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Featured Application: This research can be applied to home care monitoring systems to assist in
providing care for dependent persons by analyzing abnormal events or falls.

Abstract: In this paper, an innovative home care video monitoring system for detecting abnormal and
normal events is proposed by introducing a virtual grounding point (VGP) concept. To be specific,
the proposed system is composed of four main image processing components: (1) visual object
detection, (2) feature extraction, (3) abnormal and normal event analysis, and (4) the decision-making
process. In the object detection component, background subtraction is first achieved using a specific
mixture of Gaussians (MoG) to model the foreground in the form of a low-rank matrix factorization.
Then, a theory of graph cut is applied to refine the foreground. In the feature extraction component,
the position and posture of the detected person is estimated by using a combination of the virtual
grounding point, along with its related centroid, area, and aspect ratios. In analyzing the abnormal
and normal events, the moving averages (MA) for the extracted features are calculated. After that,
a new curve analysis is computed, specifically using the modified difference (MD). The local maximum
(lmax), local minimum (lmin), and half width value (vhw) are determined on the observed curve of the
modified difference. In the decision-making component, the support vector machine (SVM) method
is applied to detect abnormal and normal events. In addition, a new concept called period detection
(PD) is proposed to robustly detect the abnormal events. The experimental results were obtained
using the Le2i fall detection dataset to confirm the reliability of the proposed method, and that it
achieved a high detection rate.

Keywords: virtual grounding point; abnormal and normal events; mixture of Gaussians; moving
average; modified difference; half width value; support vector machine

1. Introduction

In recent years, 24/7 monitoring systems for dependent persons who are living alone at home have
become an important topic of research in the field of image technology. Here, the term dependent persons
not only includes older adults who require care with regular, long-term monitoring, but also disabled
persons, and patients with chronic diseases [1]. Such people may have problems with mobility that
can affect their health, quality of life, and expected life span. Falls are the most common injuries facing
dependent persons. Accordingly, much research has focused on fall detection. Most systems in use for
detecting abnormal events or falls are classified into three groups: those using wearable-sensors [2],
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or ambient sensors [3], and those using computer-vision and image processing [4–6]. Wearable sensors
are commonly used to collect information related to body movements and provide notification when a
fall occurs. However, movement-based systems cannot provide notification if the person is already
unconscious after falling. Ambient sensors can be installed under the bed or floor to capture the
vibration that occurs when a person falls. Although such sensors do not disturb the person, they can
generate false alarms. For these reasons, a system based on computer vision is more beneficial and
reliable. In addition, visual surveillance systems can detect specific human activities, such as walking,
sitting, and lying down [7,8].

Therefore, we propose a vision-based system for home care monitoring that detects normal as
well as abnormal events, including falls. The main contributions of this paper are described in the
following developments.

• A detection system for visible abnormal and normal events based on data gathered using an RGB
video camera;

• A modified method of statistical analysis involving virtual grounding point features that provides
reliable information, not only on the exact time of a fall, but also on the pre-impact period of a fall.

In this study, our proposed approach makes an effort to improve the detection rates for abnormal
and normal events in a home-care monitoring system. Since our intention is to develop a long-term
monitoring system for an assisted-living environment, we take great care in considering the extracted
features for the details of human posture for precisely detecting falls. In this study, we consider new
features using the concept of a virtual grounding point for the human body, and related visual features.
We conduct abnormal event analysis including modified statistical analysis. Finally, the decision-making
process is performed by applying a support vector machine, and a new consideration that involves
detecting the period of a fall.

The following provides a step-by-step description of system and method. We firstly conduct
foreground and background separation to detect both moving and motionless people in the video
scenes. Secondly, we perform feature extraction, including the construction of a virtual grounding
point and its associated visual features. Thirdly, we obtain analytical information for fall events by
analyzing moving averages for the extracted features, and computing differences for the observed
moving averages for the extracted features. Finally, a support vector machine is used to set the rules for
decision making and detect the period of the event in effectively distinguishing abnormal and normal
events. The rest of this paper is organized as follows: Section 2 presents related works; Section 3
presents the methodologies of our proposed system; Section 4 presents and evaluates experimental
results, and finally, Section 5 presents the conclusion and speculates on future trends in our approach.

