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Abstract: Solid–liquid separation is a key unit operation in the wastewater treatment, generally
consisting of coagulation and flocculation steps to promote aggregation and increase the particle size,
followed by sedimentation, where the particles settle due to the effect of gravity. The sedimentation
efficiency is related to the hydrodynamic behavior of the suspended particles that, in turn, depends on
the aggregate morphology. In addition, the non-Newtonian rheology of sludges strongly affects the
drag coefficient of the suspended particles, leading to deviations from the known settling behavior
in Newtonian fluids. In this work, we use direct numerical simulations to study the hydrodynamic
drag of fractal-shaped particles suspended in a shear-thinning fluid modeled by the power-law
constitutive equation. The fluid dynamics governing equations are solved for an applied force with
different orientations uniformly distributed over the unit sphere. The resulting particle velocities are
interpolated to compute the aggregate dynamics and the drag correction coefficient. A remarkable
effect of the detailed microstructure of the aggregate on the sedimentation process is observed.
The orientational dynamics shows a rich behavior characterized by steady-state, bistable, and periodic
regimes. In qualitative agreement with spherical particles, shear-thinning increases the drag correction
coefficient. Elongated aggregates sediment more slowly than sphere-like particles, with a lower
terminal velocity as the aspect ratio increases.

Keywords: sedimentation; drag; fractal aggregates; shear-thinning; non-Newtonian fluids; suspensions;
numerical simulations

1. Introduction

Separation of solid particles suspended in liquids is a fundamental operation in the treatment of
wastewater. This process generally consists of a sequence of steps, namely, coagulation and flocculation,
followed by sedimentation [1]. The first operation aims at destabilizing the suspension through the
addition of coagulants that neutralize the negative charges on fine solids. The small destabilized
particles are able to come into contact and form larger particles called microflocs. In the flocculation
step, the microflocs collide and stick together forming larger and larger particles (macroflocs). Once the
suspended aggregates have reached a desired dimension, the suspension undergoes the sedimentation
step, i.e., the particles are separated from the liquid through gravity or centrifugal force [2].

The knowledge of the hydrodynamic drag force, which counterbalances the sedimentation force,
is crucial to the design and optimization of wastewater treatment plants. Such a force depends on the
size and shape of the suspended particles, and on the rheological properties of the liquid. During the
flocculation stage, the aggregates assume fractal shapes [3–6] described by the following equation [7],

Np = kf

(
Rg

a

)Df

(1)
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where Np is the number of primary particles forming the aggregate, Rg is the radius of gyration, Df is
the fractal dimension, kf is the fractal pre-factor, and a is the radius of the primary particles. Aggregates
with a shape satisfying Equation (1) are referred to as fractal-like or quasi-fractal aggregates, as the
scaling law relation is independent of whether the particle has a real scale-invariant (self-similar)
morphology [8]. The fractal dimension provides a scaling law between the number of primary particles
composing the aggregate and a characteristic cluster size (e.g., the gyration radius). It assumes values
between 1 and 3 corresponding to rod-like and spherical-like particles, respectively. The fractal
prefactor is a descriptor of the aggregate local structure and is related to the packing factor. Finally,
the radius of gyration is a geometric measure of the spatial mass distribution about the aggregate
center of mass.

The particle morphology has a relevant influence on the settling velocity, and thus it must be
accounted for when dealing with the sedimentation process of flocculated particles [9,10]. Therefore,
it is not surprising that the hydrodynamic drag of particles with complex shapes has been thoroughly
studied in the literature. Several methodologies have been proposed to compute the hydrodynamic
drag of a set of spherical particles in contact, based on expansions of analytical solutions for Stokes
flows [11–13] or direct numerical simulations [14–16]. Due to the linearity of the creeping flow
equations, the dynamics of a particle with arbitrary shape can be determined by the mobility tensor
that univocally relates translational and angular velocities to the forces and torques acting on the
particle [17]. The knowledge of the mobility tensor allows to completely predict the translational
and orientational motion of the aggregate. In this regards, it is well known that the settling velocity
depends on the aggregate orientation. The average velocity over all possible orientations can be
linearly related to the applied force, with a proportionality constant given by the arithmetic mean
of the three eigenvalues of the translational mobility tensor divided by the fluid viscosity [13,18,19].
A hydrodynamic radius can be defined as the radius of a sphere that gives the same drag force acting
on the aggregate in a uniform flow [13]. It can be readily seen that the hydrodynamic radius is
inversely proportional to the aforementioned mean of the eigenvalues of the translational mobility
tensor. The knowledge of the hydrodynamic radius for an aggregate with arbitrary shape is, then,
sufficient to characterize its average settling velocity. The ratio of the hydrodynamic radius and the
gyration radius has been found to be a function of the parameters of the fractal Equation (1) [13,19,20].
Specifically, such a ratio is an increasing function of Df, assuming a value of ~1 for Df = 2, up to a
limiting value of about 1.29 for Df = 3 [13,15,20]. The number of primary particles strongly affects the
ratio for low fractal dimensions (rod-like particles), whereas it has a weak influence for more spherical
aggregates. Finally, increasing the fractal pre-factor moves the ratio to higher values without altering
the dependence on Df and Np [13].

