specific to the wave propagation
direction, these effects may be minimized for wood, as attenuation was high. Indeed, for red oak (tests
O15 and O16) and pine plywood (tests O40 and O41), both TDM-1 and TDM-2 gave comparable results.
Diffraction correction values were also small in most regions of examination, so these can be ignored.
These two effects will also be considered for fiber-reinforced composites in the following section.

The quadratic attenuation spectra were observed only in samples of the R/C orientation; that is,
waves impinged on latewood (annual growth ring) layers at shallow angles. Since the latewood parts
have much higher elastic modulus (and hardness) values than earlywood parts [98], scattering can be
expected. However, it is difficult to find any mechanisms that predict the observed quadratic spectrum.

In this section, the attenuation behaviors of engineering polymers and wood are described.
Engineering polymers exhibited linearly dependent frequency spectra. The observed attenuation levels
agreed with the literature values reasonably well. Wood behaved similarly to polymers in terms of
frequency dependence, but some showed quadratic type or Mason–McSkimin relations, which cannot
be explained by existing literature. Strong anisotropic attenuation behavior was present in all wood
cases, caused by the tree growth process.

4.6. Attenuation Behavior of Fiber-Reinforced Materials

Eleven fiber-reinforced composite materials were tested. E-glass fibers, carbon fibers (grades
AS-4, G50, and T700) and Kevlar fibers were used for reinforcement and epoxy resin was the
matrix using most cases (exceptions are noted). All reinforcement used continuous fibers. These
were named glass-fiber-reinforced composite (GFRC), carbon-fiber-reinforced composite (CFRC),
and Kevlar-fiber-reinforced composite (KFRC). For GFRC, both unidirectional (UD) and woven roving
cross-ply (XP) composites were available. For CFRC, UD and quasi-isotropic (QI) composites were
used. Only woven roving XP composites were available for KFRC. While fiber orientation is usually
noted in degrees off the main direction, the wave directions will be referred to as before, with L, T,
and S. Here, L coincides with 0◦ fiber orientation, T matches 90◦ orientation regardless of plate or rod
shape, and S refers to the surface normal for a composite plate. The attenuation parameters from these
tests (R1 to R34) are given in Table 7. This table shows that anisotropic wave velocity and attenuation
are common to all composites reinforced with continuous fibers. This anisotropy appears in the wave
velocities in the three directions (L, T, and S). While vL values in the T and S directions were similar for
a given UD composite, vL in the L direction was larger by a factor of 1.5 to 5. This tendency extended
to XP and QI composites as well. UD composites always have low attenuation values below 155 dB/m
at 1 MHz in the L direction, but attenuation increases in the T or S direction. This difference depends
on fiber–resin combinations. The attenuation ratio (= Cd(T or S)/Cd (L)) was the largest in T700 CFRC
at 25 between the L and S directions. In the QI-CFRC with T700 fibers, the orientation difference was
much smaller, as expected from its layup design (having 0◦, ±45◦, and 90◦ fiber orientations in plane).
The XP composites of GFRC and KFRC also showed similarly smaller differences between the L and S
directions in terms of the attenuation ratio.

The first four tests were performed on a UD-GFRC rod measuring 63 mm in diameter, cut
into two lengths. This was done by pultrusion at Glasform, Inc. (Birmingham, AL, USA), and is
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typical for high-voltage insulators containing 0.565 volume fraction of E-glass fibers in epoxy matrix.
Figure 18 shows observed spectral data in the L direction, with purple and green curves for attenuation
from TDM-1 and TDM-2 methods (tests R1 and R2), respectively. Purple and green dotted lines
represent linear regression fits, giving Cd = 74.6 and 72.6 dB/m/MHz, with R2 values of 0.951 and 0.927,
respectively. These two Cd values agree well. The green dashed curve is for the attenuation spectrum
when the diffraction correction (shown by the red dotted curve) was applied. The results were reduced
to negative attenuation below 1.7 MHz, making the linear fit unacceptable. Thus, for composite tests in
this section, no diffraction correction was applied. Some studies attempted to obtain this correction for
anisotropic solids [99,100], but these were inapplicable for the cases in this section. When the Tc term
was omitted (test R3), the Cd value increased to 84.2 dB/m/MHz. However, the linear fit was better
with R2 = 0.966. Since the TDM-1 result was between the results of TDM-2 tests with or without the
transmission coefficient, the latter two can be used in estimating the TDM-1 value. Test R4 was in the S
direction, which is the normal direction relative to glass fibers. The attenuation was 2.3 times higher.
The attenuation spectrum for test R4 follows the Biwa relation (Equation (8)); that is, α consists of the
damping and Biwa scattering term of cubic frequency dependence [53,54]. The C3 coefficient is listed
in Table 7 under the Cn heading. Seven other tests exhibited this Biwa relation. As noted earlier, this
term comes from the scattering from parallel fibers.
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correction (not used); green dash: diffraction correction added to TDM-2 spectrum (not used).