2. Related Works

In most video monitoring systems, the most fundamental step is background subtraction, which
assumes that the distribution of background pixels can be separated from that of foreground pixels
in detecting a silhouetted object. Methods used for this purpose involve statistical measures such
as median and mean [9] to model the background. In addition, a more complicated distribution for
background pixels can be obtained using models such as mixture of Gaussians (MoG) [10] and mixture
of generalized Gaussians (MoGG) [11]. As these methods do not always provide great performance due
to not taking a knowledge of video structure into consideration, a low-rank subspace learning approach
has been proposed [12] to take account of the video structure, including the temporal similarity of the
background scene, and the spatial contiguity of foreground objects. However, most of these methods
focus on solving for detection of moving objects in video scenes. When the foreground objects move
very slowly, the redundant data occurs, resulting in serious outliers. To solve this problem, methods
are applied for motion detection and frame differencing, eliminating redundant data [13]. However,
this technique can result in a loss of useful information in real-life video sequences. Therefore, we have
applied a graph cut theory as a solution for refining the results of background subtraction [14,15].
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In this study, we achieved foreground refinement by combining MoG with the low-rank subspace
learning method [12] for background subtraction and the graph cut algorithm [15].

In order to represent human objects in video sequences, shape analysis is performed using the
bounding box method, which gives the attributes of height and width to calculate the aspect ratio
in defining a fall. Our previous method for action analysis first involved creating a fitted ellipse
bounding box around the object body [16]. The moment is then computed for the continuous images
and the ellipse’s center. Its major axis, minor axis, and its orientation are used as the observed features
for human actions. In addition, horizontal and vertical histograms are constructed to obtain good
performance for posture detection of the object. An additional method in our previous work for feature
extraction involved the variation of motion using timed motion history images (tMHI). This had
provided the basic facts for detecting great motion in abnormal scenes. However, these techniques
required fixed threshold values for analyzing and detecting the events. In addition, the movement
characteristics in the walking patterns of the human body are studied by determining the features of
temporal variability, such as joint angle (ankle, knee, hip, torso) movements. However, additional
observations are needed in which values for temporal variations with the pre-selected variables
might deviate during investigation, and useful information for analysis on potential features might be
discarded. In this regard, the proposed method [17] uses movement variability throughout the whole
body, which need not consider pre-selected variables. However, this system uses a full-body marker
set, which consists of 28 markers placed on human body segments for gait analysis. Requiring the
elderly and dependent persons who have chronic diseases to wear markers 24 h per day is unrealistic.

Moreover, we propose a three-dimensional model of the human body [18] based on the visual
appearance of the human subject that changes over time in aspects such as self-shadowing, and
clothing deformation. The idea is to develop an adaptive, appearance model for articulated body
parts by using a mixture model that includes an adaptive template and a frame-to-frame matching
process. As motivation for this approach, research featuring background subtraction from foreground
silhouettes has not provided reliable tracking. This suggests that a three-dimensional articulated
model of the human body must be developed without using a high-quality silhouette provided by
background subtraction. However, the system has limitations in requiring high-quality resolution of
image data and multiple cameras to cope with self-occlusions. In addition, a method of estimating
real-time, multi-person, two-dimensional poses is proposed [19] by using part affinity fields of skeleton
images. This architecture is designed to jointly study human-body part locations to recognize human
poses by utilizing a convolutional neural network (CNN) trained with a large amount of data. However,
the results which are tested on different datasets show that the detection of body parts could not
adequately differentiate human subjects from objects similar to the human body. Therefore, a suggestion
for improving this system involves embedding an improved background subtraction technique during
the pre-processing stage. This kind of extended body part model might provide the research for the
detection of abnormal or falls and normal daily activities. Moreover, the features based on the body
shape of the silhouette images are investigated for patterns of human movement in the literature
survey [20]. The boundary points of the body are extracted and the distances are calculated from the
centroid of the object. Moreover, several physical features could be observed for the gait period, stride
length, and height, as well as the ratio of chest width to body height with respect to analyzing the
patterns of walking slow, fast and normal. However, most of the research that focused on an analysis of
walking patterns mentions that each individual person has a unique walking style, and it is necessary
to pre-select according to age, and gender, as well as whether subjects are healthy or not.

