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Featured Application: This compact but precision highly stable NMR time-domain relaxation
spectrometer is most useful for quantitative material science measurements of both the mass and
the mobility/dynamics/stiffness/viscosity/rigidity of hydrocarbons and polymers, both in the bulk
and in sub-nano-meter and upward sized pores. It is highly useful for studying the properties of
hydrocarbons in pores in applications such as recovered porous rock samples from oil reservoirs,
and in fired biochar porous carbon samples, to give just two examples. In addition, applicable to
both these fields of study is the ability to make NMR Cryoporometric measurements of pore-size
distributions in porous materials, for sub-nano- to over micrometer sized pores.

Abstract: NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science,
particularly for studying polymers and porous materials. NMR Cryoporometry (NMRC) is a powerful
technique for the measurement of pore-size distributions and total porosities. This paper discusses
the use, capabilities and application of a newly available compact NMR time-domain relaxation
spectrometer, the Lab-Tools Mk3 NMR Relaxometer & Cryoporometer [Lab-Tools (nano-science),
Ramsgate, Kent, UK (2019)]. Being Field Programmable Gate Array based means that it is unusually
compact, which makes it particularly suitable for the lab bench-top, in the field and also mobile use.
Its use with a variable-temperature NMR probe such as the Lab-Tools Peltier thermo-electrically
cooled variable-temperature (V-T) probe is also discussed. This enables the NMRC measurement
of pore-size distributions in porous materials, from sub-nano- to over 1 micron sized pores.
These techniques are suitable for a wide range of porous materials and also polymers. This instrument
comes with a Graphical User Interface (GUI) for control, which also enables both online and offline
analysis of the measured data. This makes it is easy to use for material science studies both in
the field and in university, research institute, company and even school laboratories. The Peltier
cooling gives the precision temperature control and smoothness needed by NMR Cryoporometry,
particularly near the probe liquid bulk melting point. Results from example NMR Relaxation and
NMR Cryoporometric measurements are given.

Keywords: time-domain; nmr relaxation; nmr cryoporometry; fpga; field programmable gate array;
benchtop; nmr mouse; digital RF; variable temperature; v-t; polymer; pore-size
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1. Introduction

NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science,
particularly for studying polymers and porous materials [1–13]. The measurement of NMR relaxation
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amplitudes and decay times enables the measurement of both the mass and qualities which are
variously described as mobility, dynamics, stiffness, viscosity or rigidity, for hydrocarbons and
polymers, both in the bulk and in pores, Section 4.

NMR relaxation can be used directly to measure micron-sized pore-sizes [11,14–16], provided
one knows the surface relaxation properties of the porous material [12,17]—often termed NMR
Relaxometry. NMR Relaxometry is of limited use for nano-metric sized pores. Alternatively, NMR
Cryoporometry (NMRC) [10,18–20] is a powerful technique for the measurement of nano-metric
pore-size distributions and total porosities, based on the lowered melting temperature of liquids in the
pores—the Gibbs–Thomson effect [18,21–23], Section 3.2.

This paper discusses the use and application of the Lab-Tools Mk3 precision compact NMR
time-domain spectrometer for both NMRR, Sections 3.1 and 4, and NMRC, Sections 3.2 and 5.

This NMR spectrometer is based on a Field Programmable Gate Array (FPGA). Other examples
of FPGA based instruments appear in the literature, for instance [24–26], but do not appear to be such
rather compact and yet complete and easy to use NMR time-domain spectrometers. This instrument
is an NMR time-domain spectrometer that auto-tunes and is immediately ready for research
measurements, under control of a Graphical User Interface (GUI). Data fitting and parameter extraction
is performed online during the measurements, and can also be performed offline using the same
Graphical User Interface or another copy elsewhere.

A particular feature of this spectrometer is that it is fast recovery and so can measure NMR
Relaxation both in the bulk and in sub-nano-meter and upward sized pores, for materials that may be
liquid, gel, waxy, tarry . . . [13], and an example is given of it measuring T2s in brittle ice (and hence the
mobility of the ice molecules), see Figures 1 and 2.

