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Abstract: For investigating driver characteristic as well as control authority allocation during the
process of human–vehicle shared control (HVSC) for an autonomous vehicle (AV), a HVSC dynamic
mode with a driver’s neuromuscular (NMS) state parameters was proposed in this paper. It takes into
account the driver’s NMS characteristics such as stretch reflection and reflex stiffness. By designing
a model predictive control (MPC) controller, the vehicle’s state feedback and driver’s state are
incorporated to construct the HVSC dynamic model. For the validation of the model, a field
experiment was conducted. The vehicle state signals are collected by V-BOX, and the driver’s state
signals are obtained with the electromyography instrument. Subsequently, the hierarchical least
square (HLS) parameter identification algorithm was implemented to identify the parameters of the
model based on the experimental results. Moreover, the Unscented Kalman Filter (UKF) was utilized
to estimate the important NMS parameters which cannot be measured directly. The experimental
results showed that the model we proposed has excellent accuracy in characterizing the vehicle’s
dynamic state and estimating the driver’s NMS parameter. This paper will serve as a theoretical basis
for the new control strategy allocation between human and vehicle for L3 class AVs.

Keywords: human–vehicle shared control; autonomous vehicle; NMS; electromyography;
parameter identification; UKF observer

1. Introduction

Significant progress has been conducted in the field of perception, decision making, path planning
and control authority for autonomous vehicles (AVs) in the past few decades. However, it is still far
away from widespread market penetration because of its unmatured technology. As a promising
technique aimed at improving the safety of AV, the concept of “human–vehicle shared control” (HVSC)
has achieved a great deal of research effort in recent years [1]. For HVSC, the automation and driver take
control authority of the vehicle sequentially after each other, or co-pilot the vehicle simultaneously [2].

The dynamic model is of great significance for the understanding of the intrinsic and developing
control authority of HVSC. In this way, many existing scholarly works have demonstrated the
contributions associated with the dynamic model in the HVSC domain. For example, the biomechanical
properties of the driver for a vehicle steering task is considered a novel technique of estimating the
admittance and total response [3]. By investigating the influence of haptic aids on the pilot’s NMS
response, an online estimator of the time-varying NMS dynamic method based on Recursive Least
Squares is proposed [4,5]. On the basis of the electric power-assisted steering system, Marouf A
et al. [6] proposed a time-varying method based on a sliding mode observer and the exponentially

Appl. Sci. 2020, 10, 2626; doi:10.3390/app10072626 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10072626
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/7/2626?type=check_update&version=2


Appl. Sci. 2020, 10, 2626 2 of 20

weighted recursive least squares (EWRLS) algorithm for the estimation of the viscoelastic properties in
the driver’s arm. The characterization of driver NMS dynamics, implemented to analyze the influence
of active and passive steering tasks and hand positions, is also highly sought after [7]. Subsequently,
in order to further reflect the relationship between driver and vehicle, the novel Queuing Network is
integrated into the driver’s NMS dynamic [8]. Similarly, by reducing the internal cost function of the
driver, a human–vehicle steering control strategy with the driver’s NMS dynamic is proposed [9]. In this
way, an intra-driver variability human-like steering model inspired the research boom [10]. Soon after,
Yanbo Z et al. [11] proposed a shared steering controller by imitating the driver’s characteristics of
the NMS system. Furthermore, other physiological characteristics including the driver’s vision and
blood volume pulse, which are regarded as vital indexes, are utilized to demonstrate the mechanism of
driving behavior and construct the human–vehicle shared control model [12,13].

When the driver executes the operation of following the leading car, the driver’s leg model plays
a vital role in HVSC. In regard to this field, the pedal drive unit is applied to the human–machine
interface analysis experiment by investigating the physiological characteristics of the driver’s leg [14].
It is noteworthy that the mechanism of the individual muscle-tendon biomechanics metabolism
also is parsed, and then a Hill-based human leg model with a muscle and joint is proposed [15].
In further research, a put-forward two-dimensional leg model with a knee, along with ankle passive
and quasi-passive elements is optimized [16]. By investigating the influence of muscle force during
flexion–extension movement, a Hill-based electromyography (EMG)-driven model of the elbow is
proposed [17].