In analyzing abnormal and normal events, most systems utilize the coefficient of motion and
prefixed threshold features [5,7,16,21]. The proposed method [22] uses four features as the inputs to a
k-nearest neighbor (K-NN) classifier to detect a fall: orientation angle, ratio of fitted ellipse, coefficient
of motion, and silhouette threshold. The overall accuracy of the system is 95% in real time video
sequences. Similarly, a fall-detection method is proposed [23] that depends on the activity patterns of
the detected person, such as the aspect ratio and speed of motion of the human object. The region based
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convolutional neural network (R-CNN) deep learning algorithm is then selected to obtain information
on the object’s position in the video sequences during a fall. This method can be used to classify
falls during normal daily activities with an accuracy of 95.50% using the simulated video sequences.
Moreover, Charfi 2013 [24] observed fourteen features extracted from the detected bounding box, which
includes the aspect ratio, centroid, and ellipse orientation for the detection of falls. The combination
of Fourier and wavelet transforms, using first and second derivatives, is also utilized in determining
these features. An evaluation is then performed using the support vector machine (SVM) and adaptive
boosting (AdaBoost) classifiers. The system achieves an accuracy of 99.42%, a precision of 95.91%, and
a recall of 92.15% using the Le2i fall detection dataset. In addition, another method for the detection of
unnatural falls is proposed in 2018 [25] by extracting the features of aspect ratio, orientation angle,
motion history image, and objects below the threshold line. The obtained features are utilized as
the inputs for the detection system by applying SVM, K-NN, Stochastic Gradient Descent (SGD),
Decision Tree (DT) and Gradient Boosting (GB). The observed performance of the detection system
using Decision Tree (DT) provides an accuracy of 95%, a precision of 94%, and a recall of 95% in the
Le2i fall detection dataset. Then, The proposed fall-detection system [5], in support of independent
living for older adults, generates features for classifying falls by extracting motion information using a
best-fit ellipse and a bounding box around the silhouetted object, projection histograms, and estimates
for head position over time. A multilayer perceptron (MLP) neural network is used to generate the
extracted features for fall classification. This method shows the reliability of the approach with a
high fall-detection rate of 99.60% when tested with the UR (University of Rzeszow) fall detection
dataset. The Le2i fall-detection dataset was also used to extend [26] the performance evaluation of the
fall detection method. The accuracy of this method is 99.82% with a precision of 100% and a recall
of 95.27%.

3. Proposed System Architecture

In this section, we provide an overview of the proposed home care monitoring system to detect
abnormal events or falls occurring to ambulant people living independently. The term abnormal
represents the falls and normal represents normal daily activities such as walking, standing, sitting
and lying down. The proposed system uses a virtual grounding point concept, and its observable
visual features are as shown in Figure 1. The proposed system includes four main components: object
detection, feature extraction, analysis of abnormal and normal events, and the decision-making process
for event detection. The technical details for each component are described in the following sub-sections.
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3.1. Object Detection

The main purpose of object detection is to properly separate foreground objects from the
background in the scene. There are two main parts in object detection, described as follows.
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3.1.1. Mixture of Gaussians (MoG) Model

In this part, the mixture of Gaussians (MoG) using the low-rank matrix factorization model [12]
is selected to perform foreground and background segmentation. Using this model, knowledge
from previous frames is learned and updated frame by frame. The probabilistic model of MoG noise
distribution in the low-rank matrix factorization form in each successive frame is briefly introduced in
Equation (1):
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where xi
t signifies the ith pixels of xt, k = 1 . . . , K represents the number of Gaussians, N means the

number of random variables, ui means the ith row vectors of low-rank properties; U(basis), and vi
are the V(coefficient) matrices. In addition, σ and Π are the variances and mixture rate, respectively.
Multi refers to the multinomial distribution. Then, the MoG model is utilized by implementing the
expectation maximization (EM) algorithm on a new frame sample xt for updating parameters for
foreground and background [12]. However, the resultant MoG cannot give the optimal solution for
background subtraction, and ghost effects occur around the foreground object. In real-life video
sequences, much redundant data occurs, as when foreground objects move very slowly or remain
in place for a long period. In such situations, the system cannot always recognize a person as the
foreground when the person comes into the frame and sits there for a long time. This has been a
recurrent problem, but to address this issue, graph theory is used to refine the foreground.

