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Featured Application: For assembly incoordination caused by excessive assembly deviations,
the proposed method can predict the assemblability and solve the assembly features that need
accuracy compensation, to improve the assembly efficiency.

Abstract: The assembly process is sometimes blocked due to excessive dimension deviations during
large-scale assembly. It is inefficient to improve the assembly quality by trial assembly, inspection, and
accuracy compensation in the case of excessive deviations. Therefore, assemblability prediction by
analyzing the measurement data, assembly accuracy requirements, and the pose of parts is an effective
way to discover the assembly deviations in advance for measurement-assisted assembly. In this
paper, a coordination space model is constructed based on a small displacement torsor and assembly
accuracy requirements. An assemblability analysis method is proposed to check whether the assembly
can be executed directly. Aiming at the incoordination problem, an assemblability optimization
method based on the union coordination space is proposed. Finally, taking the space manipulator
assembly as an example, the result shows that the proposed method can improve assemblability with
a better assembly quality and less workload compared to the least-squares method.

Keywords: measurement-assisted assembly; coordination space; assemblability; small
displacement torsor

1. Introduction

Large-scale mechanical products like ships, automobiles, aircrafts, etc. are complex in structure,
large in size, and accurate in assembly quality. The assembly workload of the manufacturing process is
heavy [1]. These products often need accuracy compensation in the assembly process because of the
excessive assembly deviations, which lead to inefficiency. The assembly deviations might be caused by
the eventual poor machining quality of parts, or excessive tolerances set by designers. Thus, the trial
assembly is often used to detect the assembly deviations in advance, and the parts are then separated
to make an accuracy compensation on the bad dimensions. The assembly process takes a long time
by the following steps: Trial assembly, measurement of deviations, separation of parts, and re-trial
assembly. Therefore, an assemblability analysis and optimization method based on the measurement
data is necessary to predict the assembly deviation and make the accuracy compensation in advance.

With the development of measurement-assisted assembly (MAA) [2], measurement technology
has become a bridge between the real world and the digital world. Marguet et al. [3] introduced a MAA
application in an airbus assembly line. The least-squares method was used to calculate the optimal
pose. Chen et al. [4] proposed a weighted SVD algorithm to obtain the optimal pose of components,
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which improved the accuracy of pose evaluation. Li et al. [5] proposed a coaxial alignment method
using distributed monocular vision. The iterative reweighted particle swarm optimization method
was constructed to improve the measurement ability of complicated wearing holes. Wang et al. [6]
calculated the assembly clearance of a wing-fuselage assembly based on the optimal pose. The above
methods mainly consider the measurement and calculation of the assembly pose, and then realize
alignment through pose adjustment tooling. The assembly will be difficult if the quality of the parts
is poor.

Assemblability prediction is the first step to judge whether the assembly is qualified in the
measurement-assisted assembly. Sukhan et al. [7] evaluated the assemblability based on tolerance
propagation. Sanderson et al. [8] assessed the assemblability by the maximum likelihood problem,
which was solved by the Kalman filter algorithm. The traditional assemblability evaluation methods
are mainly used to find the assembly problem in the design phase, but not in the assembly phase.
Cui and Du [9] proposed the concept of pose feasible space to assess the assembly coordination. Yuan
et al. [10] proposed an assembly quality assessment method based on weighted geometric constraints
to calculate the optimal pose. Wu et al. [11] proposed a constraint coordination index to assess the
assembly quality. Ma et al. [12] developed the assembly precision pre-analysis technique in the
simulation of virtual assembly. Du et al. [13] proposed a pose decoupling model of the axis tolerance
feature to decouple the analysis of any pose within the tolerance domain.

The accuracy compensation methods are used to improve assemblability. The digital compensation
method has become a research highlight to improve the assemblability. Davis et al. [14] put forward the
method of measuring the assembly clearance and realizing the digital manufacturing of the accuracy
compensation gasket. Fabian et al. [15] introduced a shimming method by 3D printing technology, and
the assembly clearance was measured by optical measurement. Wang et al. [16] provided a shimming
method based on scanned data for a wing box assembly involving non-uniform gaps. In addition,
finite element analysis was taken to improve the shimming scheme. Those methods, however, need
to be assembled first, followed by measurement of the deviations to be compensated, resulting in a
lower efficiency.