All the aforementioned studies consider a Newtonian suspending liquid. In addition, the developed
methodologies used to compute the hydrodynamic drag are only applicable to Newtonian fluids. Active
sludges, however, show a non-Newtonian rheology [21,22], which has a strong influence on the particle
settling dynamics. For a spherical particle in an unbounded shear-thinning inelastic fluid, modeled
with the power-law constitutive equation, several works are available showing that the drag force
deviates from the Stokes’ law [23–26]. A drag correction coefficient has been defined as the ratio
between the applied force and the Stokes’ drag law, where the viscosity is replaced by the power-law
constitutive equation with a characteristic shear rate given by the terminal settling velocity divided
by the particle diameter. The coefficient is 1 for a Newtonian fluid and increases as the flow index
decreases (i.e., fluid shear-thinning increases). For non-spherical particles, Tripathi et al. [27] carried
out finite element simulations to study the flow of a power-law fluid over prolate and oblate spheroidal
particles aligned with the flow direction. In this particular orientation, the dependence of the total
drag coefficient on the flow index was found to be qualitatively similar to that observed for spherical
particles. As the aspect ratio of the prolate spheroid increases, the drag becomes relatively insensitive
to the degree of shear-thinning. Oblate spheroids with high aspect ratio experience a lower drag as
compared to spheres.
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In summary, many works exist dealing with drag calculation of particles with non-spherical shape
in Newtonian liquids. Concerning power-law fluids, the only results available are for spheres [25]
and spheroids [27], the latter only considering particles oriented with a principal axis along the force
direction. To the best of our knowledge, a study on the combined effect of non-Newtonian rheology
and complex particle shape on the hydrodynamic drag is missing.

In this work, we investigate the hydrodynamic drag experienced by fractal aggregates suspended
in a non-Newtonian fluid by numerical simulations. We assume that the aggregates are sufficiently
large to neglect Brownian motion and that their concentration is low enough (less than 5% in volume) to
avoid hydrodynamic interactions. This allows us to consider a single-particle problem. The suspending
fluid is assumed to be inelastic and shear-thinning, and is modeled by the power-law constitutive
equation. A map of particle velocities is precomputed by running finite element simulations for
orientations of the applied force uniformly distributed over the unit sphere. Such velocities are then
interpolated and used to reconstruct the aggregate dynamics by integrating the evolution equation of
the particle position and orientation. The drag correction coefficient at long times is averaged over
several initial orientations and particle shapes with the same fractal parameters. The effect of the fractal
dimension, the number of primary particles forming the aggregate, and the flow index is investigated.

2. Mathematical Model and Numerical Method

2.1. Governing Equations

A rigid non-Brownian aggregate is suspended in a fluid and subjected to a constant force F.
The fluid is at rest far from the aggregate. The computational domain, shown in Figure 1e, is a sphere
with radius much larger than the maximum size of the particle. The aggregate is placed at the center of
the sphere. A Cartesian reference frame is selected with x denoting the direction of the applied force F,
i.e., F = (F, 0, 0). The fluid velocity is set to zero on the external spherical surface whereas a rigid-body
motion is imposed on the particle boundary. We denote by xp and θp the position of the particle center
of volume and the rotation angle, and by Up and ωp the translational and angular particle velocities,
respectively. All the symbols used in this work are reported in Table 1.

We model the aggregate shape by a set of primary spherical particles with radius a arranged to
satisfy the fractal Equation (1). The construction of aggregate shapes satisfying such equation can be
done in several ways, for instance by iteratively adding spherical particles (particle–cluster methods)
or by directly connecting clusters of particles (cluster–cluster methods) [28–32]. In this work, we adopt
the particle–cluster aggregation method proposed in [33,34]. All the available algorithms are based on
the generation of pseudorandom numbers. Therefore, infinite shapes for the same fractal parameters
can be obtained by changing the seed of the random number generator. We report in Figure 1 two
examples of structures generated with Np = 20, kf = 1.3, and Df = 1.5 (Figure 1a) or Df = 2.5
(Figure 1b).

Assuming negligible fluid and particle inertia, the fluid dynamics of the investigated system is
governed by the following mass and momentum balance equations,

∇ · u = 0 (2)

∇ · σ = 0 (3)

σ = −pI + 2η(γ̇)D (4)

where u, σ, p, I, η, and D are the velocity vector, the stress tensor, the pressure, the 3× 3 unity tensor,
the fluid viscosity, and the rate-of-deformation tensor D = (∇u + (∇u)T)/2, respectively. We model
the suspending fluid by the power-law constitutive equation:

η(γ̇) = mγ̇n−1 (5)
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where m is the consistency index, n is the flow index, and γ̇ =
√

2D : D is the effective deformation
rate. This model predicts shear-thinning for n < 1. For n = 1, a Newtonian fluid with (constant)
viscosity m is recovered.

The fluid is at rest far from the aggregate and rigid-body motion is applied at the particle boundary,
resulting in the following boundary conditions at the external spherical surface,

u = 0 (6)

and at the surface of the aggregate,

u = Up + ωp × (x− xp) (7)

with x a point of the particle boundary.