3.1.2. Graph Cut

The resultant foreground and background pixels are given as a set of inputs for the video sequences.
We now seek binary labels that mark each vertex vvertex as the foreground, set to 1, and the background
set to 0. Then, these labels are computed by constructing a graph G = (vvertex, ε), where vvertex is the
set of vertices (i.e., pixels), and ε is the set of edges linking nearby 4-connected pixels [15]. Finally,
the maximum-flow and minimum-cut algorithm is applied to find the vertex labeling with a minimum
energy function [27]. In applying the theory of graph cut for refining the foreground, we here focus on
the user-assisted case, but note that an MoG mask is given every 100th frame, instead of manually
re-drawing the scribbles and region of interest (ROI) for every frame. A comprehensive research
problem and solution is illustrated in Figure 2.
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3.2. Feature Extraction

In this component, the features are extracted from the detected foreground object, including the
centroid (C), area, height, width, aspect ratios (r), and the virtual grounding point (VGP). Specialized
terminology and notations for feature extraction are provided in the following.

With the use of VGP, we aim to define new parameters describing patterns of human action. Four
steps are involved in constructing VGP, and the technical details are described as follows.
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1. Firstly, the position p at time t of the detected foreground object is defined as in Equation (2).

p(t) = (x(t), y(t)) (2)

Then, the centroid of the object is obtained by Equation (3), as shown in Figure 3a.

C(t) = (xc(t), yc(t)) (3)
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Specifically, each xc and yc is simply formulated as in Equation (4).
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2. Secondly, a vertical line from the top-most row to the bottom-most row is created along the x axis
of the centroid, as shown in Figure 3b.

3. Thirdly, a horizontal line from the left column to the right column is created along the y axis of
the centroid at the bottom-most row, as shown in Figure 3c.

4. Finally, a point for VGP(t) is marked on the horizontal line of the bottom row along the y axis
where the vertical line on the x axis extends from the centroid. Figure 3d describes the final result
for VGP, which can be formulated as in Equation (5).

VGP(t) = (xVGP(t), yVGP(t)) (5)

We noticed that the virtual grounding point (VGP) can be simply obtained from the object centroid.
In addition, the patterns of posture can be analyzed by observing pairs of changes in C and VGP, as
shown in Figure 4. The underlying pattern in Figure 4a indicates that the distance between C and VGP
is initially quite short, and then lengthens as the pattern of the person’s position changes from lying
down to getting up. The distance between points C and VGP in the pattern for sitting down is quite
short, and it shortens during the transition from standing to sitting, as shown in Figure 4b. Therefore,
the differences between VGP and C are regarded as values for the supportive features for abnormal
and normal patterns, as formulated in Equation (6).

d(t) = yVGP(t) − yc(t) (6)

where d is the distance of VGP from C along the y axis, yVGP(t) means the virtual grounding point
along the y axis at time t, and yc(t) represents the centroid along the y axis at time t.
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Moreover, information on the regularity of the object shape related to VGP is obtained by
calculating the area. Finally, the aspect ratio (r) of the object is simply calculated to predict the posture
as in Equation (7). The concepts for calculating area and aspect ratio are shown in Figure 5.

r(t) = w(t)/h(t) (7)

where r(t) represents the aspect ratio of the object at time t, and w and h refer to the width and height of
the object, respectively.
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3.3. Abnormal and Normal Event Analysis