Some scholars proposed predictive shimming and predictive fettling methods to improve the
assembly efficiency and quality [17]. Cui et al. [18] proposed the oriented points group to calculate the
deviation of multiple shaft-and-holes, and the gap was shimmed. Yang et al. [19] analyzed the deviation
from the measured point cloud to the model to improve skin finishing. Yu et al. [20] employed a virtual
assembly and repair analysis method based on both the geometric design model and object scanning
model. Manohar et al. [21] proposed an alternative strategy for predictive shimming, based on machine
learning and sparse sensing to first learn gap distributions from historical data. Lei et al. [22] presented
an automated and in situ alignment approach with the assistance of computer numerical controlled
(CNC) positioners and laser trackers to reduce the finish machining workload. The above studies are
aimed at specific cases.

The accuracy compensation method is usually applied after assembly. Then, the assembly
sometimes needs be separated, which leads to low efficiency. In this paper, an assemblability
analysis and optimization method based on the coordination space model is constructed during
measurement-assisted large-scale assembly. In Section 2, the coordination space model based on
the small displacement torsor is constructed. In Section 3, the assemblability analysis based on
the coordination space model is proposed. In addition, the uncoordinated case is further analyzed.
In Section 4, the assemblability optimization method based on the union coordination space is proposed
for the uncoordinated case. In Section 5, the space manipulator assembly is taken as an example to verify
the proposed method. The result shows that the proposed method can optimize the assemblability
with less workload and better assembly quality compared to the least-squares method.



Appl. Sci. 2020, 10, 3331 3 of 18

2. Coordination Space Model Based on Small Displacement Torsor

Assemblability refers to the ability of parts to satisfy the assembly accuracy requirements in
terms of dimensions, which can be expressed by coordination accuracy. Traditionally, coordination
accuracy [23] is the difference in the manufacturing dimensions. Figure 1 shows the coordination
accuracy of a keyway assembly.
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Figure 1. Coordination accuracy of a keyway assembly.

The coordination accuracy is
∇AB =1 +2 = LA − LB, (1)

It can be seen that the coordination accuracy is the amount of the allowance on a certain dimension.
In this way, the assembly coordination of a single dimension is well presented by coordination accuracy
such as angle, length, etc. However, it is not suitable for complicated assembly. Therefore, the concept
should be extended to pose allowance space and the space can be predicted by digital measurement
data during large-scale assembly. This space is named the assembly coordination space, which is the
ability of pose variation under the condition of assembly accuracy requirements, as Figure 2 shows.
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The parts of the assembly are divided into the reference part and the align part. The reference
part is the fixed part during assembly and the align part will move to the target pose by the pose
adjustment tooling. Assume that the primary measurement data of the two parts are PR =

[
pR

1 pR
2 . . . pR

n

]
PA =

[
pA

1 pA
2 . . . pA

n

] , (2)

where PR and PA are the point sets of the reference part and align part, separately, where pR
1 , etc. and

pA
1 , etc. are the points of the sets PR and PA, respectively. The two parts are separated first. According

to the least-squares method, the optimal assembly pose can be calculated by PR
≈ RPA + T

e = min
{∑n

i=1 ‖RpA
1 + T−PR

‖
2
} , (3)
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where R is the rotation matrix, T is the movement matrix, and e is the minimum residual sum of
squares. The singular value decomposition method [24] is taken to calculate the parameter R and T.
Then, the optimal pose of the align part based on the least-squares method is

ω0 =

[
R T
0 1

]
, (4)

The assembly deviation can be predicted by the pose ω0 of the align part. The key assembly
characteristics (KAC) [25] are the important geometric structures that have key influences on assembly
quality. They are described by measurement data and some dimensions that are not necessary to
be measured.

K = {P, G}, (5)

where K is the parameters of a KAC, P is the measurement data, G is the dimensions that are not
necessary to be measured. The KACs have an irregular distribution in space during large-scale
assembly. As shown in Figure 3, the wing-fuselage assembly is completed by 4 pairs of joints. There are
four assembly accuracy requirements on each pair of joints: Two on coaxialities and two on clearances.
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The KACs are restrained by assembly accuracy requirements. The assembly accuracy is described as

Ti
j = f i

j

(
KR

i , KA
i

)
, (6)

where KR
i is the parameters of the ith KAC on the reference part (fuselage), KA

i is the parameters of the
ith KAC on the align part (wing), Ti

j is the jth assembly accuracy of the ith KAC, and f i
j is the mapping

from parameters to the assembly accuracy. The assembly accuracy should meet the requirements of
assembly accuracy, which is formulated in Equation (7)

Ti
j ∈

[
Ti−min

j , Ti−max
j

]
, (7)

where Ti−min
j and Ti−max

j are the ranges of Ti
j. Substitute Equation (6) into Equation (7):

f i
j

(
KR

i , KA
i

)
∈

[
Ti−min

j , Ti−max
j

]
, (8)

For the m assembly accuracy requirements on n KACs of the assembly, the constraint equations
can be expressed as

∀ f i
j

(
KR

i , KA
i

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji], (9)
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where ji is the assembly accuracy requirement number of the ith KAC, m =
∑n

i=1 ji. When all KACs
satisfy their assembly accuracy requirements, the pose is a valid pose to be aligned.