Table 1. List of symbols.

a Radius of primary particles
C Number of initial aggregate configurations
D Rate-of-deformation tensor
Df Fractal dimension
f Applied force in the body reference frame
f 0 Initial applied force in the body reference frame
F Applied force in the fixed reference frame
I 3x3 unity tensor
kf Fractal pre-factor
m Consistency index
n Flow index
n Unit vector normal to the particle surface

Nelem Number of elements of the tetrahedral mesh
Np Number of primary particles composing the aggregate

Nseed Number of seeds
p Fluid pressure

Reff Radius of a sphere with the same volume of the aggregate
Rg Radius of gyration

Rout Radius of the external sphere
S Particle surface
t Time
T Torque on the particle
u Fluid velocity
U Aggregate velocity along the direction of the applied force

Up Particle translational velocity
V Volume of the aggregate
x Point of particle boundary

xp Particle center of volume
xp,0 Initial particle position
X Drag correction coefficient
〈XR〉 Regime drag correction coefficient
〈XR〉m Ensemble-average drag correction coefficient

γ̇ Effective deformation rate
∆x Size of the elements on the aggregate

∆xout Size of the elements on the external surface
η Fluid viscosity
θ Polar spherical coordinate

θp Particle rotation angle
θp,0 Initial particle rotation angle
σ Fluid stress tensor
φ Azimuthal spherical coordinate

ωp Particle angular velocity
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Figure 1. Examples of aggregate shapes obtained from the particle–cluster method for Np = 20,
kf = 1.3, and Df = 1.5 (a), and Df = 2.5 (b). To avoid numerical issues due to the tangent point,
the centers of the spheres in contact are connected with a set of cylinders with radius 0.732a. In panels
(c,d), the final geometry of the aggregates and the surface mesh are shown. The computational domain
and the mesh on the external spherical surface is displayed in panel (e).
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Finally, we need to specify the hydrodynamic total force and torque acting on the aggregate.
Under the assumption of inertialess particle, the following equations hold,

F =
∫

S
σ · n dS (8)

T =
∫

S
(x− xp)× (σ · n) dS = 0 (9)

where T is the total torque on the particle surface S and n is the unit vector normal to the particle
surface pointing from the fluid to the boundary. Notice that the aggregate is torque-free, whereas the
only external force is the applied force F.

The solution of the governing equations gives the fluid velocity and pressure fields, along with
the particle translational and angular velocities. The translational and orientational dynamics can be
computed by integrating the following equations,

dxp

dt
= Up (10)

dθp

dt
= ωp (11)

with initial conditions xp|t=0 = xp,0 and θp|t=0 = θp,0. Notice that, for the problem under investigation
(settling dynamics of a particle in an unbounded fluid), the evolution of the aggregate center of volume
does not affect the orientational dynamics. Therefore, Equation (10) can be removed from the set of
equations to be solved.

The governing equations can be made dimensionless by choosing appropriate characteristic
quantities for length, time, and stress. As characteristic length, we choose the effective radius of the
aggregate, defined as the radius of a sphere with the same volume V of the aggregate, Reff = ( 3V

4π )
1/3.

The characteristic time is chosen as the inverse of a characteristic shear rate (U/Reff)
−1, where U is

the velocity along the direction of the applied force. The characteristic stress is m(U/Reff)
n. By using

such characteristic quantities, we can recast the governing equations and boundary conditions in their
dimensionless form. In these equations, only the flow index n appears as dimensionless parameter.
Therefore, the investigated system is fully determined by specifying n and the geometry of the
aggregate defined by the parameters in Equation (1). In this regard, the radius of the primary particles
a is related to Reff through Np. Moreover, the radius of gyration Rg is determined once the other three
parameters in Equation (1) are chosen. Therefore, the geometrical parameters that need to be specified
are the number of particles Np, the fractal dimension Df, and the fractal pre-factor kf.

To quantify the hydrodynamic resistance of the particle to the applied force, we introduce the
drag correction coefficient [25]:

X =
F

6π m
(

U
2Reff

)n−1
U Reff

(12)

defined as the applied force divided by the modified Stokes drag coefficient where the Newtonian
viscosity is replaced by the power-law model. Of course, X = 1 for a sphere in a Newtonian fluid.
The value of X depends on the orientation of the aggregate and, as such, changes in time since
the particle varies its orientation while sedimenting. As it will be discussed below, the aggregate
orientation can achieve various regimes, leading to different regime drag correction coefficients XR.
As XR is affected by the initial particle orientation, we average over C initial configurations:

〈XR〉 =
1
C∑

C

XR (13)
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Finally, to make the results independent of the seed used in the algorithm to generate the aggregate,
for each set of fractal parameters in Equation (1), the simulation is repeated with different seeds.
The ensemble-average drag correction coefficient is computed as

〈XR〉m =
1

Nseed
∑

Nseed

〈XR〉 (14)

with Nseed the number of seeds.
In this work, the fractal pre-factor is fixed to kf = 1.3, which is a value commonly used in the

literature to describe realistic aggregate shapes [8]. The sedimentation dynamics is studied by varying
the flow index, the fractal dimension, and the number of primary spheres forming the particle.