In light of our literature review, there are only a few studies involved in the following aspects.
The current driver dynamic models with NMS characteristic are only represented by a single steering
arm. The leg NMS dynamic of the driver was not taken into account thoroughly. Particularly in
the condition of a roundabout or overtaking, the driver executes the sequential steering–following
operation. Therefore, the relative influence between arm and leg NMS characteristic should not be
neglected for practical application of the dynamic model. For L3 autonomous vehicle (AV), the driver is
required to take over the control authority of the vehicle when the automation system fails to deal with
the emergency situation. Most of time, the driver will be disengaged from the human–vehicle–road
closed loop. Therefore, frequently, discrete interactions between the driver and vehicle will cause the
degradation of the human’s cognitive ability and driving skills. Consequently, it will affect the driver’s
NMS dynamic properties, such as viscoelastic resistance coefficient and movement feedback coefficient.
Moreover, the driver’s NMS model was not analyzed by employing the EMG signals of the driver
for validation.

In this paper, a HVSC dynamic model incorporating the arm and leg NMS characteristics of the
driver is proposed. The EMG signals are collected and then muscle force is decomposed based on the
Hill muscle contraction theory. The hierarchical least square method is applied to identify the off-line
parameters of the dynamic model. Thereafter, the Unscented Kalman Filter (UKF) observer is designed
to estimate the NMS characteristic parameters. The structure of the article is organized as follows:
Section 2 illustrates the schematic of HVSC model. Section 3 describes the scenario and the procedure
of the field experiment. The offline identification of the model’s parameter and online estimation by
means of UKF observer are demonstrated in Section 4. The proposed dynamic model is validated
using experimental results in Section 5. A brief summary and discussion are present in the last section.

2. Materials and Methods

By designing a model predictive control (MPC) controller with vehicle’s state feedback, a HVSC
dynamic model is constructed in this paper. Specifically, the function of the MPC controller is to keep
tracking the trajectory to generate the anticipated steering wheel angle δ̂sw and gas pedal position θ̂ped.
After receiving the anticipated angle δ̂sw, the driver’s NMS model produces the actual steering angle
δsw and gas pedal position θped( f ) signal feedback to controller backward. The NMS dynamic model of
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the driver is composed of 11 components. The schematic of the HVSC dynamic model is illustrated
as Figure 1.
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Figure 1. Human–vehicle shared control (HVSC) dynamics model. 
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Figure 1. Human–vehicle shared control (HVSC) dynamics model.

2.1. Subsection

The dynamic response of the driver’s arms applied at the steering wheel can be represented by
a parallel spring and damper, as shown in Table 1. The passive damping and stiffness of the arms
represent the properties of the muscles, skin and tendons in relaxation, which can be simplified as
arm inertia Jdr, arm damping Bdr and arm stiffness Kdr systems [18]. The steering system, including
the steering wheel, column, rack and pinion, uprights and wheels and tires can also be represented
as simple inertia Jst, damper Bst and spring Kst systems. In addition, the torque feedback term Ka is
inferred to the torque Mt obtained from the slip angle at the front axle [19].

The steering mechanism dynamics and steering arm dynamics are coupled at the point where
the driver grips the steering wheel. The equation of motion and corresponding transfer function is
obtained as follows:

(Jdr + Jst)
..
δsw + (Bdr + Bst)

.
δsw + (Kdr + Kst)δsw = Tm −

MT

nrsw
(1)

Gs(s) = 1/[(Jdr + Jst)s2 + (Bdr + Bst)s + (Kdr + Kst)] (2)

where Tm represents the total muscle torque applied at the steering wheel; nrsw and δsw indicate the
steering gear ratio and wheel steering angle respectively.
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Table 1. Parameters of driver neuromuscular (NMS) model.

Symbol Description Value

Jst Steering wheel inertia 0.1395 (kg m2)
Bst Steering wheel damper 1.56 (Nm s/rad)
Kst Steering wheel spring 2.29 (Nm/rad)
Ka Active stiffness −1920 (Nm/rad)
Jdr Arm inertia 0.172 (kg m2)
Bdr Arm damping 1.032 (Nm s/rad)
Kdr Arm spring 60.707 (Nm/rad)
Kr Arm reflection stiffness 3.423 (Nm s/rad)
Br Arm reflection damping 1.69 (Nm/rad)
τdel Inherent time delay 0.04 (s)
Kpos Stretch feedback gain 0.52 (Nm/rad)
Ktend Tendon stiffness 2799 (Nm/rad)

f0 Eigen-frequency 1.1 (Hz)
Iseg Motion of the inertia 105.5 (g/m2)
Kf GTO feedback gain 1.18 (Nm/rad)

Kvel Stretch velocity feedback gain 40.4 (Nm/rad)
Kint Co-contraction stiffness 334 (Nm/rad)
Bint Co-contraction damping 19.4 (Nm/rad)
Kcon Contact elasticity 1033 (Nm/rad)
Bcon Contact viscosity 11.2 (Nm /rad)