As shown in Figure 4, the valid pose may not be the only one that satisfies all assembly accuracy
requirements. Therefore, the adjacent poses of the primary pose shown in Figure 4a can be analyzed.
A small displacement torsor (SDT) [26] represents a tiny rigid body’s pose variation. It is described as

ω∆ = (x∆, y∆, z∆,α∆, β∆,γ∆), (10)Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 15 
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The homogeneous transformation matrix of an SDT is

ωH
∆ =


Cγ∆Cβ∆ −Sγ∆Cβ∆ Sβ∆ x∆

Sγ∆Cα∆ + Cγ∆Sβ∆Sα∆ Cγ∆Cα∆ − Sγ∆Sβ∆Sα∆ −Cβ∆Sα∆ y∆

Sγ∆Sα∆ −Cγ∆Sβ∆Cα∆ Cγ∆Sα∆ + Sγ∆Sβ∆Cα∆ Cβ∆Cα∆ z∆

0 0 0 1

 ≈


1 −γ∆ β∆ x∆

γ∆ 1 −α∆ y∆

−β∆ α∆ 1 z∆

0 0 0 1

, (11)

where S is sin, C is cos, lim
α∆→0

Cα∆ = 1, lim
α∆→0

Sα∆ = α∆, and lim
α∆ ,β∆→0

Sα∆Sβ∆ = 0. The change in point

p = (x, y, z) after a slight change in the rigid body’s pose is

p′ex = [x y z 1]


1 −γ∆ β∆ x∆

γ∆ 1 −α∆ y∆

−β∆ α∆ 1 z∆

0 0 0 1

 =


x + x∆ + β∆·z− γ∆·z
y + y∆ − α∆·z + γ∆·x
z + z∆ + α∆·y− β∆·x

1


T

, (12)

Then, the assembly accuracy would be

Ti−ω∆
j = f i

j

(
KR

i , KA
i ω

H
∆

)
= f i

j

(
PR

i , GR
i , PA

i ω
H
∆ , GA

i

)
, (13)

On this pose, if the assembly accuracy requirements are still satisfied as

∀ f i
j

(
KR

i , KA
i ω

H
∆

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji], (14)

the pose is still a valid pose. The coordination space model can, hence, be expressed as

∅CS =
{
ω∆

∣∣∣∣∀ f i
j

(
KR

i , KA
i ω

H
∆

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji]

}
, (15)

where ∅CS is the coordination space, which is the whole pose variation space under the condition of
assembly accuracy requirements.
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3. Assemblability Analysis Based on Coordination Space Model

Assemblability refers to the geometric consistency of the matching geometric structures of
the two assembling parts. It can be judged whether the assembly can directly be carried out by
assemblability prediction.

The assemblability is good if the coordination space is greater than 0, which means at least one
pose conforms to Equation (15). Otherwise, the assemblability is bad. Therefore, the assemblability
analysis flow is shown in Figure 5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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Firstly, the KACs are measured by a laser tracker or other digital measurement devices. Then, the
coordination space model is constructed based on the assembly accuracy requirements. The volume
of the coordination space is solved to judge whether it is assemblable. It will be assemblable when
∅CS is greater than 0. The assembly can be executed by calculating the optimal pose and aligning the
parts. It will be uncoordinated when ∅CS is 0. Then, the assembly deviation should be analyzed and
compensated to make it assemblable.

The solution process of the coordination space is based on the Monte Carlo method:

1. Calculate the optimal pose based on the least-squares method.
2. According to the dimensions and assembly accuracy requirements, a maximum pose space is

assumed, as Equation (16) shows. All poses out of the space are not valid for any assembly
accuracy requirements.