2.2. Numerical Method

The calculation of the regime drag correction coefficient requires the knowledge of the orbit
followed by the aggregate while pulled by the force. This would need, at each time step, the calculation
of the particle angular velocity from the solution of the set of equations presented in the previous
section (as discussed above, the translational dynamics is irrelevant). Instead of directly solving the
governing equations to compute the orbit, we can greatly speed-up the calculations by precomputing a
database of particle translational and angular velocities for different orientations of the aggregate [35,36].
The velocities needed at the right-hand side of Equations (10) and (11) are, then, obtained by
interpolating the data of the database. In this way, the computational effort is only due to the
construction of the database that can be used to compute the orbit for any initial orientation. Of course,
the database must be re-computed for every particle morphology.

Due to the irregular particle shape, two orthogonal vectors fixed with the particle are needed to
track the evolution of its orientation. However, it should be noted that any configuration obtained
by rotating the aggregate around the applied force is equivalent in terms of particle dynamics and
drag coefficient. Consequently, one orientation vector is sufficient to fully describe all the possible
configurations of the aggregate with respect to the applied force. This can be readily seen if we
consider the particle fixed in the laboratory frame and the applied force is rotated. All the possible
configurations are, indeed, obtained by rotating the applied force around the unit sphere (so just
considering one orientation vector). This is, in fact, the procedure we adopted to build the database,
i.e., we fix the aggregate orientation as generated by the particle–cluster algorithm and solve the fluid
dynamics problem for several orientations of the applied force uniformly distributed over the unit
sphere. More specifically, we divide the unit sphere in a triangular mesh with icosahedral symmetry.
The orientations of the force are taken as the directions connecting the center of the unit sphere and the
vertices of the icosahedral mesh. We select an icosahedral subdivision with 162 vertices, verifying that
this subdivision is sufficient to assure a good accuracy of the interpolation. Indeed, by computing the
interpolating functions on an icosahedral grid with 42 vertices, the maximum relative error is ~3%.

Once the database of particle velocities (and the corresponding drag correction coefficients) has
been computed, the rotational dynamics of the aggregate can be calculated by integrating Equation (11).
It is, however, more convenient to compute the particle dynamics in the body reference frame,
i.e., by fixing the orientation of the particle and rotating the applied force. The adopted procedure is
summarized in Algorithm 1. We have denoted with f the (time-dependent) applied force vector acting
on the aggregate, and with f 0 its initial value. In step 3, the search procedure described in [37] is used.
A linear interpolation over the spherical triangle mesh is done in step 4 [37,38]. The update of the force
f is carried out through quaternions [39]. Specifically, in step 5, a third-order Adams–Bashforth scheme
is used to integrate in time the quaternions through the angular velocity computed at the previous
step. A rotation matrix in terms of quaternions is constructed and used to update f . The procedure
just described gives the time-evolution of the applied force f and of the drag correction coefficient X(t)
that can be used to calculate the regime drag correction coefficient XR. Finally, the aggregate orbit can
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be reconstructed by transforming the force from the body to the lab reference frame, i.e., by rotating
the aggregate according to the rotation matrix that, at every instant, transform f in F = (F, 0, 0) (that
is the applied force in the lab frame). The procedure summarized in Algorithm 1 has been adopted
to simulate the rheology of a dilute suspension of fractal aggregates in shear-thinning fluids and
validated by reproducing the dynamics of spheroids in shear flow [36].

Algorithm 1 Procedure used to update the applied force in the body reference frame

1: f 0 ← initial orientation of the force

2: for t← 1, num_time_steps do
3: Identify the spherical triangle containing f
4: Compute ωp and X through interpolation over the spherical triangle in f
5: Update f using quaternions

6: end for

The solution of the governing equations to build the database is done by the finite element
method. The particle translational and angular velocities are treated as additional unknowns, and are
included in the weak form of momentum equation. Lagrange multipliers in each node of the particle
surface are employed to enforce the conditions in Equations (8) and (9) [40,41]. The fluid domain is
discretized by tetrahedral elements. Mesh generation issues arise due to the contact points between
the spheres generated by the particle–cluster algorithm. To overcome this problem, we perform a
Boolean union operation of the spheres with a set of cylinders connecting the centers of the spheres in
contact. The radius of the cylinders is 0.732a. We checked that lower values of the cylinder radius do
not significantly alter the results. The Boolean union, smoothing, and meshing of the aggregate surface
is done by the library PyMesh [42]. Examples of the surface meshes for the aggregates in Figure 1a,b
are shown in Figure 1c,d. The tetrahedral volume mesh is generated by Gmsh [43].

The mesh and geometrical parameters used in the simulations are reported in Table 2 for the
three values of Np considered in this work. The symbols ∆x, ∆xout, and Rout denote the size of the
elements on the aggregate surface and on the external domain (made dimensionless by the primary
particle radius a), and the radius of the external sphere (see Figure 1e). The number of tetrahedral
elements Nelem is reported in the last column of Table 2. Notice that, to neglect the effect of the
boundary condition far from the particle, very large external domains are needed. Furthermore,
as expected, bigger aggregates (i.e., higher values of Np) require larger external domains. We verified
mesh and domain size convergence by reducing both ∆x and ∆xout, and by further increasing Rout.
The (dimensionless) time-step size depends on the flow index n, ranging from about 0.01 for n = 1 to
0.005 for n = 0.6.