The next five tests (tests R5-R9) were for another pultruded GFRC measuring 20 mm in diameter
(Goldworthy Engineering, El Segundo, CA, USA; 61.5% volume of E-glass fibers, epoxy matrix).
Four samples of varying lengths were used, giving three TDM-1 and two TDM-2 test results. The Cd

values ranged from 99.1 to 121, averaging 111.7 (±9.2) dB/m/MHz. R2 values averaged 0.931 (ranging
from 0.837 to 0.971). Due to size limitation, the T direction was not tested.

Two GFRC plate samples were tested (tests R10-R14). One was a UD type (vinylester resin, Showa
R802) [101] and the other was a woven roving XP-GFRC with an epoxy matrix (Electroply, El Segundo,
CA, USA). The former GFRC showed higher attenuation than epoxy-based GFRCs, as it used a more
viscous resin matrix. It also exhibited the Biwa relation for both T and S directions. The latter was
made for printed circuit boards. Both had lower fiber contents and higher attenuation was observed,
as listed in Table 7 The attenuation ratio between the fiber and normal fiber directions was 2.2 to 2.9.

Perhaps because GFRCs are not used in aerospace applications, reliable GFRC attenuation data
based on accepted ultrasonic methods are scarce [7]. Mouritz [102] examined void effects on attenuation
and reported 230 dB/m at 1 MHz for GFRC with a 3% void. This composite was made of woven
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rovings of E-glass fibers with a polyester matrix. Measurement details were not given in [102], but it
seems that this test was in the S direction, so the η value was estimated to be 0.024. Another work
gave 275 dB/m at 1 MHz for GFRC, except details were again unavailable [103]. Using complex elastic
moduli measurements, two test results for UD-GFRC were reported [104,105]. In the fiber direction,
the observed η values ranged from 0.033 to 0.056. These agree with the results of tests R10 and R11,
but are two to four times larger than those of pultruded UD-GFRC samples (tests R1-R9). Since the η

values for PMMA using the complex elastic moduli measurements were also three to six times higher
than the results from the usual ultrasonic methods [7], this comparison may be of questionable merit.
Thus, GRFC results cannot be compared directly to previous test results. However, these attenuation
values appear reasonable in comparison to CFRC results published [7] and the present data.

Plates of four CFRC materials were used for this study. CFRC with AS-4 fiber was supplied as
plates by NASA Langley Research Center, Langley, VA, USA. The matrix was a 3501-6 epoxy. A UD
plate was used for this work. The PMR-15 polyimide matrix AS-4 CFRC was obtained in plate form in
the 1980s, but details are unavailable. Two other GFRC plates were made in-house using prepregs
of G50 and T700 fibers (see [106] for detailed information for G50 CFRC, which was hot-pressed and
had 60% fiber volume). General purpose T700 prepregs were obtained from Torayca (Tokyo, Japan),
which contained 2501 epoxy resin and were out-of-autoclave cured at 130 ◦C. From its density, samples
contained 0.41 volume fraction of T700 carbon fibers.

AS-4 CFRC showed Cd values ranging from 91 in the L direction to 247 dB/m/MHz in the T
direction. The attenuation spectra are given in Figure 19. The L-spectrum is linear while the T-spectrum
fits the Biwa relation.