This is highly useful for studying the properties of hydrocarbons in both recovered porous rock
samples from oil reservoirs, and in fired biochar porous carbon samples, for example [27].

A more detailed discussion of NMR Relaxation, and specific application examples, are given in
Section 4.
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Figure 1. The measured Free Induction Decays in brittle ice are fitted reasonably well by Gaussian
curves for all measurements except at −20 C.
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Figure 2. A polynomial curve fitted to the measured Gaussian T2s for brittle ice.

Some applications of the Lab-Tools Peltier thermo-electrically cooled variable–temperature
(V–T) probe [28,29] are also discussed, Section 2.1, which enables this spectrometer to make NMRC
measurements of pore-size distributions in porous materials on the unusually wide pore scale range of
sub 1 nm to over one micron [18]. Specific application examples are discussed in detail, Section 5.

All of these techniques are suitable for a wide range of polymers [18,20] and porous materials [18],
including porous glass [30,31], zeolites [32], cement [33], clays [18], rock [27,34], wood [35], and biochar
and other porous carbons [18,27,36,37]. In polymers, crystalline/amorphous ratios may be measured.
By swelling rubbers and polymers by adding liquids to them, cross-link density and nano- to
micro-porous properties of the polymer may be obtained [18,20,38]. In biochar, progressive changes
to the quantity and mobility of hydrocarbons, as well as changes in pore-blocking, as a function of
preparation temperature, have been demonstrated [27].

All these measurement techniques can be implemented using this recently developed highly
compact Spectrometer, based on a Field Programmable Gate array (FPGA) module and custom surface
mount low-noise NMR receiver and NMR linear transmitter. This instrument has a high proportion of
the R.F. circuitry in a digital form, implemented as firmware in the FPGA, which aids long-term stability.
The FPGA module is credit-card sized, and the NMR receiver and NMR transmitter are each even
smaller. Complete with a Graphical User Interface (GUI) for control and online and offline analysis,
this instrument has been found to be particularly suitable for material science studies.

2. Apparatus

A recently released time-domain NMR relaxation spectrometer [MK3 NMR Spectrometer,
Lab-Tools Ltd. (nano-science), Ramsgate, Kent, UK, 2019] [39] and associated Peltier thermo-electrically
cooled variable-temperature NMR probe [Mk3 NMR Cryoporometer, Lab-Tools, Ramsgate, Kent,
UK] [40], Figure 3, were used to conduct a number of experiments, to evaluate their suitability for
material-science experiments.
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Figure 3. The spectrometer, with Peltier thermo-electrically cooled variable-temperature probe, and
24 MHz (protons) 0.5T magnet, with all-in-one control computer with Graphical User Interface.

This spectrometer is built around a credit-card sized Field Programmable Gate Array Red Pitaya
module [41] for the digital RF, with custom firmware, C and array processing AplX programs added,
and with attached custom surface mount low-noise receiver and linear transmitter.

The signal-to-noise (S/N) appears to be good, see Figure 4. A number of important parameters of
the NMR spectrometer were evaluated, as part of the process to determine what experiments might be
feasible, see Section 6.

Figure 4. Single-shot capture of 119 mg of hexadecane at 24 MHz, in a simple room-temperature probe
with a 5 mm OD standard NMR sample tube (point integration 5).
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2.1. Temperature Measurement and Control

There are many NMR material science experiments which are far more informative if carried
out as a function of temperature. In particular, highly useful NMR T1 and T2 minima measurements
may then be made, which provide additional information on the motional dynamics in the sample.
NMR Cryoporometry also ideally needs very well controlled wide-range temperature ramps (typically
from ~100 K to ~350 K). The temperature measurement needs to reflect as true a temperature
measurement of the sample as possible, and this apparatus appears to give a precision better than
10 mK [28,29]. To aid this precision, “sample” and “control” copper-constantan thermocouples
were used, the control thermocouple offering a faster thermal response time for dynamic control
purposes, while the sample thermocouple offers longer term precision, being in very close contact
with the sample.