The spindle feedback muscle information is transferred to the alpha-motor neurons to maintain
muscle length. The reflex control of muscle length can cause a change in the intrinsic passive stiffness
and damping of the muscle. The value of the reflex gain varies depending on muscle activation [20].
The reflex control dynamic can be expressed as Equation (3):

Hr(s) = [ωc(sBr + Kr)e−sτdel ]/(s +ωc) (3)

where ωc refers to the cutoff frequency; Br indicates the reflection damping.
Noteworthily, the inherent time delay can be approximated as a first-order transfer function:

e−sτdel ≈ 1/(1 + τdels) (4)

The steering torque command is generated by a reference model, which is, essentially, a learned
inverse model of the arms, steering and vehicle. The following reference model dynamic is extremely
appropriate for real driver behavior [20].

Ĝ(s) =
0.067

0.028s2 + 0.083s + 1
(5)

2.2. Leg NMS Dynamic Model

The admittance Hadm can be parameterized by a linear NMS model which represents the dynamics
of the ankle–foot interaction with the gas pedal in Figure 1. The inputs of the NMS model are the
disturbing torque Tdis and the anticipated gas pedal position θ̂ped. The measurable model outputs are
Tc and θc [21]. The model structure is an extension of NMS models proposed in previous research [22].

The inertia component can be described by the endpoint inertia of the limb Iseg in the form of a
transfer function as follows:

Hseg(s) =
1

Isegs2 (6)

The muscle contact dynamic is described as:

Hc(s) = kcon + bcons (7)
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The intrinsic component is defined by the activated muscle stiffness kint and damping bint in the
form of transfer function:

Hint(s) = kint + bints (8)

The reflexive component can be deduced as follows:

Hact(s) =
1

( 1
ω2

0
)s2 +

2β
ω0

s + 1
(9)

The muscle golgi tendon organs (GTO) dynamic can be demonstrated as:

Hgot(s) = k f e−τdels (10)

The muscle spindle dynamic is expressed as:

Hms(s) = (Kpos + Kvels)e−s·τdel (11)

where the Kpos and Kvel represent the gains of the monosynaptic stretch and stretch velocity
feedback respectively.

As a serial elastic element to the muscles, tendons dynamic can be expressed as:

Htend(s) =
1
−ktend

(12)

where ktend represents the stiffness of the tendon.
Noteworthily, the motion of the inertia Iseg is the result of the sum of Tc(s) and Tmus(s).

The pedal–torque can be combined with the muscles, partially. Then, the motion of the limb is
deduced as:

θlimb(s) = Hseg(s)[Tc(s) + Tmus(s)] (13)

Pedal rotations do not only cause joint rotations but also small displacements of the skin or soft
tissue. This effect is described by contact dynamics as follows:

Tc(s) = Hc(s)[θc(s) − θlimb(s)] (14)

2.3. Vehicle Dynamic Model

During the process of HVSC, the lateral and yaw motion of the vehicle are critical issues.
A simplified linear two-degree-of-freedom (2DOF) lateral dynamic model is widely utilized to
investigate the characteristic of human–automation interaction [23]. The geometric relationship and
parameters of the vehicle dynamic model are listed in Figure 2 and Table 2:

The equations of the lateral and yaw moment are denoted as:
.
vy = −

(k1+k2)
mvx

vy − (vx −
(bcr−ac f )

mvx
)ωr +

k1
m δsw

.
ωr =

(bk2−ak1)
Izvx

vy −
(b2cr+a2c f )

Izvx
ωr +

ak1
Iz
δsw

(15)
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where vy represents lateral speed; ωr infers to yaw rate. The lateral offset ey is described as:

.
ey = vy + xlωr + vxψ (16)

where ψ represents the yaw angle.
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Figure 2. Vehicle dynamic model.

Table 2. Parameters of the vehicle dynamic model.

Symbol Description Value

Iz Yaw inertia 4192 (kg m2)
vx Longitudinal speed 2.29 (m/s)
k1 Cornering stiffness of the front tires 93360 (N/rad)
k2 Cornering stiffness of the rear tires 57340 (N/rad)
a Front axle length 1.18 (m)
b Rear axle length 1.58 (m)
m Body mass 1498 (kg)
xl Look-ahead distance 12 (m)

nrsw Steering gear ratio 18

2.4. MPC Controller

In order to incorporate the vehicle dynamics with road trajectory, a great deal of investigation
of trajectory tracking was conducted. Inspired by appropriate literature, the MPC controller is
implemented in this section for strong robustness and stability in trajectory tracking [24]. The main
steps of the MPC controller are given in Algorithm 1:
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Algorithm 1. MPC controller.