In the analysis determining whether events are abnormal or normal, we first observe the features
of VGP on xVGP(t), yVGP(t), d, area and r, starting with observed features for xVGP(t)and yVGP(t), as
illustrated in Figure 6a. In the analysis for walking as shown in this Figure, xVGP(t) decreases at each
pixel location before the turning point. The turning point indicates where the person is walking from, or
standing to, the right or the left, and then turns to the left or the right. After this turning point, xVGP(t)
again increases significantly. At that time, yVGP(t) also decreases during a finite period before the
turning point, and then increases for an extended period after the turning point. Therefore, the period
of actions can be clearly analyzed. Comparisons between distance d and yVGP(t) can be considered
supportive VGP features in analyzing changes in the object’s position, as shown in Figure 6b. Then,
aspect ratio (r) is added as a feature to efficiently analyze the object’s posture. The person remains
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in the same posture for a period of the time, as shown by orange and blue dashed lines in Figure 6c.
Therefore, determining whether events are abnormal or normal depends on distance (d) and aspect
ratio (r), as performed using the three steps described in the following sub-sections.
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Figure 6. Concepts for observation of human posture. (a) Observation on the features xVGP(t) and
yVGP(t). (b) Observation on the features yVGP(t) and d(t). (c) Observation on the features d(t) and r(t).

3.3.1. Moving Average (MA)

In analyzing the data points statistically, the moving average is first calculated on the series of
data. An odd length symmetric moving average (MA) is computed, which can be utilized at points to
smooth time series data in order to estimate the expected trend of abnormal events. We here propose a
formula for moving average (MA) as in Equation (8).

MA(t, F, N) =
1

2N + 1

f=t+N∑
f=t−N

F( f ), F(t) = d(t), r(t) (8)

where MA(t,F,N) represents the average period in N at time t, N means the number of time periods,
F(t) represents the computation on two features, namely point distance (d) and aspect ratio (r). We
here set the optimal value of N at Th (MA(t, d, Th), and MA(t, r, Th)), to determine the detection rule
by analyzing the crossing point. The optimal value of Th depends on the frame rate, and here we
set Th = 51. The idea behind making observations from the crossing point of the moving average is
demonstrated in Figure 7a,b.
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Figure 7. Analysis for possibility of abnormal event by using moving average. (a) Moving average
calculation on aspect ratio. (b) Moving average calculation on point distance.

3.3.2. Modified Difference (MD)

The difference calculus is formulated to determine stationary points on the moving average of
aspect ratio (r) and point distance (d), as shown in Equation (9). The observation can clearly provide
information on the high possibility of an abnormal point, confirmed according to the crossing point of
moving average and the maximum or minimum stationary point.

MD(t, F, N0, N1) = MA(t, F(t + N0 + N1), N1) −MA(t, F(t−N0 −N1), N1) (9)

where MD(t,F,N0,N1) represents the modified difference for the selected features (r and d) at time t
between the predefined moving averages. The selected optimal value for N0 is 0 and N1 is 51.

Since the possibility of an abnormal point is estimated when the aspect ratio decreases relative to
the pixel’s location, the maximum difference value (lmax) on the moving average of aspect ratios can
give the highest abnormal action point. When a person falls, point distance d and its moving average
immediately increases relative to the pixel’s location. In that case, a minimum difference value (lmin)
must be considered in order to detect an abnormal event. Concepts for consideration are sketched out
in Figure 8a,b.
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Figure 8. Analysis for possibility of abnormal event by using modified difference. (a) Calculation
of modified difference on moving average of aspect ratio. (b) Calculation of modified difference on
moving average of point distance.

3.3.3. Half Width Value (vhw)

In order to more precisely detect the periods of abnormal events, we here consider a parameter
called half width value (vhw) on the curve of the modified difference. The starting point (f 1) and the
ending point (f 2) are set at the half of the largest curve which can represent the irregular event. Then,
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the periods for abnormal and normal events are obtained by calculating the distance of f 1 and f 2, as in
Equation (10), and the consideration of vhw is described in Figure 9.

vhw = |f 1 − f 2| (10)

where vhw is the half width value of MD, f 1 and f 2 mean the estimated starting and ending periods of a
fall event, respectively.
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3.4. Decision Making Process

We first apply a support vector machine (SVM) in order to classify the abnormal and normal
events. The main reason for selecting an SVM approach is that it can work well if the training dataset
is small, or occupies a high dimensional space. For the extracted aspect ratio (r), lmax and vhw are used
as inputs to SVM. Then, for the extracted point distance (d), lmin and vhw are used as inputs to SVM.
Distance D extends to a point as a linear discriminating line, formulated by employing an implicit
function to classify events. The formula for the observed aspect ratio (r) is

D(r) = a ∗ r(lmax) − b ∗ r(vhw) + c,
{

l1 if D(r) ≥ 0
l2 otherwise

(11)

where D(r) represents the distance between a point (support vector) and a linear straight line for the
feature of aspect ratio r. lmax and vhw are local maximum and half width values from the observed
modified difference, respectively. c means the SVM optimization value to avoid misclassifying each
training example. l1 and l2 represent “abnormal” and “normal” events, respectively.