ωd : (−xd,−yd,−zd,−αd,−βd,−γd)→ (xd, yd, zd,αd, βd,γd), (16)

3. Generate a random SDT uniformly for nT times and check the SDTs by Equation (15).
4. If n j of nT SDTs are valid, the coordination space is

∅CS =
n j

nT
64xdydzdαdβdγd, (17)

In the case of incoordination, the coordination space should be further analyzed. According to
Equation (15), the coordination space is the intersection of KAC’s constraint equations. All constraints
are divided by KACs. Equation (15) will be translated to
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KR

2 , KA
2ω

H
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)
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. . .
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(
KR

n , KA
nω

H
∆

)
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[
Tn−min

j , Tn−max
j

]
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, (18)

Let
∅KAC

i =
{
ωi−KAC

∆

∣∣∣∣∣ ∀ f i
j

(
KR

i , KA
i ω

H
∆

)
∈

[
Ti−min

j , Ti−max
j

]
, j ∈ [1, ji]

}
, (19)

where ∅KAC
i is the KAC coordination space formed by the assembly accuracy requirements of a KAC,

and ωi−KAC
∆ is an SDT in the KAC coordination space. The ∅CS would be

∅CS =
⋂n

i=1
∅KAC

i , (20)

The relationship between the KAC coordination space and the assembly coordination space is
shown in Figure 6a.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15 
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Figure 6b shows the status of the KAC coordination space when the assembly is uncoordinated.
Each area of the same color represents a KAC coordination space. The divided zone is named the
coordination zone. The accuracy compensation method is needed to improve the assemblability.

According to Figure 6b, set the union of KAC coordination space as a union coordination space.
It is formulated as

∅UCS =
⋃n

i=1
∅KAC

i , (21)

where ∅UCS is the union coordination space. In the union coordination space, all poses are valid for
some KACs but not valid for all. Some divided zones are valid for more KACs than others, e.g., the
two zones marked with 3 are better than those marked with 1 or 2. The marked number is named the
coordination zone index, which is the valid KACs′ number in the coordination zone. If a pose in the
zone marked with 3 is selected, only one KAC needs to be compensated. In this way, an assemblability
optimization method is put forward by selecting a coordination zone with larger volume and KAC
number. The larger volume means a better geometric consistency, and the larger KAC number means
fewer KACs need to be compensated.

4. Assemblability Optimization Based on the Union Coordination Space

The accuracy compensation process is time- and effort- consuming [22] when the assemblability
is poor. For example, it needs programming, clamping, tool setting, machining, loosen clamping,
and other steps when finishing a KAC with cutting. Therefore, reducing the number of KACs to
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be processed is an effective means to improve the assembly efficiency in many cases. The optimal
pose is usually obtained under the condition of optimal assembly accuracy. If each unqualified KAC
is compensated one by one under the optimal pose, more work may be needed and the assembly
quality might not be good, due to the unknown assembly quality after accuracy compensation. If the
assembly quality is bad after compensation, there are no alternative compensation schemes based
on the least-squares method. Therefore, the assemblability optimization method is proposed to
solve the incoordination problem. The key to optimize the assemblability is whether there is one or
more coordination zones that can satisfy assembly accuracy requirements with fewer KACs to be
compensated and a better or approximate volume of coordination space.

The coordination zone index shows the valid KACs in the certain coordination zone. The total
number of all KACs is nKAC. The incoordination zone index shows the number of uncoordinated KACs
in the coordination zone. Their relationship is

nIZI = nKAC − nCZI, (22)

where nIZI is the incoordination zone index and nCZI is the coordination zone index. If the accuracy of
uncoordinated KACs is compensated well in the coordination zone, this coordination zone will change
to the assembly coordination space, as Figure 7 shows.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 15 
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In this way, each coordination zone can be analyzed to check whether it is good to be compensated
or not. Two indicators of the coordination zone should be analyzed, one is the incoordination zone
index, and the other is the volume of the coordination zone. The Monte Carlo method of Section 3
is improved to judge the state of each coordination zone one by one, and the optimal assemblability
optimization schemes of the coordination zone are selected for recording.

The solution process based on the Monte Carlo method is as follows:

1. Solve the optimal pose of the align part;
2. Set a pose space as the pose boundary as shown by the square box of Figure 8;
3. Generate a random SDT in the pose space;
4. According to Equation (19), judge which KAC equations are satisfied (coordination zone index)

and which are not (incoordination zone index);
5. Cluster the analysis results of each SDT. The SDTs in the same coordination zone are

clustered together;
6. Put the clustered results into the data structure of Equation (23). The KAC number to be

compensated is the incoordination zone index. Select the scheme with a better KAC number and
space volume of the coordination zone.{

Γ|Γ i =
(
nIZI, VCZ, b f , sω

)
, i < Γnum

}
, (23)
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where Γi is the ith scheme, nIZI is the incoordination zone index, VCZ is the space amount of the
coordination zone, b f is the information of uncoordinated KACs, sω is the SDT set, and Γnum is
the max number of the schemes.