Input_U: {Vehicle state variable Vcur; Road trajectory}
Step1: Construct vehicle predictive model:

ξ(k|t) =
[

V(k
∣∣∣t)

u(k− 1
∣∣∣t)

]
{
ξ(k + 1

∣∣∣t) = Ak,tξ(k
∣∣∣t) + Bk,t∆U(k

∣∣∣t)
V(k

∣∣∣t) = Ck,tξ(k
∣∣∣t)

y(t) = Ψtξ(t
∣∣∣t) + Θt∆U(t)

Step2: Calculate cost function:

J(t) =
Np∑
i=1
‖V(t + i

∣∣∣t) −Vre f (t + i
∣∣∣t) ‖2Q

+
Nc−1∑
i=1
‖4u(t + i

∣∣∣t) ‖2R + ρε2

Step3: Set constraints:
∆Umin ≤ ∆Ut ≤ ∆Umax

Umin ≤ A∆Ut + Ut ≤ Umax

yhc,min ≤ yhc ≤ yhc,max
ysc,min − ε ≤ ysc ≤ ysc,max + ε

ε > 0
Output_y: {Anticipated steering wheel angle δ̂sw; Anticipated pedal position θ̂ped}

2.5. Model Integration

Considering that the vehicle dynamic model is constructed in the form of state-space equation,
the driver’s NMS dynamic expressed as transfer functions should be converted to the state equation.
From the aspect of theoretic analysis, the n-order transfer function can be decomposed into the product
of several one-order transfer functions. Then the system state variable diagram is formed in series by
one-order transfer functions [25]. In this way, the HVSC state equation form the block diagram can be
constructed as shown in Figure 3.

A total of 17 state variables are defined in Figure 3.The physical sense of δsw,
.
δsw, Taca, Tξc, Trc,

Tcca, θlimb, θ′limb, Tccl, Tint, Tacl, T′acl, Tgot and Tsp represents the steering wheel angle, steering wheel
angular rate, arm active contraction torque, reference contraction torque, contact contraction torque,
reflex contraction torque, leg motion, leg motion rate, leg contact contraction torque, leg intrinsic
contraction torque, leg active contraction torque, leg active reference torque, leg GTO feedback torque
and leg spindle feedback torque respectively. Noteworthily, the physical value of some state variables
cannot be obtained directly from the sensor. Therefore, a state observer based on UKF is proposed
to estimate these variables. The relationship between state variables and measurable variables was
elaborated on in the following content [26].

First, the muscle contraction force Fi is deduced based on Hill muscle theory as follows:

Fi = Fce + Fpe = Fmax[a(i) fa(ε) + fp(ε)]
= Fmax[a(i)e−[2.7272778×ln(ε+1)]2+0.03(e7ε

− 1)]
(17)

where Fce represents muscle contraction force; Fpe infers to the elastic force; Fmax indicates the muscle
maximum contraction force; a(i) is the muscle activation; fa(ε) and fp(ε) infer to the active and passive
contraction of the muscle; ε represents deformation degree of the muscle during contraction.
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Afterward, the weighted analysis method is used to calculate the arm active contraction torque Taca

and leg active contraction torque Tacl applied to the steering wheel and pedal respectively as follows:{
Taca = (F1n1 + F2n2 + · · ·+ Fini)/Ra; i = 6
Tacl = (F1n1 + F2n2 + · · ·+ Fini)/Rl; i = 4

(18)

where ni infers to the weight coefficient of muscle force; Ra and Rl represent the radius of the steering
wheel and pedal rotation.

For the arm dynamic model, the arm reflex contraction torque Trc can be deduced based on Taca

and assist torque Tas applied on the steering wheel, which can be express as Equation (19):

Trc = Taca − Tas (19)

The arm reference contraction torque Tξc and arm contact contraction torque Tcca can be described
as follows:

Tξc + Tcca + Ka(θsw − θ̂sw) = Tdr (20)

Tcca = Tsw − Tdis (21)

where Ka represents the active stiffness; Tdr infers to the steering wheel torque; Tsw infers to the torque
applied on the steering wheel; Tdr indicates the steering torque of vehicle; Tdis is the torque perturbation
from the sensor.
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As shown in Figure 3, the feedback torque T f eed can be calculated as steering angle feedback and
acquired steering angle, denoted as Equation (22)

T f eed = δswKe +
·

δswBe + Ga/nrsw (22)

where T f eed is the steering wheel torque feedback; Ke is the gain coefficient of steering angle; Be represents
the gain coefficient of steering speed; Ge represents the kingpin caster angle gain coefficient.

