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Abstract: The surface inspection of steel parts like rolling elements for roller bearings is an essential
component of the quality assurance process in their production. Existing inspection systems require
high maintenance cost and allow little flexibility. In this paper, we propose the use of a rapidly
retrainable convolutional neural network. Our approach reduces the development and maintenance
cost compared to a manually programmed classification system for steel surface defect detection.
One of the main disadvantages of neural network approaches is their high demand for labeled
training data. To bypass this, we propose the use of simulated defects. In the production of rolling
elements, real defects are a rarity. Collecting a balanced dataset thus costs a lot of time and resources.
Simulating defects reduces the time required for data collection. It also allows us to automatically
label the dataset. This further eases the data collection process compared to existing approaches.
Combined, this allows us to train our system faster and cheaper than existing systems. We will show
that our system can be retrained in a matter of minutes, minimizing production downtime, while still
allowing high accuracy in defect detection.

Keywords: automated optical inspection; image segmentation; convolutional neural networks;
surface defects; quality control

1. Introduction

Rolling elements present in, e.g., the automotive or aeronautics industry are required to satisfy
high quality standards. A single failure can lead to enormous financial and fatal damages. To assure
these quality standards, manufacturers employ surface inspection systems. These scan the roller
bearings for defects. This quality assurance step sits between the manufacturing of the element and
the bearing’s final assembly.

Surface inspection is either done through human experts or with automated machine vision
systems. The former exhibit human errors, especially after extended hours of working on the tedious
inspection task. Most automated approaches implement a set of manually parameterized operations.
This requires extensive domain knowledge. The resulting classification system is highly specialized
for the task [1]. Even minor changes in the manufacturing process can make the system unusable.
With changes in the production process, more expert knowledge is required to adapt the classification
system to the new conditions. This leads to production downtime and lower profits.

Classical machine learning systems solve this problem only to a certain extent. Such systems
combine feature extraction algorithms built on expert knowledge with learned classification
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algorithms [2]. The latter can automatically find optimal classifiers for a given set of training
data. No domain specific expert knowledge is needed for the classification algorithm. While this
automates parts of the whole classification system, expert knowledge is still required for finding
descriptive features. The feature extraction is not automatically learned from training data. Therefore,
it can’t be automatically adapted when the need arises.

Modern neural network approaches can fully automate the expert’s task of injecting domain
specific knowledge into the system [3]. Neural networks are self-learning systems and can automatically
identify useful features in an example set of data. As will be discussed in Section 2 of this work,
literature already proposes the use of convolutional neural networks (CNN) to reduce the need for
expert knowledge. However, most of the proposed systems require extensive amounts of labeled
data with a balance of defect and non-defect parts to train their CNNs [4]. Since the production of
rolling elements is already a highly optimized process, defects are a rarity. This makes collecting the
necessary amount of defect samples a time-consuming process. To avoid this, we train our network on
simulated defects.

The rest of this paper will be structured as follows: Section 2 analyzes current proposals in the
literature for the given problem. Section 3 explains the necessary background on CNNs required for
the rest of this paper. In Section 4 we elaborate on the process of collecting the training data and
simulating the defects. Section 5 describes the classification system, including the architecture of our
neural network and its training. In the last section, we evaluate the proposed system on previously
unseen training data.

2. Related Works

Detecting defects on steel surfaces is a known problem in literature. After the success of AlexNet
in the ImageNet challenge [3], many proposed systems have relied on the use of CNNs for defect
detection on such surfaces. While the literature refers to a variety of steel surfaces, their methods
were found to be applicable to our problem area of rolling elements. Zhou et al. [5] use a CNN with
a softmax classification to classify image segments. The segments have a fixed size of 200 × 200 px
and are classified into one of eight classes. The network is trained on a labeled set of 300 examples
per class before augmentation. To collect such a large dataset requires much manual labor and results
in costly production downtime. Tao et al. [6] use a cascaded auto-encoder architecture for semantic
segmentation. The defect regions found by this part of the classification system are then fed into
a traditional CNN with a softmax layer at its end. This CNN classifies the defect into one of three
classes. The authors note the systems need for labeled data as one of its main drawbacks. Ghoria et
al. [2] propose a system that to our knowledge allows the finest classification, with 24 classes. The
system slices the input image into non-overlapping windows. In our experiments, this can lead to
misclassifications when small defects are cut in half by the windowing.

