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Abstract: This manuscript introduces a computational approach to micro-damage problems
using deep learning for the prediction of loading deflection curves. The location of applied
forces, dimensions of the specimen and material parameters are used as inputs of the process.
The micro-damage is modelled with a gradient-enhanced damage model which ensures the
well-posedness of the boundary value and yields mesh-independent results in computational methods
such as FEM. We employ the Adam optimizer and Rectified linear unit activation function for training
processes and research into the deep neural network architecture. The performance of our approach
is demonstrated through some numerical examples including the three-point bending specimen,
shear bending on L-shaped specimen and different failure mechanisms.

Keywords: deep neural network; deep learning; gradient enhanced damage; stress-level dependent
damage model

1. Introduction

Neural networks (NN) have been used for numerous applications in different areas including
computational mechanics. Initially, single-layer or shallow neural networks (SNN) consisted only
of one input and one output layer. Later on, additional hidden layers were added to the network
architecture resulting in so-called deep neural networks (DNN). Table 1 gives a brief summary of
different network architectures. Neural networks or more specifically deep neural networks suffer
from three major difficulties, i.e., (a) vanishing gradients, (b) over-fitting and (c) computational loading.
However, significant advances such as deep belief networks (DBN) [1], rectified linear unit (ReLU)
activation functions [2], drop-out algorithms [3] or back-propagation algorithms and associated tools
have contributed to the popularity of DNN. The vanishing gradient problem for instance has been
significantly alleviated thanks to the RELU activation function and cross entropy-driven learning
techniques. Nonetheless, certain issues such as over-fitting still remains a challenge in deep neural
networks. Common techniques to address such problems include regularization techniques.

We recall that the crucial idea behind Artificial Neural Network (ANN) is that many neurons can
be joined together by connecting weights to conduct complex computations. The structure is often
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demonstrated as a graph or a map whose nodes are the neurons and each (directed) edge in the graph
connects the output to the input of the associated neurons. Deep learning methods, representative of
learning methods with multiple processing layers in the hidden layers, consist of linear and non-linear
transformations [4,5]. Some simplifications of the problems stem from their need for a usually very
strong CPU and a noticeably long time to detect and analyse slow convergence behaviour. For complex
problems, the solution could be non-existent. A newer method or a faster algorithm has yet to be
found in recent decades.

Table 1. The branches of the neural network depending on the layer architecture.

Single-Layer Neural Networks Input Layer-Output Layer

Shallow Input Layer-Hidden Layer
Multilayer-Layer Neural Networks -Output Layer

Neural Networks Deep Input Layer-Hidden Layers
Neural Networks -Output Layers

While machine learning (ML) approaches have been extensively and successfully used in
numerous areas, its application in “modeling and simulation” is still in its infancy. For instance,
in medicine, ML has been employed in diagnostics where it outperforms the diagnosis of established
physicians [6]. The authors of [7] have applied successfully deep learning to cellular imaging.
Park et al. [8] focused on the problems of cellular imaging in regulatory genomics. Goh et al. [9]
took advantage of deep learning in computational chemistry. Deep learning techniques were also
applied in applications such as bio-informatics, or the public health sector [10]. On the other hand,
most approaches in engineering, or more specifically computational mechanics, have been used in
data-driven contexts though there are numerous other applications such as the direct solution of partial
differential equations [11], which have the potential to drastically accelerate the design to analysis
time and the way modeling and simulation is performed. In the data-driven context, neural networks
have commonly been used in the context of constitutive models [12,13] as an alternative to traditional
constitutive models. The models in [14–16] presented interesting approaches to capture the response
of anisotropic materials. New training algorithms for specific constitutive laws have been presented
in [17,18]. However, setting up the network architecture for such engineering problems still remains
a major challenge and is often determined by trial and error. The authors of [19] exploited Deep
Learning to optimize the fine-scale structure of composites. Multi-fields problems were tackled for
instance in [20,21]. Recently, Lee et al. [22] has applied deep learning algorithms to structural analysis.
In this manuscript, we present a novel methodology to predict the load-deflection curve by deep
learning. Passing through the three-point bending as an illustrative example, we suggest some possible
architectures of the deep neural networks based on the Adam optimizer. Such findings can open a new
branch of research that may prove beneficial to the fourth industrial revolution, where deep learning
algorithms play a major role in big data analysis of structural engineering.