For the leg dynamic model, the leg contact contraction torque Tccl can be expressed by the pedal
torque Tped:

Tccl = Tped − Tdis (23)

The leg intrinsic contraction torque Tint reflects the internal characteristics of leg muscle, which can
be represented according to the relationship in Figure 3.

Tint = Tacl + Ktendθtend (24)

The GTO feedback torque Tgot the spindle feedback torque and Tsp can be deduced as follows:

θlimb = θ̂ped − Tgotτ− Tspτ (25)

where θ̂ped represent the anticipate gas pedal position.
As described above, the driver’s NMS model expressed as a stated equation can be combined

with the vehicle dynamic model expressed in Equation (15). In this way, the final HVSC dynamic
model can be demonstrated as an augmented matrix.

·

x(t) =
[

A1 0
0 A2

]
x(t) +

[
B1

B2

]
u(t)

y(t) =
[

C1 0
0 C2

]
x(t)

(26)

A1 =



0 1 0 0 0 0 0 0 0 0
a21 a22 a23 a24 0 0 0 0 0 a110

a31 0 a33 0 0 a36 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 a54 a55 0 0 0 0 0

a61 0 0 0 0 a66 0 0 0 0
a71 0 0 0 0 0 a77 a78 0 0
a81 0 0 0 0 0 a87 a88 0 0
0 0 0 0 0 0 1 a98 0 a910

0 0 0 0 0 0 0 1 0 0



(27)

A2 =



0 1 0 0 0 0 0 0
a1211 0 a1213 a1214 0 0 0 0
a1311 0 a1313 0 0 0 0 0
a1411 0 0 a1414 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 a1614 a1615 a1616 a1617 a1618

a1711 0 0 a1714 0 0 a1717 0
0 0 0 a1814 0 0 0 a1818


(28)

B1 =
[

0 n2 n3 0 n5 n6 0 0 0 0
]T

(29)

B2 =
[

0 0 0 0 0 n16 0 0
]T

(30)
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C1 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Ka 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



(31)

C2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 m43 m44 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −τ 0
1 0 0 0 0 0 0 −τ


(32)

D =
[

0 0 0 · · · · · · 0 0 0 0
]T

1∗16
(33)

where a21 = −(
Kdr−Kst+Ka−k fdKe+1

Jdr+Jst
); a22 = −(

Bdr+Bst−Bek fd
Jdr+Jst

); a23 = 1
Jdr+Jst

; a24 = 1
Jdr+Jst

; a210 = −
Gak fd

(Jdr+Jst)nrsw
;

a31 = −
WcBr

Ir
; a33 = 1/Ir; a36 = 1/Ir; a54 = −1/Jk; a55 = −Bk/Jk; a61 = −(WcKr −Wc

2Br);

a66 = Wc; n2 = WcBr+Ka
Jdr+Jst

; n3 = WcBr
Ir

; n5 = Mk; n6 = WcKr −Wc
2Br; a71 = k1

m ; a77 = −
(k1+k2)

mvx
;

a78 = vx −
(bcr−ac f )

mvx
; a81 = aK1

Iz
; a87 =

(bk2−ak1)
Izvx

; a88 = −
(b2cr+a2c f )

Izvx
; a98 = xl; a910 = vx; a1211 =

Iped−Ktend
Iseg

;

a1213 =
Iped

Isegbcon
; a1214 =

Ktend
Isegbint

; a1311 = Iped; a1313 =
Iped−Kcon

bcon
; a1411 = Ktend; a1414 = −

Kint+Ktend
bint

;

a1614 = −
a1ω

2
o

bint
; a1615 = ω2

o; a1616 = −2βωo; a1617 = −ω2
oτ; a1618 = −ω2

oτ; a1711 = −K f Ktend;

a1714 =
K f Ktend

bint
; a1717 = −τ; a1814 =

Kpos−Kvel
τbint

; a1818 = −
1
τ ; m43 = −Ktend; m44 = −Ktend.

xT = [ δsw
.
δsw Taca Tξc Trc Tcca θlimb θ′limb Tccl Tint Tacl T′acl Tgot Tsp Vy ωγ ey ψ ]

T
;

yT = [ δsw
.
δsw Taca Tdr 0 Tsw Vy ωγ ey ϕ θlimb θ′limb Tped θtend Tacl 0 0 θped ];

U = [ δsw θre f ].

3. Model Parameter Identification and State Observer

Substantially, the HVSC dynamic model established in Section 2 is a multi-input multi-output
(MIMO) system with continuous time-varying parameters. The research on the identification algorithm
for the linear time-varying system was addressed in numerous works [27,28]. The hierarchical least
square (HLS) parameter identification algorithm, which has stronger convergence than recursive
least squares algorithm, is utilized in this paper. The principal process of the identification can be
summarized as follows.