Two different 0C thermocouple junction references have been used in this work:

1. Referenced to a cell of distilled water maintained half frozen (Omega IceCell Model TRCIII), with
a third thermocouple attached to a thermal mass in a Dewar provided a short-term temperature
reference to help reduce the effect of the temperature cycling in the IceCell.

2. Electronic diode junction 0C references have in recent years improved greatly, and these are
under evaluation. They have the advantage of no temperature cycling.

These thermal EMFs were measured and averaged using a USB interfaced 5 channel, 24 bit
Digital Volt Meter (DVM, Lab-Tools, Ramsgate, Kent, UK). During each measurement of NMR
signal amplitude, the DVM measurements were further averaged. Thermal EMFs were converted to
temperature using a 18 segment quadratic piece-wise polynomial algorithm, with segments contiguous
in amplitude and gradient. The agreement with the original NIST thermocouple data are believed to
be good to better than 1 mK [42].

The Peltier cooling offers extreme uniformity of warming rate needed by NMR Cryoporometry,
particularly near the probe liquid bulk melting point, as well as the ability to have temperature ramps
that last over days. NMRC measurement of pore diameters in excess of 1 micron were measured, with
acceptable repeatability at 1 micron pore diameter.

3. Key Time-Domain NMR Methods

3.1. Nuclear Magnetic Resonance Relaxation (NMRR) for Material Science

NMRR is an extremely useful quantitative technique for material science, particularly applicable
to polymers and porous materials. A powerful RF pulse (a π/2 pulse) at the NMR resonant frequency
may be used to tip the equilibrium nuclear magnetization of certain nuclei such as hydrogen into the
transverse plane. There it precesses at the resonant RF frequency, generating an exceedingly small RF
signal that may be amplified and detected.

The initial amplitude of the NMR signal—the Free Induction Decay (FID)—gives a robust
quantitative measure of the amount of material in the sample; to obtain a mass calibrated measurement,
it is necessary to also make measurements on one or more calibration samples of known weight that
ideally should be similar to the expected liquid, polymer or hydrocarbon. The amplitude of the FID
decays at a rate at least partly determined by the dipole–dipole interactions between the nuclei—dipolar
broadening—the adjacent nuclei alter the local magnetic field at a given nucleus, resulting in a short,
often Gaussian-like T2 decay. A short transverse or dipolar decay time of around 10 µs is characteristic
for a very rigid material like ice. If there is motion of the nuclei, this can cause an averaging of
this effect, so that the decay can become slower, and can then tend to be approximately an exponential.
This is typical for say a tar, with T2s perhaps between 20 µs to 100 µs. However, as T2 gets longer
due to motional narrowing, the FID decay time is then often limited by local field variation such
as the homogeneity of the magnet, or sometimes by inhomogeneities in the sample (which may be
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porous), and the FID decays at a rate characterised as T2*. This is then typical of a soft material such as
a polymer or say a candle wax.

This is not the end of the story, however, as the dephased magnetisation can often then be
re-focussed by applying a chain of re-focussing NMR pulses, such as the Car–Purcell–Meiboom–Gill
(CPMG) sequence, to obtain a chain of NMR echoes, whose peak amplitudes then trace out the true
T2 decay. These longer true T2 times are then typical of the above polymers or candle wax, and are
often around a few milli-seconds, or can be as long as seconds, typical of a mobile liquid. Organic
molecules frequently exhibit reptation, which often result in a non- or multi- exponential signal decay.
The decays may also be multi-component when both crystalline and amorphous components are
present in a polymer.

Finally, we need to consider the time for the magnetisation to re-equilibrate with the “lattice”
(the longitudinal decay time T1). T1 is often long (many seconds) for rigid materials but reduces
and becomes equal to the true T2 time for a mobile liquid like water. It can thus be seen that the
NMR FID, T2* and true T2 may give information on the sample that for different applications is
variously characterised as mobility, dynamics, stiffness, viscosity or rigidity. These are highly useful
parameters, rapidly providing data on the physical state of the sample as a function of local condition
and sample temperature [1–3].