2. Continuum Damage Theory

2.1. Constitutive Equations of Isotropic Damage Models

Let us assume small strain theory in the context of a scalar/isotropic damage model. The relation
between the Cauchy stress tensor σ and the linear strain tensor ε is given by

σ = (1−ω)C ∶ ε = Ce f f ∶ ε (1)

where ω denotes a monotonically increasing scalar damage variable, C the fourth-order elasticity
tensor and Ce f f = (1−ω)C refers to the so-called ’effective’ elasticity tensor. A value of ω = 1 indicate
a completely damaged material while the material is intact for a value o ω = 0. The evolution of the
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damage variable is commonly governed by a scalar state variable κ, i.e., ω = ω(κ). The Kuhn–Tucker
conditions, which finally lead to a convex optimization problem, ensures that the product of the
loading function f and the rate of the state variable is equal to zero:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f ≤ 0
κ̇ ≥ 0
f κ̇ = 0

(2)

εeq indicating the effective strain, which is a projection of a multi-axial strain state onto a single scalar
value. We consider a strain-based formulation, where the loading function is expressed in terms of the
effective strain (instead of effective stresses), which facilitates the implementation in the context of
displacement based finite element analysis:

f = f (εeq, κ) = εeq − κ = 0 (3)

We test two different approaches to compute εeq. The first one has been presented by Mazars [23] for
quasi-brittle materials and is given by

εeq = √⟨ε⟩ ∶ ⟨ε⟩ = √⟨ε1⟩2 + ⟨ε2⟩2 (4)

where ⟨⋅⟩ indicates a Macaulay bracket while ε1 and ε2—for two-dimensional problems—denote the
principal strains. For this approach, we employ an exponential evolution law for the damage variable
as suggested by Peerlings et al. [24]:

ω(κ) = 1− κ0

κ
[1− α + αe−β(κ−κ0)] (5)

where κ0 stands for an initial damage threshold while the material parameters α and β needs to be
determined through experiments. We also employ an expression for the equivalent strain as suggested
by de Vree et al. [25] and Peerlings et al. [26]:

εeq = k − 1
2k(1− ν) I1 + 1

2k

¿ÁÁÀ (k − 1)2

(1− 2ν)2 I2
1 + 12k(1+ ν)2 J2 (6)

where I1 indicates the first invariant of the linear strain tensor and J2 refers to the second invariant of
the deviatoric part of the strain tensor.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1 = ε11 + ε22 + ε33

J2 = 1
2

εijεij − 1
6

I2
1

(7)

The parameter k in Equation (6) determines the ratio of the compressive and tensile strength.

2.2. Gradient-Enhanced Damage Models

It is well known that local damage models lead to ill-posed boundary value problems and
associated numerical difficulties such as mesh-dependent results in computational modeling. Non-local
damage models as proposed [26–30] restore the well-posedness of the boundary value problem by
introducing an intrinsic length scale which smear the crack over a certain width. In such models,
the loading function is therefore expressed in terms of non-local equivalent strain εeq(x) which in
turn depend on the local effective strain and a weighting function g (ξ) governing the domain of
non-locality:

εeq(x) = 1
V ∫

V

g (ξ) εeq (x + ξ) dV (8)



Appl. Sci. 2020, 10, 2556 4 of 17

An alternative to such strongly nonlocal models are weakly nonlocal approaches [26,28,31] which
are based on Taylor series expansions to approximate the effective strain. Substituting these into the
Equation (8) yields a different expression for the non-local equivalent strain. However, it is well known
that such formulations require C1—continuity for second-order gradient models (C2—continuity for
fourth-order gradient enhancements), which complicates their implementation in Lagrange polynomial
based finite element analysis. Implicit formulations overcome these difficulties. Differentiating twice
and neglecting higher-order gradient terms of the local equivalent strain, the implicit second-order
gradient model reads:

εeq = εeq − 1
2

l2
c∇2εeq(x) (9)

where the parameter lc indicates the intrinsic length scale, which can be regarded either as purely
numerical regularization parameter or material parameter which needs to be determined through
experiments or other theoretical considerations. For concrete materials, Bažant et al. related lc to the
maximum aggregate size [32]. Furthermore, the following von Neumann boundary conditions need to
be satisfied [28,33]: ∇εeq ⋅ n = 0 (10)

It can be shown that the gradient enhanced damage model, Equation (9), can be expressed in terms of
the principal directions and an anisotropic weight function:

εeq(x1, x2) = εeq(x1, x2)− c1
∂2εeq(x1, x2)

∂x1
2 − c2

∂2εeq(x1, x2)
∂x22 (11)

where c1, c2 are the weighting factors. More details about the derivation of above described
gradient-enhanced damage model and its implementation can be found for instance in [26].

3. Training Data

3.1. Optimizers

In machine learning (ML) approaches, the weights and biases of the network (see Figure 1)
are obtained through minimizing an objective function. Commonly, gradient descent methods are
employed in ML. The update of the gradient descent has the form xk+1 = xk − η∇x f (xk), η being the
step size, which is also referred to as learning rate. Gradient descent methods are based on so-called
batches employed to calculate the gradient in a single iteration. Commonly, the batch is the entire data
set. In addition, a batch can be enormous. A very large batch may cause even a single iteration to take
a very long time in computation. By choosing examples from a data set at random, it could estimate
(albeit noisily) a big average from a much smaller one. Stochastic gradient descent (SGD) takes this idea
to the extreme—it uses solely one example (a batch size of 1) per iteration. Every one computation for
all data points, it is called one epoch. The term “stochastic” implies that the one example comprising
each batch is chosen arbitrarily. The mini-batch stochastic gradient descent method (mini-batch SGD)
is a compromise between the full-batch iteration and SGD. A mini-batch is usually between 10 and
1000 examples, chosen at random. Mini-batch SGD reduces the amount of noise in SGD but is still
more efficient than full-batch. It is well known that the steepest gradient descent faces difficulties in
areas where surface curves exhibit different gradients in different dimensions, which frequently occurs
around local optima. To reduce the risk of getting stuck in local optima, we take advantage of the
Momentum Method, which shows analogies to the equations governing the movement of particles in a
viscous medium:

xk+1 = xk − vk
vk = γvk−1 + η∇x f (xk) (12)

where the parameter γ ≈ 0.9 governs the updating of the iterations within the stochastic gradient
descent method (SGDM). This approach is commonly employed with the back propagation algorithm,
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which will be explained later. However, the momentum method is based on the situation where a ball
rolling downhill blindly follows the slope. A smarter ball would slow down before the slope goes
up again, which is the essence of the Nesterov Accelerated Gradient (NAG) approach [34]. Therefore,
the changing of momentum is computed, which is simply the sum of the momentum vector and the
gradient vector at the current step. The changing of the Nesterov momentum is then the sum of the
momentum vector and the gradient vector at the approximation of the next step:

xk+1 = xk − vk
vk = γvk−1 + η∇x f (xk − γvk−1) (13)

Gradients of complex functions as used in DNN tend to either vanish or explode. These
vanishing/exploding problems become more pronounced with increasing complexity of the function.
These issues can be alleviated by an adapted learning rate method, named RMSProp, which was
suggested by Geoff Hinton in Lecture 6e of his Coursera Class. The idea is based on a moving average
of the squared gradients, which normalizes the gradient. This approach proves effective to balance
the step size by decreasing the step for large gradient to avoid explosion while increasing the step for
small gradients, which evenutally alleviates the vanishment problem:

rk = (1− β) ⋅ [∇x f (xk)]2 + βrk−1

vk+1 = η√
rk
∇x f (xk)

xk+1 = xk − vk+1

(14)

where the so-called squared gradient decay factor β ranges from 0 to 1; we employ the suggested value of
β ≈ 0.9. Another method, that calculates learning rates adaptively for each parameter is the Adaptive
Moment Estimation (Adam) [35]. Adam keeps an exponentially decaying average of past gradients
vk as well. However, in contrast to the momentum method, Adam can be seen as a heavy ball with
friction, that prefers flat minima in the error surface. The past decaying averages and squared gradients
vk and rk can be obtained by

vk = β1vk−1 + (1− β1)∇x f (xk)
rk = β2rk−1 + (1− β2) ⋅ [∇x f (xk)]2 (15)

vk and rk being estimates of the first and second moment, which are the mean and the uncentered
variance of the gradients, respectively. To avoid the bias towards zero vectors for the initialized
vectors vk and rk, we employ corrected first and second moment estimates as suggested by the authors
of Adam:

vk = vk

1− βt
1

rk = rk

1− βt
2

(16)