α = 90.6 f (25a)

α = 247 f + 4.94 f3. (25b)
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AS-4 fibers. Blue: L direction with linear fit (dotted line); red: T direction with Biwa relation fit (dashed
curve) and linear fit (dotted line).

The L-spectrum is more discontinuous than usual, but linear regression results in R2 = 0.883.
The fit to the Biwa relation for the T-spectrum is better, with R2 = 0.984.

For G50 CFRC, Cd values ranged from 100 to 148 dB/m/MHz for the L and S directions, showing
low attenuation ratios of 1.3-1.5. In terms of the damping factor (η) values of these two CFRCs,
the fiber (L) direction gave η values of 0.031 to 0.046 and the off-fiber direction gave η values of 0.013 to
0.036. The η values in the L direction were higher than the corresponding values in pultruded GFRC,
reflecting higher wave velocity. The off-fiber η values were comparable between CFRC and GFRC,
implying the dominance of the matrix properties.
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For AS-4 CFRC, Williams et al. [107] reported η values of 0.012 to 0.024 in the L direction, which
were about a half of the present data. On the other hand, the η values for off-fiber directions ranged
from 0.038 to 0.14, which exceeded the current results. While these were the only data available in the
L direction, more attenuation measurements in the S direction have been reported. Watanabe et al. [96]
obtained Cd = 234 dB/m/MHz (η = 0.026) for a CFRC with Mitsubishi TR30 fibers (0.6 volume
fraction). From the data of Jeong and Hsu [108], Cd values in the S direction were found to be 153, 128,
and 307 dB/m/MHz for UD and QI epoxy CFRCs, woven epoxy CFRC, and woven polyimide CFRC,
respectively. These corresponded to the lowest void contents below 1.2%. These were comparable
to the present test results. On the other hand, the η values for CFRCs based on the complex elastic
moduli measurements [7,104,105] were always higher. These complex moduli studies omitted detailed
material descriptions, making meaningful assessment difficult.

AS-4 CFRC with a polyimide (PMR-15) matrix had higher attenuation in comparison to the epoxy
matrix CFRCs, especially in the off-fiber directions. The Biwa relation was found in both T and S
directions. Studies on this high-temperature resin matrix CFRC are rare, even for usual mechanical
properties, meaning ultrasonic attenuation data cannot be compared.

The next group of CFRCs uses T700 fibers with 2501 epoxy. Both UD and QI layups were used,
but the UD samples contained 3% and 10% cross plies at approximately 5 mm intervals to increase
resistance against splitting. These will be referred to as UD(3) and UD(10), respectively. Attenuation
values in the L direction were 69 and 95 dB/m at 1 MHz for UD(3) and UD(10), respectively, similar
to other UD samples in the present study, including GFRCs. The much higher attenuation values in
the off-fiber directions for this T700 CFRC are noteworthy. Here, α values at 1 MHz ranged from 825
to 1733 dB/m. The difference in α values from the L direction is expected to come from the matrix
properties of the 2501 epoxy resin used in the T700 CFRC, similar to how the tough matrix resin in the
PMR15 polyimide provided higher off-fiber attenuation. These higher attenuation levels can be easily
recognized in the damping factor column as well, especially in the QI samples.

Only one prior attenuation work on T700 CFRC seems to exists. Olivier et al. [109] examined
porosity effects on UD and XP composites, and gave attenuation spectra for UD composites with
various void contents (1.7 to 10%). For the 1.7% porosity sample, the Cd value was 400 dB/m/MHz,
which increased to 600 dB/m/MHz at 2.75% porosity. It appears that the Datta–Kinra relation [50–52]
starts to take over above 6.7% porosity, probably resulting in scattering effects from voids. It is assumed
that the measurements were made in the S direction, since the test configuration is not given. Their Cd

values were lower than in tests R27, R28, or R30. The differences are in part due to voids in our samples
because of out-of-autoclave curing. It will be useful to measure the attenuation in aerospace-grade
T700 CFRC samples to understand the origin of high attenuation. However, the low attenuation in the
L direction seems to suggest that our samples are of good quality.