NMRR for Determining Mass and Mobility of Hydrocarbons in Porous Materials

Many porous materials, such as recovered porous rocks, or fired carbons such as biochar, contain
hydrocarbons in the pores. As well as the hydrocarbon mass, the dynamical information may also
be obtained as above from the NMR decay. For hydrocarbons that are fairly rigid, like tars or some
polymers, the FID decays rapidly, and information on the mobility may be obtained directly from
the T2 of the FID, which may be multi-component [27], and also see Section 4. Other samples may
also contain more mobile components such as light oils that then need an NMR pulse sequence chain
such as the Carr–Purcell–Meiboom–Gill (CPMG) sequence to recover the dynamical information, often
multi-component.

3.2. NMR Cryoporometry

3.2.1. NMRC History

Originating in 1993 at the University of Kent, NMR Cryoporometry (NMRC) [43] is now
an important method for determining pore sizes in porous media.

Josiah Willward Gibbs, James Thomson, his brother WilliamThomson (later Lord Kelvin), and J. J.
Thomson were the pioneers of the theory behind phase transitions for confined materials. They applied
experiment, thermodynamics and generalised dynamics to produce equations that well describe the
phase-change behaviour of liquids in confined geometry [44–47]. The Gibbs–Thomson equation is
the constant pressure version of the Gibbs Equations [21–23], whereas the Kelvin equation [46] is the
constant temperature version.

3.2.2. NMRC Theory

A development of the Gibbs–Thomson equation has been discussed [18,48,49] that relates these
phase changes so that the pore area ap and volume vp are related to the melting point depression

∆Tm = Tm − Tm(x) ≈
ap

vp
· σslTm cos(ϕ)

∆H f ρs
≈ kdσslTm

x∆H f ρs

For many purposes, this may be simplified so that the pore diameter x {Å}is related to a melting
point depression {K}by

∆Tm = kGT/x
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where we are grouping all the thermodynamic terms into a single constant, kGT {K.Å}, the Gibbs–
Thomson coefficient—usually established by an experiment.

It is important to note that kGT includes a term dependent on pore geometry, as does the
Kelvin equation. kd is the geometry term, and is equal to four for a spherical liquid-crystalline
interface (conventionally assumed for cylindrical pores). Tm is the bulk melting point and the other
terms are thermodynamic and density terms [49,50].

The measurement of the pore volume vs. size distributions is facilitated by differentiating and
re-mapping the melting curve data using the Rahman–Strange transformation:

dv
dx

=
kGT
x2 · dv

dT
.

In Figure 5, the Gibbs–Thomson Coefficients kGT are calculated from the slopes of the plotted
lines of melting point depression vs. inverse nominal pore diameter [50].

Figure 5. NMR Cryoporometric Melting Point Depressions, for different pore geometries: Sol-Gel
(spherical), SBA-15 (hexagonal) and MCM-41 (hexagonal), plotted against inverse pore diameter, as
determined by gas adsorption [50]; This figure was published in Progress in NMR Spectroscopy, 56, 1,
J. Beau .W. Webber, Studies of nano-structured liquids in confined geometry and at surfaces, Page 80,
Figure 6, Copyright Elsevier (2010).

3.2.3. NMRC Protocol

The protocol of an NMR Cryoporometry experiment involves absorbing a liquid into pores;
freezing the liquid, and then warming the sample. The NMR echo amplitude is monitored, so as to
determine the amount of liquid that has melted as a function of temperature. This gives a measure of
the pore volume vs. melting temperature, and hence, via the Gibbs–Thomson equation, the pore size
distribution.

The NMR measurement required is very simple, just a [π/2 − τ − π − τ− Echo] NMR sequence,
with the echo at an NMR 2τ measuring time of typically 500 µs to 20 ms, so as to avoid any signal
from solid ice. The amplitude of the NMR Echo is recorded as a function of temperature. The Echo is
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polynomial fitted, and the polynomial solved to determine the peak amplitude. We can then apply
the Gibbs–Thomson equation and the Rahman–Strange transformation to obtain the pore volume
distributions, as a function of pore diameter.