While all the above papers classify the defect into several given categories, our system only detects
the presence or absence of defects. In a multi-class setting, information on the concrete type of defect
gives information on possible problems in manufacturing. However, this classification step requires
additional training time, labeled data and computational resources. By forgoing a multi-class approach,
our system outperforms most existing systems in inference and training time. The system is not required
to learn to associate features with specific defect classes. This simplifies the classification problem. If a
classification of the found defects into categories is needed later, an additional classification model can
be appended to the proposed system. In the resulting two-stage model cascade, this second model
would then classify the defects into multiple classes. These classifications would then again allow
conclusions to be drawn on problems in the production process. Luo et al. [7] discuss the advantages
of those two-stage systems and compare different approaches.

One of the downsides of supervised classification systems is their need for labeled training data.
Outlier detection approaches circumvent this requirement by training on unlabeled data. Staar et al. [8]
apply such an outlier detection approach to the problem of detecting defects on steel surfaces.
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The authors of this paper use a CNN to extract features from input images. Outliers are then detected
by comparing distances between samples in feature space in a nearest neighbor fashion. While the
need for labeled data is a downside of supervised learning approaches, they are shown to perform
better than outlier detection approaches in defect detection problems [9,10].

Our proposed approach uses simulated defects, avoiding the need for manual labeled data while
preserving the advantages of a supervised approach.

Based on the aforementioned reasons, a CNN was trained for binary image classification.
With simulated defects, data requirements in comparison to existing systems were reduced.

3. Convolutional Neural Networks

Traditional multi-layer perceptrons (MLP) are a kind of artificial neural network that is exclusively
made up of fully connected layers. When high resolution images are used as input data, these fully
connected layers result in a high number of parameters, called weights. This is due to all input pixels
being connected with all neurons in the following layer. This makes them prone to overfitting and
computationally intensive to train. To lower the parameter count of MPLs, preprocessing is applied to
the input data. The preprocessing reduces the input data dimensionality. These preprocessing steps
must be carefully chosen to not discard information from the data that is important to the classification
task. As such, it relies heavily on expert knowledge to minimize dimensionality while retaining as
much information as possible. This has similar downsides as the classical optical inspection and
machine learning approaches, as outlined in the introduction.

CNNs are another kind of ANN. They reduce the parameter count of MLPs by only connecting
neurons of ensuing layers locally. Furthermore, the weights are shared across the dimensions of the
input data, usually images. The weight sharing allows translation invariant detection of, e.g., defects
in the image. In practice, these features are implemented using a convolution operation. Learned filter
kernels of predetermined size are slid across the image with a predetermined step-width, called stride.
The network needs only to learn the parameters of the filter kernels. This reduces their parameter count
compared to an MLP operating on equal sized input data. This allows CNNs to directly operate on high
resolution input images, without preprocessing. At every position of the input image, the kernels are
convolved with the underlying pixels. The resulting image is called an activation map. The activations
of a whole layer are then stored together in a tensor and fed further downstream in the neural network.
As is the case in traditional ANNs, non-linearities are applied to the resulting activations. This allows
the network to approximate non-linear functions. Deep CNNs stack multiple layers of convolution
operations together. Every subsequent layer extracts more and more high-level features from the
input image.

Most classification systems that rely on CNNs directly classify the input image, based on these
high-level features. More recently, however, image segmentation approaches have come to the fore.
Here, the pixels of an input image are individually classified into a set of classes. For defect detection
on images, this not only allows the classification of the input, but also the localization of the defects.
The importance of defect localization is discussed in [10].

A decoder part is added to the network to achieve this segmentation. The decoder consists of
further convolution layers. It maps the CNN’s high-level features, also called latent representation,
back into an image of the input image’s size.

4. Data Collection

For data acquisition, the cylindrical rolling elements of length 13 mm and diameter 10 mm
are rotated on two co-rotating roles. A light emitting diode (LED) array emits pulses of light in
synchronization with an E2V UNIIQA+ Essential line scan camera’s trigger. The camera is connected
to a workstation computer via a high bandwidth camera-link cable and a Matrox Solius eCL/XCL-B
framegrabber. The camera is capturing a 1395 px line. To reduce motion blur, the exposure time of the
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camera is set to 50 µs. Accordingly, the LED light is of high luminance to enable the camera to capture
a bright image. This renders the influence of ambient light insignificant by comparison.