Table 2. Mesh and geometrical parameters.

Np ∆x Rout ∆xout Nelem

20 0.25 200 35 ∼25,000
50 0.25 400 60 ∼60,000
100 0.35 800 120 ∼60,000

The accuracy of the finite element solution is checked by comparing the results for a spherical
particle in a power-law fluid with those reported in Dazhi and Tanner [25]. In Figure 2, the drag
correction coefficient is reported as a function of the flow index n. The black circles are the simulation
results by Dazhi and Tanner [25] and the triangles are obtained by our simulations for different mesh
resolutions and size of the external domain (the radius of the spherical particle is 1, meshes M1 and
M2 have approximately 50,000 and 70,000 elements). First of all, the superposition of the triangles
denotes that the results are independent of the mesh and domain size used. A fair agreement between
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triangles and circles is observed for values of the flow index between 0.8 and 1. For lower n-values,
deviations between the two sets of data are observed. We believe this is due to the coarser mesh
used in Dazhi and Tanner that is particularly problematic for low values of the flow index due to
large gradients of the velocity field around the particle. We have further examined this point by
solving the same problem in a 2D axisymmetric geometry allowing for a much more refined mesh.
The results show that the data for an extremely fine mesh overlap the triangles (deviations are lower
than 1%). Furthermore, by progressively coarsening the mesh, the value of X moves towards the black
circles. It should be noted, however, that the maximum deviation between the triangles and the circles
(at n = 0.4) is ~4%, which is a relatively low value.

X
Dazhi & Tanner

Rout = 100, M1

Rout = 100, M2

Rout = 200, M1

0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.1

1.2

1.3

1.4

1.5

n

Figure 2. Drag correction coefficient X as a function of the flow index n for a spherical particle in an
unbounded power-law fluid. The black circles are the simulation results by Dazhi and Tanner [25],
and the triangles are obtained by our simulations for different mesh resolutions and size of the
external domain.

3. Results

We investigate the aggregate dynamics and the resulting drag correction coefficient by varying
the fractal dimension, the flow index, and the number of primary particles forming the aggregate.
The values selected for the three parameters are Df = [1.5, 2.0, 2.5], n = [1.0, 0.8, 0.6], and Np = [20, 50, 100].
As discussed in Section 2.2, for each set of these parameters, we first run single-step simulations for
different orientations of the applied force uniformly distributed over the unit sphere. Figure 3a–c
reports the drag correction coefficient X as a function of the polar and azimuthal spherical coordinates
(0 ≤ θ ≤ π,−π ≤ φ ≤ π), identifying the orientation of the applied force for n = 1 (i.e., the Newtonian
case), n = 0.8, and n = 0.6, respectively. The aggregate is the one shown in Figure 1a, i.e., with Np = 20
and Df = 1.5. It can be readily observed that (i) the drag correction coefficient depends on the
orientation of the force; (ii) the distributions are symmetric since X is the same for a specific force
orientation (θ, φ) and its opposite (π− θ, φ± π); (iii) in agreement with the spherical particle case [25],
the drag correction coefficient increases as the flow index decreases (see the bar legends on the right of
the panels); and (iv) the distributions are not affected by the flow index (for instance, the maxima and
minima are observed for the same orientations of the force). Previous results have evidenced a trend
between the drag force experienced by a fractal aggregate and its area projected along the direction of
the applied force [14], although this geometrical quantity is not sufficient to accurately predict the drag.
The dimensionless area of the aggregate projected along the force direction is reported in Figure 3d.
Specifically, we take the directions identified by the 162 vertices of the unity sphere and, for each of
them, we compute the area of the aggregate projected on a plane orthogonal to that direction (identified
by the spherical coordinates θ and φ). The comparison with panels (a)–(c) shows some similarities
between the distributions, e.g., the position of the maxima and minima is approximately the same,
although a strict correlation is not observed.
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Figure 3. (a–c) Drag correction coefficient for the aggregate shown in Figure 1a (Np = 20, Df = 1.5)
as a function of the force direction identified by the spherical coordinates (θ, φ) for the Newtonian
fluid (a), the power-law fluid with n = 0.8 (b), and n = 0.6 (c). (d) Dimensionless area projected along
the direction of the applied force for the same aggregate as in panels (a–c). The symbols denote the
direction of the force attained at long times for the Newtonian fluid (circle), power-law fluid with
n = 0.8 (square) and n = 0.6 (triangle).