A recent calibration is frequently employed, as appropriate to water in Sol-Gel silica, at an NMR
2τ measuring time of 2 ms [50]:

kGT = 580 K.Å

4. NMR Relaxation Results Obtained Using the Spectrometer and Peltier Cooled Probe

4.1. Nuclear Magnetic Resonance Relaxation for Determining Mass and Mobility of Hydrocarbons
in Porous Materials

A sample of Barnett shale was measured by NMR Relaxation (NMRR) to obtain an estimate
of the quantity and mobility of the hydrocarbons in the pores. Measuring tarry materials in rock
pores is not an easy measurement for NMR spectrometers, as the rock material gives a fast decay
(extremely broad-line, in spectroscopic terms), due to the dipole–dipole interactions with the rock,
and the quantities are small—the total sample is only a couple of 10s of milli-gram, and the organic
components resolved are in the 10 s to 100 s of micrograms.

Figure 6 shows a two component fit to hydrocarbons in the porous rock sample. Any residual
signal from an empty probe has been subtracted. Both components are exponentials that are not
immediately visible to the eye; however, if the longer exponential component is subtracted from
the measured data, and the resultant plotted logarithmically, Figure 7, a flat baseline is obtained,
with a straight-line residual at shorter times. This appears to be very convincing evidence for
a double exponential decay for the FIDS for the hydrocarbons in these pores, which provides important
information regarding the mobility and dynamical processes in these samples.

In the logarithmic plot, the linearity of the baseline and the fitted short-component, following
subtraction of the baseline, are also convincing evidence for the linearity of the NMR receiver and the
overall quality of the measured time-domain data, including good signal-to-noise.

Figure 6. A two component exponential fit to hydrocarbons in a Barnett Shale porous rock sample.
Measured data: red dots. The longer, more mobile fitted component is the green line, and the shorter,
more rigid fitted component is the orange line. Their sum is the blue line.
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Figure 7. The longer fitted exponential component has been subtracted from the measured data, and
the resultant (red line, blue dots) plotted logarithmically and fitted with a straight line (green), to
confirm the presence of a double exponential decay .

4.2. Bulk Ice T2 Measurement

Using the Peltier cooled variable-temperature probe, the Free Induction Decays (FIDs) for bulk
brittle ice were measured, from below −20 C to −2 C. As expected, a Gaussian curve was the preferred
fit for all the data sets; the automated fitting routine with initial linearised fit, followed by a full
nonlinear fit, was used to extract the amplitudes and relaxation times as before.

Four example measurements at −20 C, −15 C, −10 C and −5 C are shown in Figure 1. These
have all been Boltzmann corrected, to take into account the amplitude changes as a function of
temperature [51].

It requires a fairly fast recovery NMR spectrometer to measure these FIDs in brittle ice. This linear
NMR transmitter does not have the power of the Lab-Tools digital NMR transmitter (still at the proto-type
stage), but can still generate an RF B1 of about 1 mT in a 5 mm OD NMR sample tube (just under
a 6 µs π/2 NMR pulse). These brittle ice FIDs were measured using the variable-temperature (NMR
Cryoporometric) probe, with a 3 mm OD NMR sample. Due to the constraints of a probe optimised for
Cryoporometry, this generates a lower RF B1 of about 0.7 mT (about a 9 µs π/2 NMR pulse).

Measuring the Ice FIDs, from the middle of the NMR pulse (necessary to correctly fit a Gaussian),
the first 4.5 µs are occupied by the NMR transmit pulse, and about the next 3 µs are the probe
ring-down and receiver recovery. Thus, with the decimation set to full band-width, and the integral
count set to 2, so as to reduce ringing from the decimation filter, then the recovered signal is fully
usable at 7.5 µs from the centre of the pulse. This recovery performance is achieved because the probe
is designed deliberately to be broadband, with about a 1 MHz bandwidth. This also has the advantage
of making the tuning of the probe insensitive to sample changes, such as the freezing or melting of
a liquid sample, or very wide probe temperature changes.