A rotary encoder is attached to the co-rotating roles on which the steel parts lie. It continuously
triggers the camera and lighting. During the element’s 360◦ rotation, the camera captures 3335 lines
of pixels, resulting in a 1395 px by 3335 px image. The resolution in both dimensions is ~107 ppcm,
creating an undistorted scan. The whole scanning process takes about half a second. This sets the upper
time limit on the processing time per image classification. Exceeding this limit results in additional
latency in the inspection pipeline.

The steel surface of an ideal rolling element is of specular nature. As is known in physics, the angle
of incidence of light is equal to the angle of reflection. Based on this, the camera is aligned to capture the
light emitted by the LEDs and reflected by the rolling element, as visualized in Figure 1. Surface defects
in the form of unevenness result in the light being reflected away from the camera. Similarly, corrosion
and other diffuse surface defects also result in less light reaching the camera. The scanned images thus
exhibit dark spots where the steel surface is less specular or not perfectly even. The camera captures a
Red-Green-Blue (RGB) image with 8-bit depth per color channel. Since no relevant color information is
present, the images were stored as grayscale images. This lowers their storage requirement and their
loading time during training.
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Figure 1. (a) A schematic side view of the hardware setup used for scanning the rolling elements.
(b) and (c) indicate how the resulting surface scan images of size 1395 px by 3335 px correspond to the
rolling element parts they originate from.

The network is trained using only defect free parts as source material. However, for evaluation
and validation purposes, multiple elements with a variety of defects were scanned. Some of these
defects are visualized in Figure 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 14 

creating an undistorted scan. The whole scanning process takes about half a second. This sets the 
upper time limit on the processing time per image classification. Exceeding this limit results in 
additional latency in the inspection pipeline. 

The steel surface of an ideal rolling element is of specular nature. As is known in physics, the 
angle of incidence of light is equal to the angle of reflection. Based on this, the camera is aligned to 
capture the light emitted by the LEDs and reflected by the rolling element, as visualized in Figure 1. 
Surface defects in the form of unevenness result in the light being reflected away from the camera. 
Similarly, corrosion and other diffuse surface defects also result in less light reaching the camera. The 
scanned images thus exhibit dark spots where the steel surface is less specular or not perfectly even. 
The camera captures a Red‐Green‐Blue (RGB) image with 8‐bit depth per color channel. Since no 
relevant color information is present, the images were stored as grayscale images. This lowers their 
storage requirement and their loading time during training. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) A schematic side view of the hardware setup used for scanning the rolling elements. (b) 
and (c) indicate how the resulting surface scan images of size 1395 px by 3335 px correspond to the 
rolling element parts they originate from. 

The network is trained using only defect free parts as source material. However, for evaluation 
and validation purposes, multiple elements with a variety of defects were scanned. Some of these 
defects are visualized in Figure 2. 

      

Figure 2. Various defects on the steel surface scans. 

For the training of the neural network, 20 high‐resolution scans of defect‐free elements were 
captured. These were sliced into 4.000 windows of size 128 × 128 px. This allows the network to be 
trained on large batches of small windows instead of small batches of whole scans. The latter 
approach suffers from noisy gradients and thus longer convergence times. 

4.1. Defect Simulation 

In case of alterations in the production process, the system needs to be quickly retrainable to 
minimize production downtime. In order to make this possible, production‐like conditions have been 
set for training. This means, that the neural network is given only few data samples. Most neural 
networks are trained on a balanced dataset to avoid bias in the trained system. However, this requires 

Figure 2. Various defects on the steel surface scans.