Then, the feature called point distance (d), from VGP to C is formulated as,

D(d) = a ∗ d(lmin) − b ∗ d(vhw) + c,
{

l1 if D(d) ≥ 0
l2 otherwise

(12)

where D(d) represents the distance between a point (support vector) and a linear straight line for the
observed point distance between virtual grounding point and centroid. lmin and vhw are local minimum
and half width values from the observed modified difference, respectively.

When we observe vhw for abnormal and normal events, we also notice that the period of an
abnormal event is longer than that of a normal event. The reason is that a person who has fallen may
take time to recover. If such a person does not get up for a long time, that would indicate a dangerous
situation. An evaluation of the period of an event can be used to detect a fall.
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To do this, we define the sets of abnormal events as A = {a1, a2, ..., ak}, and of normal events as
N = {n1, n2, ..., nk}. We can then compute,

α1 = MIN
(
vhw

)
∈ A (13)

α2 = MAX
(
vhw

)
∈ N (14)

After that, the period detection (PD) of a fall for the observed aspect ratio (r) is obtained by,

PD(r) = (α1(r) + α2(r))/2,
{

l1 if vhw > PD(r)
l2 otherwise

(15)

Then, the period detection (PD) for point distance (d) is computed by,

PD(d) = (α1(d) + α2(d))/2,
{

l1 if vhw > PD(d)
l2 otherwise

(16)

where PD(r) and PD(d) mean period detection for abnormal and normal events for two features (aspect
ratio r and point distance d, respectively). α1 represents the minimum period value for abnormal
events. α2 represents the maximum period value for a normal event. l1 and l2 are the class labels for
“abnormal” and “normal” events, respectively.

In setting the decision-making rules, the “undecided” class is nominated in order to save the
failed states. For example, when a “normal” case is misclassified as an “abnormal” case, it can be
considered low risk. Therefore, the decision rules are set to include the undecided class. In doing so,
the rules for abnormal and normal event classification are verified with the ground truth, which refers
to the information provided by direct observation. If the value for label l1 equals that for the ground
truth, l1 is considered an “abnormal” event. If the value for label l2 equals that for the ground truth, l2
is considered a “normal event”, otherwise it is “undecided.”

4. Experiments

4.1. Dataset

In order to illustrate the proposed system, the experiments were conducted using the Le2i fall
detection dataset [28], which represents a realistic video surveillance setting taken by a single RGB
camera. The frame rate was 25 fps and the size was 320 × 240. The video sequences presented typical
difficulties, such as occlusions, clutter, and textured backgrounds. In the video scenes, falls and normal
daily activities were simulated at different locations, such as home and office. Different types of fall
events were recorded to include falls caused by a loss of balance, as well as forward and backward
falls. In the dataset, 20 videos were randomly selected to confirm the effectiveness of the proposed
system. In the video sequences, four healthy subjects including three males and one female performed
the simulated falls. Some of the video sequences used in the experiments are as shown in Figure 10.
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4.2. Implementation and Results

In the experimental work, step-by-step procedures for object detection were conducted. Then,
the acquired silhouetted objects were used to extract useful features through VGP. After that,
the extracted features from the human body were analyzed to detect falls. At this point, we stress the
importance of using step-by-step methodologies of statistical analysis for precisely detecting abnormal
and normal events. We first calculated the moving average (MA) by observing details of human
behavior and posture. For estimating the possibility of an abnormality through the crossing point, we
performed approval calculations for the modified difference (MD), including its local maximum (lmax),
and local minimum (lmin). In addition, the period of the falling event was analyzed using the half
width value (vhw). In order to classify events as abnormal or normal, the lmax and vhw of aspect ratio
(r), lmin and vhw of point distance (d) were used as the input features into a support vector machine
(SVM). To visualize the input features, Figures 11 and 12, respectively, illustrate r and d conducting
the linear discriminating line for classification. Then, period detection (PD) using the half width
value was performed to confirm falls. In addition, some of the experimental results for distinguishing
abnormal from normal events are illustrated in Figures 13–15, respectively. The analytical results for
fall trajectories were demonstrated as shown in Figure 16.
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Figure 11. Results for abnormal and normal event classification using aspect ratio. (a) Event classification
based on local maximum (lmax) and vhw. (b) Linear discrimination for class categories.
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Figure 12. Results for abnormal and normal event classification using point distance. (a) Event
classification based on local minimum (lmin) and vhw. (b) Linear discrimination for class categories.
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Figure 13. Analyzing abnormal and normal events in scenario 1. (a) Abnormal event analysis based on
lmax. (b) Abnormal event analysis based on lmin.
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For Figure 16, the following explains fall scenarios obtained from the trajectories.