Subsequently, we use the Adam update rule given by

xk+1 = xk − η√
rk + ε

vk (17)
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Figure 1. Activation function role in deep neural network

3.3. Back-propagation algorithm

Though the back-propagation algorithm can be traced back to the 1970s, its popularity grew with
the seminal paper of Rumelhart et al. [36]. It has become the ’backbone’ of many efficient machine
learning tools such as Pytorch or Tensorflow. The back-propagation algorithm basically minimizes
the error function in weight space by the method of gradient descent. Mathematically, the input and
output are in matrix form (X, Y) where X ∈ Rd×n and Y ∈ Rk×n, d designate the number of input
parameters, k is number of output parameters and n is number of training data. After calculating
the output from the input of a mini-batch X, the activation yl at each hidden layer are saved where
l = 1,⋯, m is the order of hidden layers. At the output layer, the derivative of the loss function with

Figure 1. Activation function role in deep neural network.

3.2. Activation Functions

Let us consider a three-point bending beam as illustrated in Figure 2. We assume plane stress
conditions and a beam thickness of h = 0.05 m. The material parameters are: Young’s modulus E = 20
(GPa), Poisson’s ratio ν = 0.2, softening parameters α = 0.99, β = 500, κ0 = 10−4. We employ the
formulation for the equivalent strain as in Equation (4). The input of the process are locations l f where

the force f is applied which will be created by 120 different positions from
L
2
−∆p to

L
2
+∆p where

L = 2 (m) denotes the length of the specimen and 2∆p indicates the span of the various forces. For each
input, the vector of output is formed by [u1,⋯, u31, f1,⋯, f31]T which (ui, fi) ∀i = 1,⋯, 31 are points
of loading deflection curve. Therefore, the matrix of output is a 62× 120 matrix. The model of deep
learning aims to minimize the loss between data and simulation values. The objective function is a
loss function that comes from an approximate function f called activation function and the training data
from simulation g:

loss(l f ) = ∥g(l f )− f (l f )∥ (18)

where g ∶ R Ð→ R62 which is defined by g(l f ) = [ u
f

] = [u1,⋯, u31, f1,⋯, f31]T based on the

gradient-enhanced damage models. The roles of activation functions are are illustrated in Figure 1 and
the list of different types of mostly used activation functions is shown in Table 2.
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Figure 2. The various forces with respect to the location in three-point bending specimen.

Table 2. Activation functions.

Name Equation Derivative

Identity (−∞,+∞) f (z) = z f ′(z) = 1

Logistic (0, 1) f (z) =
1

1+ e−z f ′(z) = f (z) [1− f (z)]

SoftPlus (0,+∞) f (z) = ln(1+ ez
) f ′(z) =

1
1+ e−z

TanH (−1, 1) f (z) = Tanh(z) f ′(z) = 1− f (z)2

Rectified Linear Unit (ReLU) (0,+∞) f (z) = {
0, z < 0
z, z ≥ 0 f ′(z) = {

0, z < 0
1, z ≥ 0

3.3. Back-Propagation Algorithm

Though the back-propagation algorithm can be traced back to the 1970s, its popularity grew with
the seminal paper of Rumelhart et al. [36]. It has become the ’backbone’ of many efficient machine
learning tools such as Pytorch or Tensorflow. The back-propagation algorithm basically minimizes
the error function in weight space by the method of gradient descent. Mathematically, the input and
output are in matrix form (X, Y) where X ∈ Rd×n and Y ∈ Rk×n, d designate the number of input
parameters, k is number of output parameters and n is number of training data. After calculating
the output from the input of a mini-batch X, the activation yl at each hidden layer are saved where
l = 1,⋯, m is the order of hidden layers. At the output layer, the derivative of the loss function with

respect to z are calculated em = ∂J
∂zm where J = 1

n
∑n

i=1 ∥yi − yi∥2
2. Hence, the gradient can be computed

∂J
∂wm = ym−1em. For l = m − 1,⋯, 1, the derivatives el = (wl+1el+1)⊗ f ′(zl) are determined where

the operator ⊗ means element wise product. Finally, the gradient is updated by
∂J