3.1. Predicting Process

(a) Initializing the dynamic model: the original HVSC dynamic model demonstrated as continuous
state variables should be discretized:{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) + v(t)

(34)
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where v(t) is white noise vector with zero mean value; A and B indicate the parameter vector
identified in Equation (26).

(b) Converting the transfer function with the Laplace transform: The relation between input and
output is expressed as follows:

y(s) =
λ(s)
η(z)

u(t) + v(t) = s(t) + v(t) (35)

where λ(z) and η(z) indicate the molecular and denominator polynomial respectively:
(c) Recombining the equation with hierarchical iteration:{

φ(t) = [−u(t− 1),−u(t− 2), · · · ,−u(t− 10)]T

ε(t) = [−s(t− 1),−s(t− 2), · · · ,−s(t− 10)]
(36)

Using these definitions, Equation (28) can be deduced as:

y(t) = ε(t)λ+ ηTφ(t) + v(t) (37)

3.2. Identifying Process

(a) Calculating quadratic cost functions:

Ji(λ) =
10
Σ

j=1
‖ y( j) − ε( j)λ− ηTφ(t) ‖2 (38)

(b) Identifying the parameter vector λ and parameter matrix η: λ̂(t) = λ̂(t− 1) + L1(t)[y(t) − η̂T(t− 1)φ(t) − ε(t)λ̂(t− 1)]
η̂(t) = η̂(t− 1) + L2(t)[y(t) − η̂T(t− 1)ε(t) − εT(t)η̂(t− 1)]T

(39)

Li(t) = Pi(t)εT(t) =
Pi(t− 1)εT(t)

1 + ε(t)Pi(t− 1)εT(t)
(40)

Pi(t) = [I − Li(t)ε(t)]Pi(t− 1) (41)

where λ̂(t) and η̂(t) represents the estimated parameters at time t. Notably, the parameters
identified are a21,a22,a23,a24,a29,a210,a31,a61,a1211,a1213,a1214,a1311,a1313,a1314,a61,a1711,a1714,a1814,n2

and n6. Others are known.

3.3. Posting Process

Decomposing the combined parameters: the admittance parameters such as Jdr, Bdr, Kint can reflect
the characteristics of the driver significantly. However, we only recognize the combined parameters
until the last step. Therefore, the system of parameters of five variables are rewritten as follows:

a21 = −(
Kdr−Kst+Ka−Ke+1

Jdr+Jst
); a22 = −(

Bdr+Bst−Be
Jdr+Jst

)

a23 = 1
Jdr+Jst

; a31 = −WcBr
Ir

; a61 = −(WcKr −Wc
2Br)

a1211 =
Iped−Ktend

Iseg
; a1213 =

Iped
IsegBcon

; a1214 =
Ktend

IsegBint

a1313 =
Iped−Kcon

bcon
; a1414 = −

Kint+Ktend
bint

a1711 = −K f Ktend; a1814 =
Kpos−Kvel
τbint

(42)

where Jdr, Bdr, Kdr, Br, Kr, Ktend, K f , Kvel, Kint, Bint, Kcon, Bcon are unknown parameters, which can be
calculated by other known vectors.
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Furthermore, a few time-varying parameters of the driver’s NMS are difficult to be measured
by physical sensors. The UKF observer based on the unscented transform (UT) theory and statistical
linearization technique is implemented to observe the primary NMS parameters online, which reflect
the evolution of driving skills [29].

4. Field Experiments

4.1. Experimental Facilities

The field experiments are conducted with Chongqing Jiaotong University’s “XinYuan” autonomous
vehicle, as shown in Figure 4. All of the vehicle’s signals are collected by a V-BOX integrated device,
a vehicle performance test system provided by the British Racelogic company. As shown in Figure 4,
the steering wheel angle and torque is measured by a steering sensor mounted on the steering
wheel. The pedal force and string position sensors are responsible for collecting the pedal force and
stroke. The vehicle’s position and speed information are recorded by the Global Positioning System /

Real-time kinematic (GPS/RTK). The vehicle’s state, such as Vy, ωγ, ey, ψ, can be collected by the IMU
inertial sensor.
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In order to identify the parameters of the arm’s NMS characteristic, a 16-channel EMG measurement
instrument supplied by the OT Bio company in Italy is utilized in the experiment. Its sampling rate,
resolution rate and bandwidth are 1024 Hz, 16bit and 10 Hz–500 Hz, respectively. The Figure 5
illustrates that primary working muscle groups are monitored by EMG electrodes which are placed
and oriented according to surface Electromyography for the non-invasive assessment of muscles
(SENIAM) standards [30]. The working muscle groups affecting the driver’s steering ability are listed
in Table 3 [31,32].
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Table 3. Measured muscle groups.