The measured Gaussian T2s were plotted as a function of temperature, and a polynomial curve
fitted to them, Figure 2.
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5. NMR Cryoporometric Results Obtained Using the Spectrometer and Peltier Cooled Probe

The NMR Cryoporometry measurements were performed on a purpose built NMR Scanning
Cryoporometer based on the above spectrometer, with Mk3 Peltier thermo-electrically cooled probe.

5.1. NMR Cryoporometric Measurement on a Sol-Gel Silica

A Sol-Gel silica of nominal pore diameter of 100 Å (as determined by gas adsorption) was
measured using the NMR Cryoporometer, with distilled water as the probe liquid. The samples were
prepared in 3 mm glass NMR tubes, and dried at 120 °C overnight. The small diameter of the tubes
assists with the sample all being iso-thermal. Weighing was performed so that the masses of all the
dry solid and added liquid were known.

For this set of results, a recent calibration was employed, as appropriate to water at an NMR 2τ

measuring time of 2 ms [50]:

kGT = 580 K.Å

At low temperatures (Figure 8), the water is all frozen, and at a 2τ measuring time of 2 ms gives
a negligible signal, due to the short T2 of the brittle ice. Between about −10 °C and −5 °C, the liquid
in the pores melts, to then give a plateau between about −5 °C to −1 °C, followed by another rise
in signal amplitude near 0 °C as the bulk liquid around the grains melts. This final plateau gives
a pore–volume calibration to the whole measurement, as the mass of this liquid has been measured.

Figure 8. The NMR echo amplitude is monitored as a function of temperature to give the pore volume
vs. melting temperature.

The signal-to noise was excellent, as can be seen on the following melting curve, Figure 9, for 23 mg
of water over-filling 21 mg of sol-gel silica. The measurement points are mostly hidden under the fitted
red curve, as can be seen using a bi-symmetric log plot [52]. These plots are helpful in determining
that at the lowest temperature all the liquid has frozen, so as to obtain an accurate NMRC pore-size
distribution, particularly at low pore-size values. The resultant pore-size distribution is shown in
Figure 10.
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Figure 9. Bi-symmetric log plot of the melting curve, exploring the low level signal amplitude.

Figure 10. Applying the Gibbs–Thomson equation and the Rahman–Strange transformation, we obtain
the pore size distribution.

5.2. NMR Cryoporometric Measurements on Three Porous Rocks

Pore-size distribution data have been measured on three porous rocks using this Cryoporometer,
on a Sandstone, Carbonate and Barnett Shale porous rock, Figure 11. The data show reasonable
agreement between repeated runs, particularly considering that the pore-size distributions are, as per
the Rahman–Strange transformation, the differential of the measured melting point curves. It should
be noted that, while sandstone pore-size distribution data are obtainable by other techniques, such as
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Relaxometry, private discussion has indicated that NMR Cryoporometry is perhaps one of the most
robust techniques for small pore data in carbonate and shale samples.
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Figure 11. Repeated NMR Cryoporometric measurements on Sandstone, Carbonate, and Barnett Shale
porous rocks.

5.3. NMR Cryoporometric Measurements on Four Biochar Samples with Different Processing

Some data were measured on four biochar samples using the prototype of this Cryoporometer [37].
The biochar was derived from oilseed rape (OSR) and mixed softwood pellets (SWP) containing 5:95
pine:spruce, from the United Kingdom Biochar Research Centre (UKBRC) Edinburgh. It was pyrolyzed
in a pilot-scale rotary kiln unit, at 550 °C and 700 °C, Figure 12.
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Figure 12. NMR Cryoporometric measurements on four Biochar samples with different processing.
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6. Measured Instrument Parameters and Capabilities

A number of important parameters of the NMR spectrometer were also evaluated, as part of the
above measurement process:

• System signal-to-noise: The controlling Graphical User Interface (GUI) configures the NMR data
capture to start before the first NMR pulse, and this signal provides both a data base-line and
uncontaminated signal that the instrument uses to measure the base noise-level, for each trace.
A typical signal at the demodulated receiver output is shown in Figure 4. Measured noise levels
appear to be around 1 mV RMS (for a typical 0.5 V signal) so a Signal-to-Noise (S/N) of about
500 for a typical 25 mg water sample in the 3 mm probe), for a signal filter setting of 250 kHz
and 5 point integral filter (suitable for a typical NMR Free Induction Decay (FID) and Echo
experiment with a liquid)—thus, an RMS noise level, single shot, equivalent to about 50 µg for
water. When conducting NMR Cryoporometric experiments, a slow warming ramp is needed
so that all the sample is as isothermal as possible, and thus averaging times of 100 to 300 s per
captured point were commonly employed. The NMR echo is fitted with a polynomial, and the
polynomial solved to obtain a peak amplitude. This gave RMS noise levels for the averaged NMR
Cryoporometric signal of around 50 to 100 µV, so an S/N of about 5000 to 10,000 for typical 3 mm
samples containing about 25 mg of water. This gives a very useful dynamic range to the resultant
pore-size distributions, see Figure 9, the data for which appears to indicate the RMS sensitivity in
a typical NMRC measurement to be around 15 nl of porosity. This is particularly important for
low porosity samples.

• NMR RF Pulse Power: For this spectrometer, the linear RF transmitter amplifier delivers a π/2
pulse into the supplied room-temperature NMR probe (5 mm OD standard NMR tube) of about
6 µs, while, for the NMR Cryoporometric probe with a 3 mm OD NMR sample, it is about 9 µs.

• Recovery time after the NMR Pulse: The time from the middle of the RF pulse to the first usable signal
is a key feature for spectrometers when measuring more rigid materials such as solid polymers,
waxes, tars, etc. With the receiver set to full bandwidth and 2 point integration (to suppress
filter ringing), the system appears to recover pleasingly quickly, even for the Cryoporometric
probe, with an overall time from the centre of the NMR pulse being no greater than 7 or 8 µs.
This enabled the measurement of FIDs from materials as rigid as bulk ice, see Section 4.2.

• Portability: A significant feature of this Field Programmable Gate Array (FPGA) based equipment
is its compactness, which might make it suitable for use in the field or even for mobile use.
As such applications are still to be evaluated, these measurements having been conducted on the
laboratory bench-top. For mobile use, more compact non-mains power supplies will be needed.

7. Conclusions and Suggestions

This spectrometer [39] is a highly versatile instrument and is very convenient for a range of uses
for material science. Since much of the RF analysis is digital, it exhibits excellent long term stability,
which is particularly important for NMR cryoporometry. The addition of the Peltier thermo-electrically
cooled probe makes it very applicable to NMR experiments that require the sample temperature
to be changed, including the measurement of NMR Cryoporometric pore-size distributions [40].
This variable-temperature probe is particularly appropriate to long duration experiments, which may
sometimes last for days.

7.1. Diffusion and Controlled Magnetic Field Gradient Experiments

An important step forward in the range of experiments that could be carried out would be adding
the ability to measure diffusion and pore connectivity by a number of techniques. This can be done
most simply with little extra complexity by making measurements in the fringe field of a permanent
or superconducting magnet [53,54]. However, adding the ability to modify the magnetic gradient in
the sample using constant current gradients or gradient pulses [51,55–57] or sine-waves [58] are also
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powerful techniques. While the pulse techniques may significantly increase the apparatus complexity,
the stability of this spectrometer should act as a suitable platform on which to make these additions.

7.2. Portability

Clearly, while the pictured 24 MHz magnet (Figure 3) is carriable, this does not make for
a particularly portable system. An important future step for this time-domain NMR system could
be the addition of a single-sided NMR magnet—“NMR Mouse” [59], so as to make a completely
human-portable NMR system that could be taken to samples in the field and used in a freely un-tethered
mobile fashion.

8. Patents

Webber, Patent No.: US 9,810,750 B2, Nov 7th 2017. Nuclear Magnetic Resonance Probes. Application
No.: 14/316,409 Filed: 26 Jun. 2014. John Beausire Wyatt Webber. Ramsgate (GB).
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