∂wl = ylel which

apparently requires the continuity and differentiability of the error function. Applicatively in the
three-point bending specimen, the training data will be collected by the gradient-enhanced damage
models and the training process based on the (1− 100− 100− 100− 62) architecture in Figure 3. Because

of the symmetric of the specimen, the loading deflection curve are quite similar in the left from
L
2
−∆p

to
L
2

and in the right from
L
2

to
L
2
+∆p with regards to the middle point. Hence, it is a good idea to

divide the data into two parts, the left part and the right part with respect to the middle point. Thus,
the training is separated into two processes with 61 data for each case.
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l f

Figure 3. Deep neural network architecture for various location forces problem.

3.4. Scaled Layer

For the material problem which will be discussed in Section 5, the input data were built by
different parameters. Due to the wide range of these, some data can be as large as Young’s modulus or
softening parameter β whereas other ones can be as small as the critical value of equivalent strain. This
presents some limitations to the sensitive input and the training. To overcome these issues, a scaled
layer based on a convex combination is introduced to reduce the overload input data and increase the
tiny ones. Let s be a bijection from the range [min, max] of a parameter to the interval [0, 1] which

is defined by s(x) = x −min
l

where min, max are the boundaries and l is the length of the parameter

region. The role of the layer was applicable to both training and predicting process. The scale layer
can be added at the input layer, the output layer or both of them.

4. Results and Testing

Consider back to the location force problem which was trained by Adam optimizer where Rectified
Linear Unit (ReLU) activation function with back propagation algorithm was employed. The learning
rate of the left data is ηl = 3× 10−3 and of the right data is ηr = 4× 10−3. For every period of a number of
epochs (which is called the learning rate drop period), the learning rate is dropped base on a factor called
the learning rate drop factor to let the jump steps are smaller after the period of iteration. This technique
assists the convergent optimization. In this computation, the learning rate drop period is 100 epochs
and the learning rate drop factor is 95%. The squared gradient decay factor is 0.99. The gradient
decay factor is 0.95. The size of the mini-batch is 100 and the total of epochs is 10, 000. The training
process for both left and right data are illustrated in Figure 4. The neural network architecture for this
problem is (1− 100− 100− 100− 62). Ten data were chosen randomly for testing. The loss values is
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computed by root mean square error (RMSE) and by mini-batch loss (Loss) for comparison in Table 3.
The testing of loading deflection curves by deep learning after training and by data for both left and
right is illustrated in Figure 5.
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Figure 4. The training process for location-force data in three-point bending specimen.

Table 3. Loss values for both left and right data in the location-force problem.

Data RMSE Mini-Batch Loss

Left 9.03 40.8

Right 5.03 12.7
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(b) For the right data

Figure 5. The testing of loading deflection curves for location-force problem.

5. Numerical Examples

5.1. Dimensional Problem

We reconsider the three-point bending specimen that was subjected to an external force f whose
various geometry and boundary condition of the specimen are shown in Figure 6. The thickness
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h of the beam is 0.05 m and plane stress conditions are assumed. The input of the process are
dimensional vectors [H, L] where H ∈ [0.1, 0.4] is the height and L ∈ [1.0, 2.3636] is the length of the
specimen. The data will be created by 156 different dimensional vectors where the heights H are
linearly generated 12 times while the lengths L are created 13 times. The number of training data is 150
and six data for testing. In this example, to avoid the sensitivity of the data where the displacements
u ∈ [0.1, 0.8] and the forces can exceed 2500, the training process will be separated into two parts. One
for displacement and one for forces whose architectures are illustrated in Figure 7. For each input,
the vector of output is represented by [u1,⋯, u31]T for displacements and [ f1,⋯, f31]T for forces which(ui, fi) ∀i = 1,⋯, 31 are points of loading deflection curve. Therefore, the matrix of output is a 31× 150
matrix. The training data will be collected by the gradient-enhanced damage models and the training
process based on (2− 100−⋯− 100´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7