For the training of the neural network, 20 high-resolution scans of defect-free elements were
captured. These were sliced into 4.000 windows of size 128 × 128 px. This allows the network to be
trained on large batches of small windows instead of small batches of whole scans. The latter approach
suffers from noisy gradients and thus longer convergence times.
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4.1. Defect Simulation

In case of alterations in the production process, the system needs to be quickly retrainable to
minimize production downtime. In order to make this possible, production-like conditions have been
set for training. This means, that the neural network is given only few data samples. Most neural
networks are trained on a balanced dataset to avoid bias in the trained system. However, this requires
massive amounts of defective rolling elements. Since the production of rolling elements is already
a highly optimized process, defective parts are a rarity. To avoid the need for real defective parts,
we propose the use of simulated defects. These defects are digitally added to the scans of defect-free
rolling elements. Furthermore, limiting the training dataset to be sourced from defect-free parts also
greatly reduces the cost of manual data labeling. Most traditional segmentation approaches require
manually created labels for their training. Our approach, however, only requires ensuring that the data
samples include no defects. Scans of defective parts captured during the retraining’s data collection
process need to be taken out of the training set. These can still be used for evaluation purposes.

Defects on surface scans are simulated by masking the windows with ellipses. These are applied
to the image at a randomized position, orientation and with a randomized brightness. Low amplitude
noise is then added to texture the ellipse. The ellipses have a minimum size that escapes the tolerance
limit set by quality control. Figure 3 showcases a few examples of such defect simulations.
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images used as labels during neural network training.

Simultaneously, a segmentation mask is created for every sample. The mask features the same
ellipse with white color on a black background. These segmentation masks are used as targets during
the training of the neural network. Additionally, the original defect-free windows are also added to
the training set. The segmentation masks corresponding to these windows are all black. For every
defect-free window in the original dataset, one simulated defect with exactly one ellipse is created.
This doubles the size of the training dataset to 8.000 samples.

4.2. Augmentation and Preprocessing

The size of the dataset is further multiplied through augmentation. Augmentation generates
new data from existing data by applying label-preserving transformations to the image. While the
convolution operations in the network are invariant to translations, they are not invariant to flipping
or rotations. These additional data samples acts regularizing during training to achieve lower
generalization error.

For the presented system, every existing window was quadrupled. Its new copies were rotated by
180◦ and/or horizontally flipped. Further augmentation by 90◦ rotations was waived, since this would
alter the fine, vertical structures in the background textures apparent in Figure 2. This results in a final
dataset size of 32.000 samples.
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Before the data samples are passed to the neural network for training, further augmentation is
applied online. These augmentations include slight cropping, rotations and brightness variations.
Importantly, every transformation applied to the input image must also be applied to the targeted
segmentation mask. With every epoch of training the neural network, these additional augmentations
differ. The network thus never sees the exact same image twice.

5. Classification

5.1. Neural Network Architecture

As stated in Section 3, we propose the use of a neural segmentation network to localize defects
on the input images. Image segmentation problems are solved in the literature with convolutional
encoder-decoder architectures [11]. These remap the features extracted by a traditional CNN trunk,
back into an image of the input size. The use of an existing pre-trained network was foregone.
Architectures like SegNet [11] are usually trained on segmentation tasks for scene understanding
problems. The structures found on the steel surface scans of rolling elements bear little resemblance
to the structures found in these scenes. This results in a suboptimal feature extraction, when such
pre-trained networks are used. Additionally, existing architectures are usually quite large with 26
and 23 layers of convolutions for SegNet and U-Net [12], respectively. This depth is required for
their complex task of segmenting images into dozens of classes or finding segmentations in complex
biomedical images. Instead, a custom designed architecture as listed in Table 1 was used. It is of
smaller depth, as the given defect detection problem is a more specific and therefore less complex
problem. Furthermore, a smaller architecture allows for shorter training time and results in faster
inference time during deployment.

Table 1. Architecture of the utilized neural segmentation network.

Encoder

Layers Kernel Size Filters Stride

Conv1 7 × 7 16 /2
Conv2 7 × 7 32 /2
Conv3 7 × 7 64 /2
Resize1 - - ×2

Decoder

Conv4 7 × 7 32 1
Resize2 - - ×2
Conv5 7 × 7 16 1
Resize3 - - ×2
Conv6 7 × 7 8 1
Conv7 1 × 1 1 1