Number Muscle Name Functionality

1 Sternocostal portion of Pectoralis major (PMA-S) Steering right
2 Middle deltoid (DELT-M) Steering right
3 Biceps brachii (BB) Steering left
4 Lateral head of triceps brachii (TB-LA) Steering right
5 Long head of triceps brachii (TB-L) Steering left
6 Teres major (TM) Steering left
7 Rectus femoris (RF) Speed control
8 Patellar anterior (PA) Speed control
9 Gastrocnemius muscle (GN) Speed control
10 Soleus muscle (SL) Speed control

4.2. Experimental Participants

With the agreement of our university’s academic committee and safety regulatory authorities,
three subjects were recruited to take part in the experiments. All of them were male students in college,
26 years old with two years of driving experience. They were volunteers, taking part in the research
with no financial reward. All the subjects had experiments performed three times, and the best one is
chosen as the experimental data.

4.3. Experimental Scenario

The driving test field of Chongqing Jiaotong University is adopted as our experimental scenario,
as shown in Figure 6. The red line represents the trajectory collected by GPS/RTK in the right lane.
The complete road section consists of a 326 m double lane with four turning segments, four straight line
segments and a ramp segment. The average driving speed on the experimental scenario is restricted to
30 km/h for safety.
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4.4. Experimental Procedure

To enhance the confidence of the experimental results, each subject had 20 min of adaptive driving
training. Furthermore, sampling frequency of EMG instruments and VBOX were adjusted to be as
consistent as possible, both of which were 1024 Hz. Before the experiment, the maximum voluntary
contraction (MVC) of each muscle working on steering wheel and pedal was calibrated in order to
solve the muscle activation. During the experimental process, three subjects kept holding the steering
wheel sensor at the “3–9 o’clock” position, and pressed the brake pedal sensor as shown in Figure 7.
Each subject followed the trajectory three times, and the best instance was selected as the experimental
data. Noteworthily, an emergency acceleration and braking scenario were designed in order to observe
the fast response of the vehicle and muscle signals in S3 segments.
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5. Model Verification with Experimental Results

5.1. Activation-to-Force Processing

Muscle force plays a vital role in the research of the driver’s NMS dynamic model. It cannot be
measured directly, but can be obtained based on EMG signals. Therefore, a numbers activation-to-force
model was proposed [26]. In this paper, the EMG signals are obtained by EMG analysis software
“BioLab”. In order to facilitate the analysis of the result, the measurement noise is filtered through
20–400 Hz frequency, followed by average rectified value (RMS) processing. Finally, the linearized
time-domain signal is obtained. Noteworthily, the following assumptions are presented: the driver’s
muscle characteristic is linear; ignoring the influences of driving fatigue; the length of the tendon
contraction is constant; the contribution of each work muscle can be quantified by different weights.
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The muscle activation a(t) is processed by a nonlinear function:

a(t) ≈ u(t) =
RMS(t)
RMSmax

(43)

where RMS(t) represents the RMS value of EMG at time t after normalization; RMSmax infers to the
RMS value of EMG in isometric maximum voluntary contraction(MVC); u(t) infers to the strength of
muscle; a(t) indicates the degree of muscle activation.

Ten muscle activations are calculated as shown in Figure 8. Evidently, the muscles of Biceps brachii
(BB), lateral head of triceps brachii (TB-LA), pectoralis major (PMA-S) and long head of triceps brachii
(TB-L) have higher activation which means more contributions for steering movement. Similarly,
the rectus femoris (RF) muscle plays the most significant role during speed control.
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5.2. Model Verification Results 

Using the aforementioned identification algorithm with the experimental results, the key 
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identification results are practicable. In particular, higher stiffness and damping coefficients indicate 
greater muscle force applied by the driver. 

Table 4. Identified parameter of NMS characteristics. 

     Subject 
Prameter Range Initial Sub1 Sub2 Sub3 

Jdr (kg/m2) [0.03~0.14] 0.172 0.162 0.097 0.125 
Bdr (Nm/rad) [0.1~2.5] 1.032 0.989 0.91 0.932 

Figure 8. Muscle activation analysis.

5.2. Model Verification Results

Using the aforementioned identification algorithm with the experimental results, the key
parameters of three subjects are identified in Table 4. The original range of each parameter is
derived from reference [33]. All NMS parameters are within a reasonable range, which indicates the
model identification results are practicable. In particular, higher stiffness and damping coefficients
indicate greater muscle force applied by the driver.
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Table 4. Identified parameter of NMS characteristics.