• Scenario 1: In the video scene, the person is walking from the right side to the chair near the
window. Then, the person turns back and immediately falls down.

• Scenarios 2, 3 and 8: In the video scenes, the person immediately falls down while walking from
right to left, falling sideways, forward, and backwards, respectively.

• Scenario 4: The person is standing near the window and then immediately falls while turning back.
• Scenario 5: The person is walking from the left and then immediately falls down.
• Scenario 6: The person walks from the right, and sits on a chair. While getting up from the chair,

she immediately falls down.
• Scenario 7: The person walks from the left, stands near a table and walks toward a chair near the

window. After that, he immediately falls on the bedsheet.

4.3. Performance Evaluation

To evaluate the performance of the proposed methods, 3-fold cross-validation was conducted in
which variables for learning and testing were swapped. We here suppose that the abnormal A = {a1,
a2, . . . ,a13}, and the normal N = {n1, n2, . . . ,n7}. We then classified abnormal into three groups: A1 =

{a1, . . . ,a4}, A2 = {a5, . . . ,a8}, A3 = {a9, . . . ,a13}, and also for normal: N1 = {n1, n2}, N2 = {n3, n4}, N3=

{n5, . . . ,n7}. Then, we performed 3-trials with L1, L2, L3 representing the learning process, and T1, T2,
T3 signifying the testing process for trials 1, 2 and 3, respectively. In trial 1, we assumed that L1 was
(A2∪A3) ∪ (N2∪N3) for learning, and T1 was A1 ∪ N1 for testing. In trial 2, L2 was (A1∪A3) ∪ (N1∪N3)
for learning, and T2 was A2 ∪ N2 for testing. In trial 3, L3 was (A1∪A2) ∪ (N1∪N2) for learning and T3

was A3 ∪N3 for testing. After computing the learning process for each trial, L1, L2 and L3, the detection
rate was obtained by using the testing T1, T2 and T3, respectively. The overall accuracies of the system
were finally computed for each of the features by applying SVM and PD.

There are four possible results in classifying abnormal and normal events, and the definitions and
symbols are described as follows.

• Detected Abnormal (P11): A video includes an abnormal event, and is correctly classified into
class “Positive Abnormal.”

• Undetected Abnormal (P12): A video includes an abnormal event and is classified into class
“Negative Normal.”
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• Normal (N11): A video does not include an abnormal event, and is correctly classified into class
“Negative Normal.”

• Misdetected Normal (N12): A video does not include an abnormal event, and is incorrectly
classified into class “Positive Abnormal.”

The precision, recall, and accuracy were used for evaluating performance, calculated as follows.

Precision =
P11

P11 + N12
∗ 100 (17)

Recall =
P11

P11 + P12
∗ 100 (18)

Accuracy =
P11 + N11

P11 + N11
∗ 100 (19)

where accuracy was considered by including the undecided area. The concepts for calculating precision,
recall, and overall accuracy are illustrated in Figure 17.
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Figure 17. Illustration of performance evaluation from the classified abnormal and normal events.
In this figure, (a) represents four different class labels, (b) represents the consideration for precision
calculation (P11/(P11+N12)), (c) represents the recall calculation (P11/(P11+P12)), (d) represents the
calculation of accuracy (P11+N11/P11+N11) where the undecided area is an empty set.