The encoder CNN consists of three stacked layers of convolutions. Each layer uses filter kernels
of size 7 × 7 pixels. After all convolution layers, Leaky-ReLU activations are used as non-linear
activation functions. The first layer convolves the image with 16 filters. Every subsequent layer in the
encoder doubles the filter count. A stride of two in all three convolution layers reduces the size of
the activation images in both dimensions by a total factor of eight. A reduction of the activation map
sizes through the more common max pooling operation was forgone, based on the conclusions drawn
in [13]. The bottleneck resulting from the size reductions reduces the representational capability of
the network and acts regularizing. Since every pixel in a segmentation problem is equally important,
the convolution operations also act on edge pixels of the image. To allow this, reflection padding extends
the size of the image before convolutions are applied. Most CNN architectures use zero-padding to
fill the space around the image. In our experiments, this led to artefacts on the edges of activation
maps. The padded zeros can be interpreted as defect image regions and result in erroneous behavior.
To combat this problem, reflection padding extends the image by reflecting inner image pixels outwards.
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These padded pixel values are more plausible and reduce unwanted detection in the activation map,
as is apparent in Figure 4.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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To regularize the network, spatial dropout instead of regular dropout is added after every
convolution layer in the encoder. Regular dropout is less effective in convolution networks, as is
discussed in [14]. The authors of [14] use a 10% drop rate in their CNN. Our experiments showed
that further regularization at 30% drop rate results in best performance, given the low amount of
training data.

The decoder part of the segmentation network decodes the latent representation into a segmentation
mask. It stacks three resize convolutions, starting with 32 kernels. Every subsequent layer halves the
filter count. Resize convolutions were used instead of the more common transpose convolutions to
avoid checkerboard artefacts, as discussed in [15]. The resize layers of these convolutions use bilinear
up-sampling to double the image dimensions along both axes. An additional, final convolution layer
merges the activations the last eight filters into a grayscale image. A sigmoid activation function in the
last layer limits the images to a zero to one range.

The general architecture was modeled to reflect common practices in the field of deep learning.
The kernel counts are a power of two, doubling with every encoder layer, similar to SegNet and U-Net.
Likewise, the decoder is roughly mirroring the encoder part of the network. The filter kernels were
chosen to be relatively big at 7 × 7, to give the network a big receptive field of r = 127 px, as shown in
the following calculation:

r = k1 +
N∑

n=2


 n−1∏

m=1

sm

·(kn − 1)

 (1)

where N is the total number of layers, sm is the stride of the m-th layer and kn is the kernel size of the
n-th layer. The large receptive field allows the network to put individual output pixel into the context
of a large input image region. This allows the network to accurately detect defects of low severity but
big expanse.

The hyper-parameter configuration of the model was empirically arrived at, after the model was
continuously fine-tuned over the course of several training runs. It was chosen to maximize accuracy
while keeping inference time acceptable.

5.2. Training

The 128 × 128 px windows created during data collection are randomly grouped into batches of
size 128 and fed into the network. For the entire training set, this results in 250 batches. These batches
are iterated over during every training epoch. Due to its fast convergence, the Adam optimizer with
a learning rate of 0.001 was chosen for training the network [16]. The optimizer applies gradient
updates to the network weights to lower a binary cross-entropy loss function. The graph in Figure 5
displays training and validation loss of the network during training. A 20% subset of the training data
is withheld from training and used for validation. Since this validation data also consists of unrealistic
simulated defects, it is not wholly representative of the network’s final generalization error on real
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data. Therefore, a smaller validation dataset of real defect data was generated. These samples were
manually labeled to measure the network’s generalization error to real defects. After every epoch
during training, the errors for both validation sets are recorded. Every epoch of training took around
one minute to complete on a Nvidia RTX 2070 Super GPU.
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Figure 5. Training graph and two validation graphs for a validation dataset consisting of real and
simulated defects respectively, plotted over the course of training.

As apparent in Figure 5, the blue validation curve reaches its minimum after the ninth epoch,
which took around nine minutes to train. The continuing downward trend in the other two curves
indicates that further training would reduce their respective errors. However, the network would then
over-fit on simulated defects and perform worse on real defects. This fast over-fitting on simulated
defects can be attributed to their dissimilar appearance to real defects. Stopping the training when the
validation error on real data is smallest is necessary as a regularizing measure. This so-called early
stopping allows generalization from defect simulations to real defects. In repeated trials, the lowest
generalization error on real defects reliably lay between the fifth and tenth epoch. When the system is
retrained and no validation data is available, the above-mentioned early stopping point can be used to
avoid overfitting. The complete data collection and training process is summarized in Figure 6.
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5.3. Post-Processing