7. Calculate the center SDT of the SDTs in the selected scheme. The assembly deviation of target
features under the SDT is analyzed and the accuracy compensation is carried out.

ωc
∆ =

1
ns

ns∑
i=1

ω∆i, (24)

where ωc
∆ is the center SDT, ns is the SDT number of sω, and ω∆i is an SDT of sω. All assembly

accuracies onωc
∆ are calculated. Then, the deviations on the excessive KACs will be compensated.
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According to Equations (13) and (24), the compensation amount would be

Ci
j = T

i−ωc
∆

j − Ti−opt
j = f i

j

(
KR

i , KA
i ω

c
∆

)
− Ti−opt

j , (25)

where Ci
j is the compensation amount of the jth assembly accuracy requirement of the ith KAC, T

i−ωc
∆

j

is the assembly accuracy on the SDT ωc
∆, and Ti−opt

j is the optimal value of the assembly accuracy.

5. Case Study

5.1. Space Manipulator Assembly

The space manipulator is fixed on the spacecraft, which needs a high assembly accuracy to
guarantee the stability when the spacecraft is flying. The assembly is executed by shaft and hole
connectors, which are shown in Figure 9a. The connector is shown in Figure 9b. The manipulator is
the align part and the spacecraft is the reference part.
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Figure 9. Space manipulator assembly.

The upper connector is fixed on the manipulator, and the bottom connector is fixed on the
spacecraft. The KACs are the assembly of the connectors. Due to the slight deformation of the
spacecraft and the installation error of the bottom connectors, it is difficult for the connectors to
accurately assemble at one time during the assembly of the spacecraft and the manipulator. In the
original assembly process, it is necessary to try the assembly first, measure the assembly deviation of
the clearance and coaxiality of each pair of connectors, make the accuracy compensation, and retry
the assembly to ensure the assembly quality. The assembly takes a long time and the connectors are
not convenient to be operated on the spacecraft. Therefore, the laser tracker is used to measure the
connectors between the spacecraft and the manipulator. The methods in Sections 2 and 3 are taken to
evaluate the assemblability based on the measurement data. The method in Section 4 is used to find
the key connectors to make the accuracy compensation. The assembly is carried out after the accuracy
compensation. In this way, the assembly quality is better guaranteed and the assembly efficiency is
improved. The flow of the proposed method and the comparison with the original method are shown
in Figure 10.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 

 
Figure 10. The comparison of the original and proposed assembly processes. 

As shown in Figure 10, the assembly process is developed toward digital measurement and 
analysis. The results obtained in the actual assembly and inspection are replaced by the analysis of 
the measurement data. Therefore, some unnecessary assembly processes are eliminated and the 
possibility of repeated trial assembly is greatly reduced. 

The assembly accuracy requirements of the connector are coaxiality 𝑑𝑟 and clearance 𝑑𝑐 on the 
matching surface, as shown in Figure 9b. The coaxiality requirement is 0.2 mm, and the clearance 
requirement is 0.1 mm. Assembly accuracy is compensated by gasket compensation, finishing, or 
position movement according to the deviation. 

5.2. Coordination Space Model 

The measurement of the connector is based on the measurement auxiliary tool, which is shown 
in Figure 11. 

 
Figure 11. Measurement auxiliary tool. 

After inserting the shaft into the corresponding hole, measure the four holes of the measurement 
auxiliary tool. The measurement data are processed as the position 𝑝 and orientation 𝑝𝑜. 𝒑𝒐 = (𝒄 𝒄 )×(𝒄 𝒄 )|(𝒄 𝒄 )×(𝒄 𝒄 )|𝒑 = ∑ 𝒄 − 𝑙 ∙ 𝒑𝒐 , (26)
where 𝒄 , 𝒄 , 𝒄 , and 𝒄  are the points measured by the laser tracker. 

 

Figure 10. The comparison of the original and proposed assembly processes.

As shown in Figure 10, the assembly process is developed toward digital measurement and
analysis. The results obtained in the actual assembly and inspection are replaced by the analysis of the
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measurement data. Therefore, some unnecessary assembly processes are eliminated and the possibility
of repeated trial assembly is greatly reduced.