The final composite group contains Kevlar epoxy laminates. These plates were made at Avtek,
Inc. (Camarillo, CA, USA), using woven fabric. Attenuation value was high, even in the fiber direction,
reaching 1406 dB/m at 1 MHz. In the S direction, the cubic frequency spectrum was found, however
without the damping term. Because of this cubic dependence, the S direction had lower α values
than the fiber direction in the plane, until almost reaching 2 MHz. This is a peculiar feature of KFRCs.
KFRCs have been known as high damping materials since they first appeared in the 1980s. Tests R33
and R34 confirm this quantitatively.

This section presented the results of attenuation measurements on continuous fiber-reinforced
composites, namely GFRCs, CFRCs, and KFRCs. Because of anisotropic elastic and attenuation
behavior, diffraction correction terms were not applied, while the transmission coefficient was included.
In the fiber direction, the attenuation behavior was consistent and the levels were relatively low at
70-155 dB/m at 1 MHz. In 60% of the off-fiber tests, the Biwa relation of linear and cubic spectra fitted
the attenuation well. This cubic term comes from the scattering of wave incidents normal to parallel
fibers. Newer T700 CFRCs gave higher attenuation values in the off-fiber orientation, possibly owing
to the matrix properties, as well as voids.
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4.7. Attenuation Behavior of Ceramics and Rocks

Ceramics and rocks were examined for their attenuation characteristics. The results are
summarized in Table 8. A broad range of materials, including both engineered ceramics and
natural rocks, were included. Attenuation spectra were mostly linearly dependent, eight of which
showed the Rayleigh scattering term. Two cases showed the Datta–Kinra scattering. Six tests showed
very low attenuation, while five samples had high attenuation of over 1000 dB/m at 1 MHz (porous
mortar, brick, emery disc, graphite, and granite).

The first three samples (tests C1-C3) were mortar blocks made of rapid setting cement, known as
belitic calcium sulfoaluminate cement (BCSA). One was a control block that did not contain extra voids.
Besides sand and water, two of them contained 0.05% and 0.1% of an air-entraining agent, Hostapur,
which produced 13.5% and 22.7% voids. Increased void contents resulted in higher attenuation.
Three attenuation spectra are shown in Figure 20. Red, blue, and green curves correspond to tests C1
to C3, with increasing void contents. These three curves can be modeled well by

α (dB/m) = 252 f + 6.20 f4, (R2 = 0.983) (26a)

α (dB/m) = 394 f + 304 f4, (R2 = 0.997) (26b)

α (dB/m) = 235 f + 1273 f2, (R2 = 0.995) (26c)
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The model curves are shown by dashed curves of the same color, except blue curves
overlap completely.

When the void content is below 15%–20%, the Rayleigh scattering term accounts for the observed
deviation from the linear spectrum. When the void content reaches 22.7%, the Datta–Kinra relation for
multiple scattering becomes the appropriate model equation. Fitting was good for all three spectra,
with R2 values ranging from 0.983 to 0.997. The transition from the Rayleigh to Datta–Kinra relation
was unexpected, but it was also observed for cast iron attenuation; that is, the Mason–McSkimin
relation was applicable for ductile iron with nodular graphite particles and the Datta–Kinra relation
was applicable for multiple scattering from interconnected flaky graphite in gray iron. The transition
observed here should be of interest for evaluating concrete mixes containing gravel.
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Table 8. Attenuation coefficients and material parameters for ceramics and rocks.

Test Material Cd C2 CR Damping Velocity Thickness Density Notes

No. dB/m/MHz dB/m/MHz2 dB/m/MHz4 factor mm/µs mm Mg/m3

C1 Mortar 252.0 6.20 × 100 3.43 × 10−2 3.71 50.7 2.00
C2 Mortar 13.5% void 394.0 3.04 × 102 4.26 × 10−2 2.95 50.7 1.73
C3 Mortar 22.7% void 235.0 1273 1.99 × 10−2 2.31 50.7 1.54
C4 WC cermet 41.9 1.04 × 10−2 6.75 31.0 14.51 Co-bonded
C5 Si3N4 79.0 2.73 × 10−2 9.44 6.2 3.09 Hot-pressed
C6 Si3N4 + 10% SiC 80.6 2.75 × 10−2 9.32 6.2 3.08 Hot-pressed
C7 Lead-zirconate-titanate 490.1 7.49 × 10−2 4.17 5.3 7.78 PZT-5A
C8 BaTiO3 121.0 2.62 × 10−2 5.91 4.2 5.70
C9 BK7 glass 5.0 1.06 × 10−3 5.80 100.0 2.51