The segmentation image created by the neural network marks defect image regions and their
intensity. Further processing is required to translate the segmentation into a binary classification for
the whole rolling element. If any of the defect segments found by the network escapes the tolerance
threshold and is of significant intensity, the whole part is rejected. Algorithmically, the image is
convolved with a Gaussian kernel. This reduces noise in the image and lowers the amplitude of small
defects. Pixels of larger defect segments are only averaged with neighboring defect pixel, thus retaining
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their peak amplitude. The resulting image only leaves big enough defects that escape the tolerance
threshold. In a final step before classification, the image is binarized by rounding its pixels to either
0 or 1, whichever is nearest. If any pixel in the binarized image differs from zero, the whole rolling
element is discarded.

5.4. Inference

During its application, the system runs on a workstation desktop PC with a Nvidia RTX 2070
Super GPU. The camera captures one 1395 × 3335 px image per 0.5 s. During this time, the system
preprocess, segments and post-processes the previous image. The preprocessing part of the system
is added to the system after training. It consists of converting the images from RGB scans to gray
images and normalizing them. This is necessary, since the network was trained on gray images, as was
discussed in Section 4. The conversion is done with a preset convolutional layer. This layer has a
single filter kernel with a 1 × 1 size. Its weights correspond to the channel weights as defined in the
CIE 1931 linear luminance and shown in Equation (2). Implementing the conversion as a convolution
layer allows us to add it to the neural network’s computational graph.

Y = 0.2126 ·R + 0.7152 ·G + 0.0722 · B (2)

The normalization of the images deducts their mean and divides every pixel by the standard
deviation of the image. This makes the whole system invariant to differences in brightness as they can
arise when the camera’s aperture is changed or the LED lighting ages.

Both preprocessing steps, as well as both post-processing steps described in the previous section
were added to the computational graph and run on the GPU. This allows these operations to be
accelerated though parallelization. Furthermore, this means the entire system from input image to
binary classification is encapsulated in a single graph definition. Updates to the classification system
only require a single file to be swapped during production. This further reduces maintenance time.

Since the segmentation network consists solely of size invariant operations, it can process images
of any given size. While the network was trained on windows of size 128 × 128 px, the inference is
done on the whole image of size 1395 × 3335 px. The batch size during inference is one, resulting
in memory requirements of similar magnitude. Segmenting the whole image at once removes the
necessity to slice up the image for inference. This removes artefacts that would occur at the cutting
edges. At the edge of the scan itself, reflection padding further reduces artefacts, creating a clean
segmentation. Figure 7 summarizes the inference process.
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Figure 7. A flowchart of the inference procedure. A single scan at a time is preprocessed and fed
through the neural network. The resulting segmentation is filtered and binarized via a threshold.
The maximum in the resulting binary image, either one or zero, is the final classification.

6. Evaluation

As mentioned in the introduction, defect elements are a rarity. Due to this, 10 non-defect rolling
elements were manually damaged to create a test dataset. These parts were not used during training
of the neural network. To test the system on numerous defects, each rolling element was damaged
with an average of 5 defects. After scanning the parts, this resulted in a total test-set of 50 defect image
regions. The system was then evaluated on how many of these defects were correctly found on the
10 test images.

If the system’s performance would be rated on a per part basis, it would suffice to only detect
one of multiple defects on a given part. Even though the other defects could be missed, the resulting
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classification is correct. This would inflate the system’s accuracy, as these false negatives are not
factored into the resulting score. Instead, measuring the system’s accuracy on individual defects
within an image prevents this. Since there are more defects than parts, this also allows for a much finer
accuracy measurement. In practice, the predicted binary segmentations are evaluated instead of the
final binary classification of the part. The former highlights individual defects, while the latter only
classifies the whole part. However, during the system’s later deployment only the binary classifications
of the individual images are of interest.