The assembly accuracy requirements of the connector are coaxiality dr and clearance dc on the
matching surface, as shown in Figure 9b. The coaxiality requirement is 0.2 mm, and the clearance
requirement is 0.1 mm. Assembly accuracy is compensated by gasket compensation, finishing, or
position movement according to the deviation.

5.2. Coordination Space Model

The measurement of the connector is based on the measurement auxiliary tool, which is shown in
Figure 11.
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4
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where c1, c2, c3, and c4 are the points measured by the laser tracker.
As shown in Figure 12, the clearance dc and the coaxiality dr of a connector are dr =

∣∣∣∣ ⇀
p2p1·sinθ2

∣∣∣∣
dc =

∣∣∣∣ ⇀
p1p2

∣∣∣∣·cosθ2 + r·sin(θ2 − θ1)
, (27)

where θ1 and θ2 are the angles between
⇀

p1p2 and
⇀

p1o1 or
⇀

p1o2; θ1 can be calculated by θ1 =

arccos
(
⇀

p1p2·
⇀

p1o1/
∣∣∣∣ ⇀
p1p2

∣∣∣∣∣∣∣∣ ⇀
p1o1

∣∣∣∣) and, similarly, θ2 can be calculated by the same way; and r is the radius

of the matching surface, which is 15 mm. There are 20 connectors to be guaranteed at the same time.
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5.3. Assemblability Analysis 

Part of the raw data is listed in Table 1. All the measurement data are listed in Appendix A, Table 
A1. 

Table 1. Part of the raw measurement data. 

Spacecraft Manipulator 
x/mm y/mm z/mm x/mm y/mm z/mm 
26.060 26.037 −192.674 222.509 2274.256 403.730 
25.941 −25.881 −192.645 222.471 2222.338 403.647 
−25.972 −25.945 −192.558 170.389 2222.349 403.666 
−25.973 26.032 −192.581 170.520 2274.362 403.722 

The least-squares method is taken to calculate the optimal pose and the deviations on the optimal 
pose. The deviations of the connectors are listed in Table 2 calculated by Equation (27). 

Figure 12. Assembly geometric constraints analysis.
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Therefore, the coordination space model is
ω∆
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2
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2
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(
θi−ω∆

2 − θi−ω∆
1

)
< 0.1,

i ∈ [1, 20]


, (28)

where ω∆ is the random SDT based on the optimal pose derived from the least-squares method, and
pi−ω∆

2 is the parameters of Equation (27) changed by ω∆ according to Equation (12), which are listed in
Equation (29): 
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5.3. Assemblability Analysis

Part of the raw data is listed in Table 1. All the measurement data are listed in Appendix A,
Table A1.

Table 1. Part of the raw measurement data.

Spacecraft Manipulator
x/mm y/mm z/mm x/mm y/mm z/mm

26.060 26.037 −192.674 222.509 2274.256 403.730
25.941 −25.881 −192.645 222.471 2222.338 403.647
−25.972 −25.945 −192.558 170.389 2222.349 403.666
−25.973 26.032 −192.581 170.520 2274.362 403.722

The least-squares method is taken to calculate the optimal pose and the deviations on the optimal
pose. The deviations of the connectors are listed in Table 2 calculated by Equation (27).

Table 2. Assembly deviation prediction by least-squares method.

No. dr/mm dc/mm No. dr/mm dc/mm

1 0.154 0.043 11 0.171 −0.012
2 0.150 −0.027 12 0.338 0.002
3 0.205 0.072 13 0.286 −0.010
4 0.196 0.042 14 0.530 −0.274
5 0.191 0.012 15 0.247 0.033
6 0.209 0.083 16 0.165 −0.029
7 0.066 0.045 17 0.188 0.033
8 0.195 −0.025 18 0.402 −0.154
9 0.118 −0.006 19 0.086 0.183
10 0.298 −0.010 20 0.386 −0.028

It can be seen that 10 connectors need to be adjusted or repaired based on the least-squares method.
The coordination space is 0 at the optimal pose based on the method in Section 3, which means it

cannot be assembled directly. Therefore, the assemblability should be optimized.
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5.4. Assemblability Optimization

The proposed method in Section 4 is taken to find the accuracy compensation schemes. The results
are shown in Figure 13.
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Figure 13 shows the accuracy compensation schemes. The first point on the X axis is the KAC
quantity to be compensated. The second point is the volume of the coordination zone of the scheme.
The latter ones are the number of KACs. The Y axis is the scheme number. The Z axis is the value of
the X axis. Seven connectors need to be adjusted to complete assembly in scheme 1. Finally, scheme
18, which needs nine connectors to be compensated, is taken by considering the assembly quality.
The coordination space of the scheme is 56d. d is the volume of the maximum pose space divided
by random times. In this case, d is 2.46 × 10−14 mm3rad3. The KAC number to be compensated
is 5, 6, 8, 10, 12, 14, 18, 19, and 20. The center SDT of the coordination zone in scheme 18 is(
−0.0363 mm, 0.0210 mm, 0.0098 mm, 2.52× 10−6 rad, 1.64× 10−6 rad,−2.35× 10−6 rad

)
.