C10 BK7 glass 5.8 1.22 × 10−3 5.80 50.0/100.0 2.51
C11 Graphite plate 384.0 1.39 × 103 2.90 × 10−2 2.06 26.0 1.77
C12 Poco graphite rod 0.0 1.76 × 101 [2.25 × 10−3] 3.48 42.6 1.71
C13 MnS 66.4 1.13 × 10−2 4.66 49.4 3.84 Hot-pressed
C14 ZnSe 124.0 1.98 × 10−2 4.36 5.3 5.27* Laser window
C15 Ferrite (hard magnet) 337.0 7.45 × 10−2 6.03 4.6 4.99
C16 Ferrite (hard magnet) 385.0 8.89 × 10−2 6.30 7.0 5.05
C17 Fe-Nd-B magnet 223.0 5.16 × 10−2 6.31 12.8 7.50*
C18 Fired clay (red) brick 1519.0 8.35 × 10−2 1.50 39.5 1.93
C19 Fired clay (red) planter 500.0 8.67 × 10−1 4.43 × 10−2 2.42 3.0 2.18
C20 Clay ceramic (Shigaraki) 111.0 8.89 × 10−1 1.87 × 10−2 4.60 18.0 2.18
C21 Clay ceramic tile 193.0 5.07 × 10−1 2.57 × 10−2 3.64 6.9 1.97
C22 Ceramic tile 224.0 4.10 × 10−2 5.00 6.0 2.32
C23 Porcelain tile 333.0 7.54 × 10−2 6.18 6.0 2.44
C24 Porcelain 133.0 2.80 × 10−2 5.75 2.1 2.63
C25 Sintered Alumina 675.0 2.29 × 10−1 9.24 3.2 3.42
C26 Transparent Alumina 952.0 2.88 × 10−1 8.27 3.0 3.90
C27 Bonded SiC 392.0 7.18 × 10−2 5.00 9.3 2.32 Grinding disc
C28 Bonded Emery 1797.0 1.46 × 10−1 2.22 7.4 2.63 Grinding disc
C29 Macor 3.6 6.91 × 10−4 5.30 36.5 2.52 Glass-ceramic
C30 Pyrophyllite 440.9 4.86 × 10−2 3.01 10.1 2.68
C31 Salammoniac 56.8 8.16 × 10−1 8.39 × 10−3 4.03 29.4 1.54
C32 Agate 81.8 1.62 × 10−2 5.41 20.3 2.57
C33 Granite 1129.0 2.16 × 10−1 5.22 30.0 2.74 Santa Cecilia
C34 Malachite 151.0 2.04 × 10−2 3.68 5.7 3.80
C35 Marble 0.0 29.7 [6.81 × 10−3] 6.26 29.0 2.83 Carrara
C36 Soapstone 80.0 1.47 × 10−2 5.03 25.0 2.80
C37 Travertine 829.0 1.72 × 10−1 5.65 10.5 2.42 Tuscan Ivory
C38 Fluorite <111> 43.4 1.02 × 10−2 6.39 28.8 3.13*
C39 Calcite [001] 58.8 1.56 × 10−2 7.25 22.1 2.71
C40 ADP H6NO4P <100> 0.0 0.00 × 100 6.17 73.0 1.80*

* Nominal density from the literature. Cd, damping coefficient; C2, quadratic attenuation coefficient; CR, Rayleigh scattering coefficient; α, attenuation coefficient; PZT, lead-zirconate-titanate;
ADP, ammonium dihydrogen phosphate.
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The attenuation of mortar samples was reported by Treiber et al. [26,110] as a linear spectrum, with
a Cd value of 141 dB/m/MHz above 1 MHz, which is 60% of the test C1 result. Other studies showed
varying ranges of attenuation coefficients at 1 MHz of 230–400 dB/m [111] or 522–1500 dB/m [112].
Testing conditions vary and direct comparisons are difficult for this material.