Prameter
Subject

Range Initial Sub1 Sub2 Sub3

Jdr (kg/m2) [0.03~0.14] 0.172 0.162 0.097 0.125
Bdr (Nm/rad) [0.1~2.5] 1.032 0.989 0.91 0.932
Kdr (Nm/rad) [20~90] 60.707 58.873 49.105 52.34
Br (Nm s/rad) [0.5~2] 1.69 1.532 0.9 1.472
Kr (Nm/rad) [2~30] 3.424 2.502 2.15 2.27
Ktend (Nm/rad) [1799–3988] 2799 2771 2096 2459
Kf (Nm/rad) [−0.81~1.78] 1.18 1.27 1.36 1.32
Kvel (Nm/rad) [−0.40~48.6] 40.4 41.51 33.12 38.74
Kint (Nm/rad) [191~505] 334 318 381 397
Bint (Nm/rad) [16~22.2] 19.4 19.3 16.1 17.8
Kcon (Nm/rad) [615~1143] 1033 1022 893 921
Bcon (Nm/rad) [10.6~11.7] 11.2 11.32 10.87 10.91

In order to prove the accuracy of the dynamic model and to observe the driver’s personalized
behavior, the estimated value with the UKF observer of the first subject and actual value based on the
experiment are illustrated in Figures 9–11. As can be observed, the UKF estimated value has good
consistency with the actual value.
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5.3. Model Verification Analysis

In order to verify that the model can observe the driver’s NMS characteristics, the principle of
covariance is utilized to analyze the correlation between the actual and observed value of Subject
1. From the statistical principle, the larger var(t) value represents the higher degree of data fusion
between two groups.

var(t) =
Σn

t=1(yI(t) − yI)(ys(t) − ys)

n− 1
(44)

where, yI(t) and ys(t) represents the initial value and the estimated value which characterizing the
subject at time t respectively; yI and ys refers to the mean value of the initial value and estimated value
respectively.
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As shown in Table 5, fifteen correlation coefficients between the actual value and the UKF estimated
value are calculated with covariance analysis. From the analysis, all the coefficients greater than 0.7,
which indicated that the parameter identification, as well as the UKF observer we proposed, have
significant precision.
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Table 5. Covariance analysis results between the actual value and Unscented Kalman Filter (UKF)
estimated value.

No. Parameter Coefficient No. Parameter Coefficient

1 Lateral speed 0.8621 9 Steering assistance torque 0.7156
2 Yaw rate 0.8246 10 Motion of leg 0.82323
3 Lateral offset 0.7653 11 Movement speed of leg 0.74421
4 Yaw 0.8956 12 Pedal torque 0.7021
5 Steering wheel angle 0.8663 13 Leg contraction torque 0.74421
6 Steering wheel angular rate 0.8421 14 Leg tendon motion 0.746
7 Arm active contraction torque 0.73421 15 Pedal position 0.716
8 Steering wheel torque 0.8646

Furthermore, in order to prove the model’s practicability in reflecting the personalized driver
characteristics, the actual value of Subject 1 is compared with three subjects’ estimated values.
The covariance analysis results in Figure 12 is normalized for visualization. It can be observed that the
histogram of Subject 1 has the highest covariance with the initial state vector. Finally, we can deduce
that the HVSC dynamic model we proposed can represent the evolution of personal characteristics.
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6. Conclusions

In this paper, a HVSC dynamic model composed by driver’s NMS model, 2DOF vehicle dynamic
model and MPC controller is proposed for the shared control of AV. Specifically, the influence of the
significant factors of the arms and legs, such as stiffness, damping and inertia are considered into the
driver’s NMS model. Field experiments were conducted for the validation of the model. Based on the
subsequent experimental results, the HLS algorithm and UKF observer are implemented to identify
and estimate the important NMS parameters, respectively. Finally, the covariance analysis shows
consistency with the identified parameter of the driver’s NMS characteristics. The results show that
the model we proposed has a high level of accuracy with actual value. This paper will serve as a
theoretical basis for the control strategy allocation between human and vehicle for L3 class AVs.
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Abbreviations

The following abbreviations are used in this manuscript:

HVSC Human-vehicle shared control
AV Autonomous vehicle
NMS Neuromuscular
MPC Model predictive control
2DOF Two-degree-of-freedom
HLS Hierarchical least square
UKF Unscented Kalman Filter
GTO Golgi tendon organs
MIMO Multi-input multi-output
EMG Electromyography
MVC Maximum voluntary contraction
RMS Average rectified value
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