The deviation is calculated under the center SDT listed in Table 3.

Table 3. The deviations of the connectors.

No. dr/mm dc/mm No. dr/mm dc/mm

1 0.145 0.034 11 0.150 −0.036
2 0.188 −0.031 12 0.351 −0.013
3 0.169 0.064 13 0.142 −0.022
4 0.151 0.031 14 0.391 −0.286
5 0.230 0.004 15 0.133 0.016
6 0.249 0.070 16 0.031 −0.039
7 0.025 0.037 17 0.056 0.032
8 0.222 −0.034 18 0.204 −0.145
9 0.162 −0.021 19 0.204 0.179
10 0.255 −0.029 20 0.233 −0.027

After simulation accuracy compensation for the above nine connectors, which is in bold and
italics in Table 3 (the proposed method), the coordination space is 101d, which is greater than 0. The
average coaxiality is 0.068 mm and the average clearance is 0.014 mm. The assemblability is good and
the assembly can be executed directly.

After simulation accuracy compensation for the above 10 connectors, which is in bold and italics in
Table 2 (the least square method), the coordination space is 9d. The average coaxiality is 0.084 mm and
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the average clearance is 0.014 mm. The assemblability is good but the assembly quality on coaxiality
is worse.

The result shows that the proposed method will generate a better accuracy compensation scheme
with less workload and better assembly quality, which improves the assemblability.

The measurement and connector adjustment process took about 8 h during the assembly. The
pose adjustment process took about 2 h. Therefore, it took about 10 h in total based on the proposed
method. The original assembly process took more than 20 h because the first trial assembly and
accuracy compensation process cannot realize the re-trial assembly smoothly. Three or four times the
assembly are needed to guarantee the assembly quality.

6. Discussion

Compared to the previous research, the major contributions in this paper are listed as follows: (1)
The concept of assemblability and coordination accuracy in the design/drawing stage are extended into
the measurement-assisted assembly. (2) An assemblability analysis method based on the measurement
data and the coordination space model is proposed for predicting the key assembly deviations. (3) The
accuracy compensation methods based on the optimal pose might lead to more workload and worse
assemblability. Therefore, an assemblability optimization method is proposed for less workload and
better assembly quality. In addition, the space manipulator assembly is taken as an example. The
result shows that the proposed method can optimize the assemblability with less workload and better
assembly quality compared to the accuracy compensation method based on the optimal pose.

The assemblability optimization method based on accuracy compensation improves the ability
to detect assembly problems in advance, which will benefit the automation assembly. Further, the
coordination space model and the small displacement torsor are useful for analyzing the assemblability
and optimizing the tolerances in the design/drawings phase, but the assemblability optimization
method is not useful. In the implementation of the method, high-precision digital measurement
equipment are needed. Measurement uncertainty will affect the reliability of the final results.

Future research include evaluating the influence of the measurement uncertainty on the
coordination space model. Then, the uncertainty of pose adjustment should be taken into consideration
compared to the volume of the coordination space to judge the feasibility of automatic pose adjustment.
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Appendix A

Table A1. Raw measurement data.

Spacecraft Spacecraft Manipulator Manipulator
x/mm y/mm z/mm x/mm y/mm z/mm x/mm y/mm z/mm x/mm y/mm z/mm