Damping of concrete at low frequencies has always been an important topic [113]. A recent
report [114] attempted to increase damping by adding polymers and various aggregates, and also
provided a baseline damping factor of 0.038 for a mortar sample. This result is comparable to test C1.
Considering the variations in the cement that was used, these data indicate our test results to be in the
same range as other cementitious materials.

The next nine tests were on various ceramics and glass; that is, tungsten carbide (WC) cermet
(probably with cobalt-binder of unknown source), lead-zirconate-titanate (PZT-5A) transducer element
(Valpey-Fisher, Hopkinton, MA, USA), silicon nitride (Si3N4), Si3N4 + 10% SiC, barium titanate (BaTiO3,
from a high voltage capacitor), graphite (two kinds), and BK7 glass samples (two cuboids, Idea for
Life, Guangdong, China). Five of these samples (tests C4-C8) showed linear spectra, with Cd values
ranging from 42 to 490 dB/m/MHz. Two tests (C9 and C10) were on BK7 glass, which showed low
attenuation and linear frequency dependence. One of them used TDM-1, giving a matching result to
TDM-2. Literature data in the MHz range was unavailable, but some low-frequency damping data
were available [94], which is listed below in Table 9 with the present results. The low-frequency values
were typically lower, except for one graphite case (test C12).

Table 9. Low-frequency damping data and observed values from MHz tests.

Material η Reference η Test No

tungsten carbide cermet 0.001–0.003 [94] 0.0104 (C4)
lead-zirconate-titanate ceramic 0.01–0.05 [94] 0.0749 (C7)

BaTiO3 0.0005–0.002 [94] 0.0262 (C8)
Glass 0.0005 [94] 0.001–0.00134 (C9, C10)

Graphite 0.005–0.015 [94] 0.029 (C11)
Graphite 0.005–0.015 [94] (0.00225) (C12)
Granite 0.0175 [27] 0.216 (C31)

Among the second group, two graphite samples showed the Mason–McSkimin relation with or
without the linear term, while the attenuation levels were quite different. The first was the test C11
sample, which was of a common grade and had a strong Rayleigh term. The second was the test C12
sample, which was fine-grained and of a higher strength grade (AXM-5Q, Poco Graphite, Decatur,
TX, USA), but with a slightly lower density than C11. The attenuation value was much lower, with
α = 17.6 dB/m at 1 MHz, in contrast to 1774 dB/m at 1 MHz for C11. The cause of this large difference
is unknown, but the fracture surfaces of these samples revealed large differences. Granular features
were mm-sized for C11, while they were about 100 µm for C12, which showed 12% porosity and an
average pore diameter of 0.65 µm [115]. Under a 200x microscope, C11 showed many pores measuring
~10 µm in diameter. Thus, different scales of microscopic features, graphite grains, pores sizes, and pore
contents were the contributing factors to the vast difference in attenuation.

The following 14 samples were made from various ceramics, including MnS (hot-pressed;
Ceradyne, Irvine, CA, USA), ZnSe (vapor deposited for laser window application), ferrite hard
magnet, Fe-Nd-B hard magnet, brick, tile, porcelain, alumina, and grinding disc samples. Three clay
ceramics exhibited the Mason–McSkimin relation, indicative of scattering from small voids. The MnS
sample showed medium attenuation, but the red brick and grinding disc samples showed very high
attenuation (tests C18, C27, and C28). No comparable literature data were found for these materials.
Porcelain, alumina and transparent alumina samples (tests C24-C26) behaved unexpectedly, showing
increased attenuation as the density increased from 2.63 to 3.42 and 3.90. The high value shown for the
transparent alumina sample could be due to its poor surface finish, as it is extremely hard. However,
porcelain and alumina plates were of similar surface quality. This topic requires further study.
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The following nine tests were mostly performed on natural rock samples, but Macor glass-ceramic
(Corning Glass, Corning, NY, USA) was included, as this sample and pyrophyllite (of natural origin)
are machinable ceramics. These two samples have low and high attenuation in a contrasting manner.
Other rocks showed various levels of attenuation, reflecting their microstructures. Most rocks
showed linear frequency dependence with Salammoniac (Mason–McSkimin) and marble (quadratic)
as exceptions. The attenuation value for Macor glass-ceramic was reported in [116], which gave a Cd