The same quantities are reported in Figure 4 for the more sphere-like aggregate in Figure 1b
(Np = 20, Df = 2.5). As for the previous case, similar distributions are observed as the flow index is
varied, with higher values of X for more shear-thinning fluids. The projected area also shows a trend
similar to the drag correction coefficient. Due to the higher value of the fractal dimension leading to an
aggregate with a more spherical shape, the range of variation of both the projected area and the drag
correction coefficient is narrower than in the case at Df = 1.5, i.e., the influence of the force orientation
is weaker.
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Figure 4. (a–c) Drag correction coefficient for the aggregate shown in Figure 1b (Np = 20, Df = 2.5)
as a function of the force direction identified by the spherical coordinates (θ, φ) for the Newtonian
fluid (a), the power-law fluid with n = 0.8, (b) and n = 0.6 (c). (d) Dimensionless area projected along
the direction of the applied force for the same aggregate as in panels (a–c). The symbols denote the
direction of the force attained at long times for the Newtonian fluid (circle), power-law fluid with
n = 0.8 (square) and n = 0.6 (triangle).

The data presented so far refer to the instantaneous drag correction factor, i.e., the one obtained by
solving the fluid dynamics equations for a fixed orientation of the force (or, equivalently, of the
aggregate for a fixed force). The applied force, however, generates a rotation of the aggregate
(and, of course, a translation) leading to a change of the orientation and, in turn, of the drag correction
coefficient. The knowledge of the orientational dynamics of the aggregate is then crucial to determine
the time evolution of the drag correction coefficient and the regime attained by the particle. By using
the procedure described in the previous section, we compute the orientational dynamics of the applied
force for different initial orientations. Figure 5 shows the orbits for the aggregates reported in Figure 1a
(top row) and Figure 1b (bottom row), and for the Newtonian (left column) and power-law fluid
with n = 0.6 (right column). Twelve initial orientations uniformly distributed over the unit sphere
are considered (blue circles). For these sets of parameters, the orbits converge towards a unique
equilibrium point (green circle) regardless of the initial orientation. In the fixed reference frame,
this means that the aggregate achieves a stable orientation. Specifically, our simulations show that,
once the regime is achieved, the particle still rotates around the applied force, although with a very
small rotation rate (the resulting linear velocity, obtained as the angular velocity around the applied
force times the effective radius, is 2–3 orders of magnitude smaller than the sedimentation velocity).
It is important to point out, however, that this rotation does not influence the drag as any configuration
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around the force is equivalent (i.e., the force direction is a symmetry axis). The orientations of the
force corresponding to the equilibrium points (green circles in Figure 5) are shown as symbols in the
previous Figures 3 and 4. It can be readily observed that shear-thinning slightly affects the equilibrium
orientation only for rod-like particles, whereas it has no influence for higher values of the fractal
dimension (the symbols in Figure 4 overlap). Moreover, in both cases, the equilibrium orientation
does not correspond to any special value of the projected area (for instance the minimum). Therefore,
this quantity is not representative of the final orientation achieved by the aggregate and, as such,
it is not helpful to estimate the drag correction factor at long times. On the contrary, the detailed
microstructure of the aggregate needs to be considered to correctly predict the sedimentation dynamics.

Figure 5. Orbits described by the orientation of the applied force for 12 initial orientations (blue circles)
uniformly distributed over the unit sphere for: the aggregate shown in Figure 1a (Np = 20, Df = 1.5)
in a Newtonian (a) or power-law fluid with n = 0.6 (b), the aggregate shown in Figure 1b (Np = 20,
Df = 2.5) in a Newtonian (c) or power-law fluid with n = 0.6 (d). The equilibrium points are denoted
by green circles.

To further investigate on the effect of aggregate morphology, we have repeated the calculations
by varying the seed of the random number generator. We recall that, although the fractal parameters
in Equation (1) are fixed, the morphologies obtained by varying the seed are different. In the leftmost
panels of Figure 6, the regime drag correction coefficient is shown as a function of the seed for
Np = 20 and for different values of the fractal dimension and the flow index. If the force reaches an
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equilibrium point, regardless of the initial orientation like the orbits shown in Figure 5, XR is taken
as the steady-state value. These points are represented as solid circles in Figure 6. The data show
that, for Np = 20, the specific morphology (seed) has a relatively weak effect on XR, with a maximum
relative deviations of 7% from the average value. Furthermore, in all the investigated cases, a single
equilibrium orientation is achieved, except in one case (Df = 2.5, seed = 1, and n = 0.6) that will be
discussed later.

Np = 20

X
R
,
〈X

R
〉

2

2.5

3

3.5

4

4.5

5
Df = 1.5

Np = 50

Df = 1.5

Np = 100

Df = 1.5

X
R
,
〈X

R
〉

1.5

2

2.5

3

3.5

4
Df = 2.0 Df = 2.0 Df = 2.0

X
R
,
〈X

R
〉

1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

Df = 2.5

seed
1 2 3 4 5 6 7 8 9 10

Df = 2.5

seed
1 2 3 4 5 6 7 8 9 10

Df = 2.5

seed

Figure 6. Regime drag correction coefficient XR and its average over the initial orientations 〈XR〉
for different number of primary particles (columns), fractal dimension (rows), random seed for the
aggregate generation (bands), and flow index (orange n = 1, red n = 0.8, and green n = 0.6).
Solid circles and open squares denote steady-state and periodic regimes. The black dashes represent
〈XR〉.