To measure the accuracy of the network predictions, they were compared to manually created
segmentations. The system was evaluated using an intersection over union (IoU) score between the
labels and the network predictions, as is standard in image segmentation problems in literature [11].
IoU is a normalized measure of the overlap between two segmentation masks. It is defined as:

IoU(y, ŷ) =

∣∣∣y∩ ŷ
∣∣∣∣∣∣y∪ ŷ
∣∣∣ (3)

where ŷ is the network prediction and y is the manually created target segmentation.
Figure 8 visualizes the measures used in the IoU score. The pixels highlighted in green in the

rightmost image are in the intersection of both binary masks to the left. Together with the pixels
highlighted in red and yellow, they form the union of both masks.
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Figure 8. (a) An excerpt of a rolling element scan with a defect. (b) The binarized network segmentation
prediction corresponding to the excerpt in (a). (c) The manually created label corresponding to the
excerpt in (a). (d) Both binary masks in the left images are overlaid on top of the original input image.
The intersection of both masks is highlighted green, while the false positive predictions of the network
are highlighted in yellow and the false negatives in red.

Evaluated on the test set, the system achieved an IoU score of 98.0%. Neither the manually drawn
masks, nor the predicted masks can be expected to pixel perfectly overlay the defect. Achieving higher
scores through further parameter tweaking thus seems unlikely. Big defect areas that are correctly
classified contribute the most to a high IoU score. At the same time, these defects are easiest to detect.
Due to this, we further measured the detection rates of defects. If the system detected at least one
NOK pixel in a defect, the defect is counted as detected. It is crucial to detect all defects on a part in
the given setting. Over the whole test dataset, the evaluation resulted in the scores listed in Table 2
for detection of single defects. Here, false negatives (FN) count the number of defects missed by the
system. False positives (FP) count the number of wrong detection of defects, where the surface is
actually intact. The true positives (TP) count the number of correctly detected defects. Additionally,
the listed counts are combined into an F1 score, according to the following equation:

F1 =
2TP

2TP + FP + FN
, (4)
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Table 2. True positive, false positive and false negative rate of the classification system on the test set
and a combined F1 score for the three rates.

TP FP FN F1

50 2 0 98%

The system correctly found all 50 defects. No defects were missed. Only two false positives
were recorded, where the system predicted a defect where none was present on the manually created
mask. Both false positives were close to each other. Figure 9 shows that they are a result of the same
underlying image texture. The texture features small defects that are below the tolerance threshold.
As such, they should not be detected by the system.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 14 
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Figure 9. The two false negatives (yellow) that were predicted by the system. The underlying scan
exhibits small defects, but below the tolerance threshold.

The complete evaluation process is summarized in Figure 10. Further testing on a larger test
set is required to confirm the above-mentioned measurements. Given the risk associated with false
negatives, trading off a lower false positive rate with a higher false negative rate is inadvisable. Due to
the limited test-set size, the given results serve only as preliminary insights. It is possible that the
limited test-set does not capture the full variance of defects encountered in production. The measured
accuracy during later deployment could therefore be lower.
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Figure 10. A flowchart depicting the evaluation procedure. The test data flows through a pipeline,
similar to the inference pipeline, but without the post-processing steps. The predicted segmentations
are then compared with manually created label masks, according to the two mentioned metrics.

Averaged over 25 runs, the system takes 153 ms to process one 1395 × 3335 px surface scan.
This allows later scalability of the system to more or bigger scans during one scan period. Figure 11
shows an exemplary output of the network for an input image with a defect.
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7. Conclusions

Based on only a limited, unlabeled, and unbalanced dataset, we developed a classification system
that reliably detects defects on the surface scans of rolling elements. Using heavy augmentation
and windowing, the size of the dataset could be multiplied until sufficient for training of a neural
network. The chosen convolutional encoder-decoder architecture was trained to segment its input data.
Simulated defects bypassed the need for rare, real defective parts and lowered the manual labeling
efforts required for training. While simplistic, experiments showed that the simulated defects were
viable in training the network to perform well on real data. It is unlikely however, that the presented
approach would work on a task where defects are too complex to reliably simulate. This limits
the proposed system’s application to domains, where defects are well understood, simple and
clearly defined.

The data required and the low training times of the neural network allow the system to be quickly
retrained. This enables it to adapt to changes in the production process and different classification
circumstances. Thanks to a GPU implementation of all necessary pre- and post-processing operations,
the system allows rapid inference during its working phase. Preliminary laboratory tests resulted in
satisfactory classification rates. In the future, a bigger test in a production environment is required to
confirm these results.
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