value of 3.6 dB/m/MHz at 300 K. This is in excellent agreement with the C29 test data. So et al. [116]
also examined the microstructure of Macor and found a grain size of 5.7 µm and void diameter of
about 1 µm. The void size is comparable to that of AXM-5Q graphite (test C12), which showed zero
damping and low attenuation overall. Carrara marble and Santa Cecillia granite (Signature Hardware,
Erlanger, KY, USA) are on opposite ends of the scale, showing low and high attenuation values,
respectively. Marble showed a quadratic frequency spectrum with low attenuation. Although the
marble microstructure was unavailable, AXM-5Q graphite, Macor, and marble showed differing
spectral behavior, and all showed low attenuation values with fine structures. These results should be
compared in detail to explore the cause of the low attenuation.

For rocks, there is a long history of damping studies. In 1965, Knopoff [27] listed Q (= 1/η) values
for 23 types of rocks. When the η value for granite is calculated from his table, it is 12 times smaller
than that from test C33 (see listing in Table 9). This is similar to the situation for ceramics, as discussed
above. Ultrasonic work on rocks continues to date, but most geophysical attenuation studies have
ignored the diffraction effects and transmission loss, making the results difficult to assess.

The last three tests were on single crystals, with calcite and fluorite being natural crystals, and
ammonium dihydrogen phosphate (ADP or H6NO4P) being factory grown. No attenuation was
detectable for ADP, even though it had a 73 mm propagation distance. The other two crystals also
showed low attenuation. For calcite, the wave path for the maximum output was along the [001] axis
(at 75◦ from (001)). The low attenuation of these crystals is in line with similarly low attenuation levels
of rock salt, as shown by Manthei et al. [117]. Using detailed analysis of AE signals in a large salt dome
(with propagation distances up to 510 m), α values were found to be 0.002 to 0.34 dB/m at 1 to 100 kHz.
Glacial ice also shows low attenuation [118].

This section presented the observed attenuation data for ceramics and rocks, as tabulated in
Table 8, covering 40 tests. Most attenuation spectra showed linear dependence, with eight also showing
the Rayleigh scattering effect. Two cases showed quadratic behavior, with marble showing only the
quadratic spectrum. In mortar samples with varying void contents, the attenuation spectra were
initially in-line with the Mason–McSkimin relation, eventually transitioning to the Datta–Kinra relation.
Two graphite samples also showed contrasting behaviors of high and low attenuation, reflecting their
coarse and fine microstructures. Granite and marble were another pair that showed large differences
in attenuation.

5. Summary

This study determined attenuation characteristics of numerous engineering materials,
encompassing metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. Attenuation
measurements utilized two methods, named transmission difference methods 1 and 2 (TDM-1 and
TDM-2), which included corrections for diffraction effects and the transmission coefficient. The latter
term was unnecessary with TDM-1, which was used to obtain the actual correction constant for TDM-2.
These two methods usually produced attenuation data with 12% or better agreement and were verified
using PMMA to match the averaged attenuation coefficient from the literature. Attenuation behavior
was determined over broadband spectra, extending up to 15 MHz in low attenuating materials.
Over 300 tests were conducted and attenuation results are given in tabular form. The results are
compared to published data when available. Various findings are summarized below.

(1) The attenuation spectra were characterized in combination with four power law terms, with
many showing linear frequency dependence with or without Rayleigh scattering. This combined
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spectrum is called the Mason–McSkimin relation, named after the authors who first discovered it.
The linear term comes from hysteretic damping, which has long been neglected in metal studies.
A dislocation bow-out was proposed to explain the linear term for metals, but its physical basis requires
additional investigation. Koehler–Granato–Lücke theory may account for some quadratic frequency
dependencies, but their limited observations mean this explanation is unconvincing. Further, quadratic
and cubic dependencies due to Datta–Kinra scattering and Biwa scattering, respectively, were used for
some materials to appraise attenuation mechanisms. The Datta–Kinra quadratic dependence is due to
multiple scattering of distributed scattering centers, while the Biwa cubic dependence comes from
scattering due to parallel fibers.