A relevant quantity for the sedimentation process is the time tR needed to achieve the final regime.
For instance, with reference to Figure 5, this is the time needed to travel along the orbits from the
initial orientation to the green circle. Of course, the time strongly depends on the initial orientation.
Thus, we compute the orbits followed by the aggregate with orientation starting from the 162 vertices
of the spherical triangle mesh discussed in the previous section and, for each orbit, we estimate the
time needed to achieve the regime within a certain tolerance. In case a single steady-state regime
exists, we calculate the time the force requires to align with the equilibrium orientation within an
angle tolerance of 5◦. The results for Np = 20 and different values of the seed, fractal dimension,
and flow index are shown as box plots in Figure 7. The lower and higher limits of each box plot
represent the first and third quartile over the different initial orientations, whereas the black dash is
the median. In general, the (dimensionless) time decreases as the flow index decreases, whereas it is
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rather unaffected by the fractal dimension, ranging between 10 and 100 for almost all the examined
cases. There are, however, some exceptions leading to remarkably longer times.

tR

10

102

103
Df = 1.5

tR

n = 1.0
n = 0.8
n = 0.6

10

102

103
Df = 2.0

tR

1 2 3 4 5 6 7 8 9 10

10

102

103
Df = 2.5

seed

Figure 7. Box plot of the times needed for an aggregate to reach a stable regime as a function of particle
random seed, flow index, and fractal dimension. The number of primary particles is Np = 20. The black
dash within each box represents the median of the distribution.

To investigate these particular cases more in detail, we show in Figure 8 the orbits described by
the orientation of the force for (i) n = 1, Df = 1.5, seed = 9 (Figure 8a corresponding to the highest
box plot in the top panel of Figure 7); (ii) n = 0.8, Df = 2.5, seed = 1 (Figure 8b corresponding to the
leftmost red box plot in the bottom panel of Figure 7); and (iii) n = 0.6, Df = 2.5, seed = 1 (Figure 8c
corresponding to the leftmost green box plot in the bottom panel of Figure 7). In the first case, we still
observe a dynamics similar to what reported in Figure 5 with all the orbits converging to a single
equilibrium point. However, at variance with the previous cases where the orbits independently
moved towards the equilibrium point, now each trajectory converges first towards a common orbit
and then, very slowly, to the equilibrium orientation, resulting in a drastic increase of the time needed
to reach the steady-state regime. A similar dynamics is also observed for the same seed and for
n = 0.8 (red box plot) and n = 0.6 (green box plot), as well as for Df = 2.5 and seed = 3. A different
scenario is observed for the second case (Figure 8b), where the orientation of the force follows spiraling
trajectories before reaching the equilibrium point, also resulting in a longer transient dynamics. In the
third case reported in Figure 8c, the regime becomes periodic with the presence of a limit cycle.
Therefore, while settling, the aggregate continuously changes its orientation around the applied force,
coming back to the same configuration after a certain period. Notice that the cases in Figure 8b,c
correspond to the same aggregate (the fractal parameters and the seed are the same) and differ for
the flow index. Further, the same aggregate in a Newtonian fluid (n = 1) gives orbits like the ones
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shown in Figure 5. Thus, we conclude that, for this aggregate shape, a decrease of the flow index leads
to the appearance of a bifurcation (specifically a Hopf bifurcation [44]) with a qualitative change in
the regime attained by the aggregate. In the case of a periodic regime, the time reported in Figure 7
is evaluated as the time needed to reach the limit cycle within a tolerance of 5% on X. Notice that
the appearance of the bifurcation inverts the trend of tR with the flow index (the values of the box
plots corresponding to seed = 1 in Figure 7c increase with decreasing n). As the number of primary
particles of the aggregate increases, another possible scenario, depicted in Figure 8d for Np = 50,
Df = 1.5, n = 0.6, appears. Two equilibrium regimes are observed, identified by the blue and red
orbits. Therefore, depending on the initial configuration, the aggregate can orient along one of the two
stable orientations.

Figure 8. Orbits described by the orientation of the applied force for 12 initial orientations (blue circles)
uniformly distributed over the unit sphere. The parameters are (a) n = 1, Np = 20, Df = 1.5, seed = 9;
(b) n = 0.8, Np = 20, Df = 2.5, seed = 1; (c) n = 0.6, Np = 20, Df = 2.5, seed = 1; (d) n = 0.6, Np = 50,
Df = 1.5, seed = 9.
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By increasing the complexity of the shape, i.e., by increasing Np and decreasing Df, spiraling orbits,
periodic, and bistable regimes are more frequent, leading to a substantial increase of the time needed
to reach the final orientation, and, more importantly, to a significant effect of the detailed morphology
(i.e., the seed used to generate the aggregate) on the settling dynamics. This is illustrated in the middle
and right panels of Figure 6 where the regime drag correction coefficient is shown as a function of the
seed for Np = 50 and Np = 100. The periodic regime is denoted by two open squares identifying the
maximum and minimum values of the oscillation, with a corresponding XR calculated by averaging
X over a period. The bistability is indicated by two closed circles that represent the values of XR for
the two equilibrium points. In Figure 6, the average of the regime drag correction coefficient over
all the initial orientations (〈XR〉 in Equation (13)) is also reported as a black dash. In case of a single
equilibrium orientation, the unique solid circle coincides, in fact, with the dash. When multiple regimes
coexist, the black dash is closer to the one that attracts more orbits. Notice that, in some cases (see,
e.g., Np = 50, Df = 1.5, seed = 9, and n = 0.6), the values of XR for the two equilibrium points are
remarkably different, resulting in a relevant quantitative effect of the initial orientation on the terminal
velocity. At variance with the case at Np = 20, the effect of the microstructure (seed) is much more
relevant, leading to deviations up to 25% from the value of the drag correction coefficient averaged
over the seeds. In particular, maximum deviations are found for more elongated aggregates rather
than sphere-like shapes. (Indeed, in the limiting case of a spherical aggregate, different seeds would
produce the same shape.)