−31) architecture.

f

f

f

0.1 m

0.4 m

1.0 m

2.3636 m

Figure 6. The various dimension for three-point bending specimen.
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Figure 7. Deep neural network architecture for dimensional problem of the three-point bending specimen.

The problem was trained by Adam optimizer by the employment of Rectified Linear Unit (ReLU)
activation function with back propagation algorithm. The learning rate of the displacement data is
ηu = 10−3 and of the force data is η f = 2 ⋅ 10−3. The learning rate drop period is 100 epochs. The learning
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rate drop factor is 99% for displacement training process and is 99.9% for force training process.
The squared gradient decay factor is 0.99. The gradient decay factor is 0.95. The size of mini-batch
is 100 and the total of epochs is 50, 000 for force - training and is 5000 for displacement-training.
The training processes are illustrated in Figure 8. Six data were chosen randomly for testing. The loss
values are computed by root mean square error (RMSE) and by mini-batch loss (Loss) for comparison in
Table 4. The testing of loading deflection curves by deep learning after train and by data are illustrated
in Figure 9.
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Figure 8. The training process for dimensional problem in the three-point bending specimen.
(a) Mini-batch loss for dimensional training process; (b) RMSE for dimensional training process.

Table 4. Loss values for both displacement and forces training in dimensional problem.

Data RMSE Mini-Batch Loss

Displacements 0.0106 5.6221× 10−5

Forces 44.6711 997.7515
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Figure 9. The testing of loading deflection curves for dimensional problem.
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5.2. Material Parameter Problem

The three-point bending specimen is subjected to an external force f whose geometry and
boundary condition of the specimen are shown in Figure 2. In this problem, the force is placed at
the middle of the specimen. The thickness h of the beam is 0.05 m and plane stress conditions are
assumed. The input of the process is material parameter vector [E, ν, κ, le, α, β] where E is the Young’s
modulus, ν is the Poisson’s ratio, κ is the critical value of equivalent strain, le is the characteristic
length and α, β are softening parameters. The data is created by 4096 different parameter vectors
where the parameters are taken in intervals based on the experienced average values in Table 5. In this
example, to avoid the sensitivity of the data where the displacements u ∈ [0.1, 0.8] and the forces can
exceed 1400, and the training process is separated into two parts. One for displacements and one
for forces whose architectures are similarly and illustrated in Figure 10. For each input, the vector of
output is represented by [u1,⋯, u31]T for displacements, [ f1,⋯, f31]T for forces, and (ui, fi) ∀i = 1,⋯, 31
for points of the loading deflection curve. Therefore, the matrix of output is a 31× 4096 matrix. The
training data are collected by the gradient-enhanced damage models where the training process based
on (2− 100−⋯− 100´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4

−31) architecture for both displacement and force - training.

Table 5. The experienced average value and the range of material parameters.

Parameters Average Range

E 30× 109
[25× 109, 35× 109

]

ν 0.2 [0.17, 0.23]

κ 1.1× 10−4
[8× 10−5, 1.4× 10−4

]

le 10−2
[0.005, 0.015]

α 0.99 [0.96, 0.99999]

β 1800 [1600, 2000]
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Figure 10. Deep neural network architecture for material parameter problem of the three-point
bending specimen.
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The problem was trained by Adam optimizer by the employment of Rectified Linear Unit (ReLU)
activation function with back propagation algorithm. The learning rate of the displacement data is
ηu = 10−4 and of the force data is η f = 3×10−4. The learning rate drop period is 100 epochs. The learning
rate drop factor is 99%. The squared gradient decay factor is 0.99. The gradient decay factor is 0.95.
The size of the mini-batch is 100 and the total of epochs is 5000. The training processes are illustrated
in Figure 11. Six data were chosen randomly for testing. The loss values will be computed by root
mean square error (RMSE) and by mini-batch loss (Loss) for comparison in Table 6. The testing of
loading deflection curves by deep learning after training and by data are illustrated in Figure 12.
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Figure 11. The training process for material problem in the three-point bending specimen.
(a) Mini-batch loss for material training process; (b) RMSE for material training process.