(2) Transmission difference methods were used for attenuation measurements. A correction
procedure for transmission coefficients was introduced. From many test results, some previously
unknown behaviors emerged upon data evaluation. The effects of cold working, tempering,
and annealing were complex and sometimes contradictory. Comparison with available literature was
attempted for some, but usually prior data were unavailable. This collection of new attenuation data will
be of value in selection of materials and in designing structural health monitoring and non-destructive
inspection protocols. Summary comments on various types of materials are given below.

(3) Most structural steels exhibited low to medium attenuation coefficients. Linear frequency
spectra were common with the Mason–McSkimin relation for one-quarter of samples tested, consisting
of ferritic-pearlitic low-C steels and austenitic stainless steels. Cold working (CW) and phase
transformation imposed vast changes in α values, with two contradictory CW effects—type-p and
type-n; that is, CW increased or decreased α values. Martensitic and bainitic transformation products
also responded differently to tempering.

(4) Most non-ferrous metallic materials also exhibited the linear frequency spectra or
Mason–McSkimin relation. The levels of attenuation were low in Al and Mg, but most others
were comparable to typical ferrous alloys. Two cold-worked plates showed anisotropic behavior with
quadratic frequency spectra in the in-plane orientations. Such unusual spectra, which are probably a
form of dislocation damping, are expected to vanish with annealing if they follow the trend found
for low-C steel. Other anisotropic attenuation was found and appeared to result from mechanical
processing steps, since the thickness direction typically showed higher attenuation. This behavior
appears to be previously unknown.

(5) Cast iron behavior was grouped into two main types. For high-strength nodular iron samples
of ductile and ferritic malleable types, attenuation followed the Mason–McSkimin relation, coming
from the scattering due to nodular graphite particles. Gray iron samples showed high attenuation with
quadratic frequency dependence. Two possible mechanisms are suggested; the Datta–Kinra multiple
scattering theory and Rose–Hsu theory with random surface reflection.

(6) Engineering polymers exhibited linearly dependent frequency spectra, with observed
attenuation levels agreeing with the literature values. Wood behaved similarly to polymers in
terms of frequency dependence, but some samples showed quadratic-type or Mason–McSkimin
relations. Strong anisotropic attenuation behavior was present in all wood samples.

(7) Continuous fiber-reinforced composites (GFRC, CFRC, and KFRC) gave anisotropic attenuation
behavior. In the fiber direction, the attenuation levels were relatively low at 70-155 dB/m at 1 MHz.
In 60% of the off-fiber tests, the Biwa relation of linear and cubic spectra represented attenuation well.
This cubic term is caused by the scattering of waves normally incident upon parallel fibers.

(8) Most attenuation spectra for ceramics and rocks showed linear dependence, with some also
showing the Rayleigh scattering effect. The quadratic behavior was also present in marble and in mortar
samples with high void contents. In mortar samples with lower void contents, the Mason–McSkimin
relation appeared, indicating a transition to the Datta–Kinra relation when more voids were present.

The assembled attenuation data in this study could be useful in various engineering fields.
However, it is hoped that new findings and correlations uncovered above stimulate more research
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to elucidate underlying mechanisms. This will require both theoretical and experimental efforts.
For example, two of the contradictory effects of cold working still require convincing explanations.

6. Conclusions

Using contact ultrasonic measurement methods, it is possible to determine the attenuation
characteristics of solid materials. The present methods only require commonly available UT instruments.
Results from over 300 tests revealed various attenuation behaviors that were previously hidden because
of the difficulty of obtaining reliable attenuation data. While plausible interpretation of some findings
was possible by invoking a new dislocation damping mechanism, as well as Datta–Kinra and Biwa
scattering, this study has demonstrated the need for further studies to correlate ultrasonic attenuation
to nm-scale atomic motion.
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