The detection precision achieved 93.33% by utilizing SVM and PD for each of the features: aspect
ratio and point distance. The percentage of recall by applying SVM and PD were 100% and 93.33% for
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the two features, respectively. Table 1 provides a comparison of our proposed detection method for
abnormal and normal events versus existing approaches.

Table 1. Comparison with existing approaches using the same dataset.

Methods Precision Recall Accuracy

Charfi 2013 [24] 95.91% 92.15% 99.42%
Gunale 2018 [25] 95% 94% 95%
Suad 2019 [26] 100% 95.27% 99.82%

Ours (SVM) 93.33% 100% 100%
Ours (PD) 93.33% 93.33% 100%

The proposed system was implemented in MATLAB 2018b on an academic license using C++.
All of the experiments were performed on a Microsoft Windows 10 Pro with an Intel (R) Core (TM)
i7-4790 CPU@3.60 GHz and 8GB RAM. Comparing runtime with existing systems is difficult, due to
the various programming and optimization levels in use. The overall average computation time for
our proposed system is 0.72 s per frame. We expect that implementation on a tuned GPU would be
faster, and could provide real-time monitoring.

4.4. Comparative Studies of the Effectiveness and Limitations of the Proposed System

Charfi, 2013 [24] proposed an approach to detect falling events in a simulated home environment.
The processes of the system are motion detection and tracking using background subtraction.
The extracted binary image is used to construct the coordinates of the bounding box, aspect ratios,
and ellipse orientation. Then, SVM and the Adaboost-based method are utilized to classify falls. This
system is robust regarding the location changes and taking into account a tolerance on the instant
of detection.

The proposed system by Gunale, 2018 [25] extracts four visual features: motion history image
(MHI), aspect ratio, orientation angles using ellipse approximation, and the thresholds below the
referenced line. After that, these features are inputted into five different machine learning algorithms
(i.e., SVM, K-NN, SGD, GB and DT) to recognize falling problems. The DT provides the optimal result
to confirm the effectiveness of the system. The limitations of the applied methods are not widely
discussed and the deep learning models could be utilized to improve the detection rates in future work.

The system proposed by Suad, G. A, 2019 [26] investigated the effectiveness of motion information
by using tMHI, the variations of shape which are fixed in the approximated ellipse around the silhouette
body and the standard deviation of the difference for both horizontal and vertical histograms. Then,
the neural network is applied to detect falls. The limitations are that the performance of the system
depends heavily on multiple fixed thresholds. Thus, it is essential to judge the thresholds which are the
best for detecting falls. In addition, these threshold parameters are needed to observe the adaptation
for different persons in the monitoring system.

In our proposed system, background subtraction using MOG and foreground refinement using
graph cut are performed to obtain the silhouette images with low loss of useful information. Then,
the concept of VGP and the related visual features are properly presented to retrieve significant
abnormal and normal action patterns. In the analysis component, we emphasize that detection of a
falling point within the falling period depends on the modified difference of moving average. Finally,
these features are put into SVM and PD. The proposed system shows the effectiveness of the system
with high detection rates. The system scope is limited to attaining a real-time monitoring system due
to the time-consuming object detection techniques that provide good foreground images. The current
research works focuses on day-time visual abnormal and normal event detection. However, providing
a 24-h service requires extending the monitoring period to include night-time monitoring. Moreover,
a better understanding of the environment and of human–object interaction should be developed to
create an improved home-care monitoring system.
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5. Conclusions

The research work reported in this paper mainly focused on image processing technologies to
assist in providing care for dependent persons, using a new approach for reliably detecting a fall or
abnormal event. In brief, this approach uses an enhanced background subtraction method for object
detection, as well as a simple and effective feature extraction method incorporating the new concept
of a virtual grounding point. Moreover, a step-by-step approach is used for detailed considerations
in correctly selecting useful features by employing moving average and difference calculus. Finally,
abnormal and normal events are classified using a machine learning method employing a support
vector machine and our proposed period detection for events. Experimental results indicate that
the detection rate using the proposed approach achieves 100% with a low risk for error. However,
our purpose is not only to detect abnormal events such as falls, but also the details of human behavior
during normal activities by embedding an understanding of the environment. Future research in
developing a robust home care monitoring system will be enhanced by considering when and where
normal and abnormal activities occur.
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