Table 6. Loss values for both displacement and forces training in material problem

Data RMSE Mini-Batch Loss

Displacements 7.386× 10−3 2.728× 10−5

Forces 54.996 1.512× 103
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Figure 12. The testing of loading deflection curves for material problem.

5.3. L-Shape Specimen

The last example is an L-shaped specimen subjected to a distributed load as shown in Figure 13,
which is also a classical benchmark problem used for instance to demonstrate the performance of
Isogeometric Analysis (IGA) [37]. The thickness of the specimen is 20 cm and plane stress conditions
are assumed. The material parameters are: Young’s modulus E = 10 (GPa) and Poisson’s ratio ν = 0.2.
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The effective strain in Equation (6) and the damage law in Equation (5) are used with parameters
κ0 = 4 × 10−4, α = 0.98 and β = 80. The non-local length scale is taken as lc = 5

√
2 ≈ 7.07 (mm). The

input of the training process are locations l f on which the force f is applied. These locations are created
by 123 different positions from 0 to ∆p where ∆p is the span of the various forces. In this example,
to avoid the sensitivity of the data where the displacements u ∈ [0, 3] and the forces can be more
than 15000, the training process will be separated into two parts. One for displacements and one for
forces whose architectures are illustrated in Figure 14. For each input, the vector of output is formed by[u1,⋯, u36]T for displacements and [ f1,⋯, f36]T for forces which (ui, fi) ∀i = 1,⋯, 36 are points of loading
deflection curve. Therefore, the matrix of output is a 36× 5000 matrix. The training data are collected
by the gradient-enhanced damage models where the training process based on (2− 100−⋯− 100´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4

−36)
architecture for displacement-training and (2− 100−⋯− 100´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4

−36) architecture for force-training.
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Figure 13. The various forces with respect to the location in L-shape specimen.
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Figure 14. Deep neural network architecture for force locations problem of the L-shape specimen.
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The problem was trained by Adam optimizer by the employment of Rectified Linear Unit (ReLU)
activation function with back propagation algorithm. The learning rate of the displacement data is
ηu = 10−4 and of the force data is η f = 2 × 10−3. The learning rate drop period is 100 epochs. The
learning rate drop factor is 99%. The squared gradient decay factor is 0.99. The gradient decay factor is
0.95. The size of mini-batch is 100 and the total of epochs is 5000. The training processes are illustrated
in Figure 15. Five randomly data were chosen for testing. The loss values are computed by root mean
square error (RMSE) and by mini-batch loss (Loss) for comparison in Table 7. The testing of loading
deflection curves by deep learning after training and by data are illustrated in Figure 16.
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Figure 15. The training process for shear force problem in the L-hape specimen. (a) Mini-batch loss for
L-shape shear force training process; (b) RMSE for L-hape shear force training process.

Table 7. Loss values for both displacement and forces training in L-shape problem.

Data RMSE Mini-Batch Loss

Displacements 0.36 6.4× 10−2

Forces 479.18 114809.0
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Figure 16. The testing of loading deflection curves for L-hape problem.
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6. Conclusions

This paper introduced a deep learning technique in the context of artificial neural networks
for predicting loading deflection curves of structures under gradient-enhanced damage responses.
The neural network has been trained based on finite element simulations. We conducted our
approach in the form of numerical experiments, using various shapes of specimen as well as inputs.
The predictions based on material changes are much more challenging and the number of input
parameters will trigger big data in the training phase. The Adam optimizer and Rectified Linear Unit
activation function produced the best result for training. The major contribution of this study is to
integrate deep learning into computational mechanics. The key feature is how to choose training
parameters and deep neural network architecture. Our research is potentially competent for application
to a wide range of complex practical engineering problems. In the next step, we intend to develop and
apply sufficient transfer learning algorithms, which is important for computational efficiency.
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