By averaging the data in Figure 6 over the seeds, we obtain the ensemble-average drag correction
coefficient 〈XR〉m reported in Figure 9. The data are shown as a function of the fractal dimension,
where each panel refers to a fixed number of primary particles and the curves are parametric in
the flow index. For the Newtonian case (orange symbols), 〈XR〉m can be used to calculate the
hydrodynamic radius, which is found to be quantitatively consistent with the one reported in [33].
In the investigated range of Df, the drag correction factor is a linear decreasing function of the fractal
dimension, i.e., an aggregate with a more spherical shape sediments faster than one with a rod-like
morphology. In agreement with previous results for spheres [25], shear-thinning increases the drag
correction coefficient. As already noted in Figure 6, higher values of 〈XR〉m are observed as Np increases.
This effect is more evident for low fractal dimensions where a variation of the number of primary
particles affects the aspect ratio of the aggregate, in turn altering the drag experienced by the particle.
On the contrary, as previously remarked, for aggregates with a sphere-like shape (high Df), the number
of primary particles mainly affects the “resolution” of the microstructure, without substantially
changing the main geometrical features. For the same reason, the error bars are larger for low Df
and high Np. As a final note, we recall that, especially for low fractal dimension, a variation of the
number of particles and flow index may lead to different dynamics followed by the aggregate while
sedimenting. In some cases, our simulations evidenced a qualitative change of the regime attained by
the particle (e.g., a bifurcation) as one of these parameters is varied, with obvious consequences on the
drag correction factor and on the time needed to achieve such regime. These observations prevent us to
derive a simple scaling of 〈XR〉m with Np and n. In this regard, also the averaging of 〈XR〉 over different
seeds is, in some sense, misleading as it combines drag correction coefficients of aggregates that can
experience very different dynamics. Therefore, we point out once again the importance of considering
the detailed microstructure of the aggregate to correctly predict its sedimentation dynamics.
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Figure 9. Ensemble-average drag correction coefficient as a function of fractal dimension, parametric in
the number of aggregate primary particles and for different flow indexes. The data standard deviation
and trend line are also reported.

4. Conclusions

In this work, the hydrodynamic drag experienced by a fractal aggregate suspended in a
non-Newtonian fluid is studied by numerical simulations. The aggregate shape is generated through
a particle–cluster method combining equally-sized spherical particles. The power-law constitutive
equation is used to model the suspending fluid. Finite element simulations are employed to solve
the fluid dynamics governing equations, for orientations of the applied force uniformly distributed
over the unit sphere. These velocities are interpolated and used to reconstruct the translational and
orientational aggregate dynamics. The drag correction coefficient at long times is averaged over several
initial orientations and particle shapes with the same fractal parameters.

The results show a relevant effect of the aggregate morphology and shear-thinning on the
sedimentation dynamics. Depending on the fractal dimension, the number of primary particles
forming the aggregate, and the flow index, the aggregate can undergo a variety of rotational dynamics
while settling. These can lead to a stable orientation, periodic oscillations around the force direction,
or coexistence of multiple equilibrium orientations, with relevant implications on the terminal velocity
and the time needed to achieve the long-time regime.

The ensemble-average drag correction coefficient linearly decreases by increasing the fractal
dimension in the investigated range, i.e., rod-like aggregates sediment more slowly than particles with
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an isotropic shape. Shear-thinning further reduces the settling velocity. At low fractal dimensions,
the number of primary spheres has a relevant influence on the drag correction coefficient as it
affects the aggregate aspect ratio. On the contrary, a weak effect is observed for aggregates with
a sphere-like shape as an increase of the number of spheres does not produce a relevant change of the
overall morphology.

The results reported in the present work highlight that the detailed particle shape needs to be
considered to properly predict the sedimentation dynamics. As a matter of fact, a variation of the
morphology, even with the same fractal characteristics, may lead to different transients and final
regimes. Therefore, to properly understand the settling phenomenon, the connection between the
shape of the aggregate and the resulting translational and rotational dynamics needs to be investigated.
This will be the subject of future works.

Finally, we would like to point out that the present results, although discussed in the context
of the sedimentation process, apply to any system in which a particle of fractal shape moves in a
shear-thinning liquid in a uniform flow field. Indeed, regardless of the nature of the applied force,
the particle experiences an hydrodynamic resistance that can be predicted from the results reported
in this work. In this regard, neglecting the details of the specific morphology, our calculation can be
exploited to derive a drag correlation model to be included in a computational fluid dynamic solver
for simulating particle laden flows [45].
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