26.060 26.037 −192.674 2525.979 25.966 −192.595 222.509 2274.256 403.730 2722.472 2274.418 403.607
25.941 −25.881 −192.645 2525.879 −26.066 −192.588 222.471 2222.338 403.647 2722.406 2222.370 403.680
−25.972 −25.945 −192.558 2473.905 −25.939 −192.634 170.389 2222.349 403.666 2670.395 2222.418 403.611
−25.973 26.032 −192.581 2473.927 26.032 −192.648 170.520 2274.362 403.722 2670.399 2274.318 403.725
25.964 −1103.891 −192.620 2525.886 −1103.863 −192.642 222.163 1144.197 403.734 2722.221 1144.019 403.649
25.995 −1155.853 −192.533 2525.963 −1155.983 −192.687 222.172 1092.171 403.594 2722.191 1092.064 403.681
−26.108 −1155.891 −192.633 2473.910 −1155.938 −192.617 170.261 1092.242 403.670 2670.236 1092.093 403.632
−26.138 −1103.914 −192.600 2473.997 −1103.946 −192.532 170.240 1144.209 403.636 2670.134 1144.022 403.682
526.046 26.182 −192.691 25.984 371.512 −292.868 722.540 2274.127 403.704 222.310 2619.620 303.466
526.032 −25.859 −192.578 26.082 328.937 −322.879 722.525 2222.138 403.647 222.406 2577.169 273.462
474.044 −25.874 −192.632 −25.948 328.968 −322.927 670.477 2222.107 403.660 170.271 2577.228 273.409
473.999 26.048 −192.660 −25.989 371.392 −292.860 670.519 2274.160 403.749 170.259 2619.691 303.502
525.926 −1103.994 −192.665 26.306 779.693 −581.183 722.553 1144.152 403.622 222.373 3028.126 15.112
525.941 −1156.028 −192.670 26.328 737.195 −611.193 722.582 1092.046 403.733 222.475 2985.706 −14.926
473.906 −1155.956 −192.534 −25.677 737.131 −611.127 670.483 1092.007 403.687 170.440 2985.796 −14.932
474.001 −1103.938 −192.549 −25.718 779.531 −581.201 670.468 1144.107 403.701 170.438 3028.159 15.042
1025.900 25.892 −192.696 526.057 371.467 −292.910 1222.170 2274.325 403.687 722.232 2619.736 303.446
1025.991 −26.042 −192.675 525.980 329.046 −322.917 1222.300 2222.253 403.652 722.264 2577.274 273.375
973.956 −26.131 −192.596 473.953 329.017 −322.836 1170.188 2222.222 403.641 670.255 2577.165 273.441
973.988 25.990 −192.571 473.989 371.499 −292.943 1170.178 2274.330 403.697 670.274 2619.662 303.464
1026.139 −1104.097 −192.694 526.004 779.757 −581.219 1222.329 1144.177 403.676 722.338 3027.977 14.999
1026.085 −1156.050 −192.740 525.882 737.293 −611.181 1222.380 1092.031 403.649 722.348 2985.465 −14.896
974.124 −1156.044 −192.605 474.011 737.365 −611.149 1170.291 1092.073 403.617 670.334 2985.461 −14.882
974.105 −1104.011 −192.634 474.022 779.818 −581.198 1170.331 1144.076 403.725 670.270 3028.053 15.054
1525.925 26.129 −192.717 25.959 −1458.921 −322.909 1722.341 2274.278 403.722 222.442 789.300 273.358
1525.908 −25.848 −192.628 26.022 −1501.395 −292.846 1722.343 2222.377 403.704 222.364 746.770 303.402
1473.914 −25.921 −192.601 −26.061 −1501.356 −292.887 1670.349 2222.277 403.637 170.403 746.817 303.352
1473.942 26.171 −192.663 −25.980 −1458.862 −322.971 1670.315 2274.352 403.667 170.462 789.233 273.423
1526.063 −1104.006 −192.639 26.112 −1867.403 −611.275 1722.264 1144.106 403.701 222.487 380.493 −14.929
1525.951 −1155.886 −192.590 25.999 −1909.862 −581.157 1722.267 1092.232 403.641 222.479 338.017 15.121
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Table A1. Cont.

Spacecraft Spacecraft Manipulator Manipulator
x/mm y/mm z/mm x/mm y/mm z/mm x/mm y/mm z/mm x/mm y/mm z/mm

1473.970 −1155.991 −192.610 −25.945 −1909.883 −581.133 1670.247 1092.136 403.697 170.454 337.946 15.019
1474.029 −1103.917 −192.536 −25.952 −1867.415 −611.214 1670.338 1144.104 403.578 170.502 380.501 −15.022
2026.006 25.807 −192.610 525.901 −1459.048 −322.918 2222.301 2274.138 403.623 722.541 789.350 273.516
2026.008 −26.174 −192.602 525.980 −1501.511 −292.844 2222.194 2222.153 403.685 722.525 746.885 303.481
1974.072 −26.202 −192.597 474.025 −1501.571 −292.828 2170.273 2222.082 403.688 670.449 746.930 303.374
1973.940 25.758 −192.615 473.983 −1459.106 −322.849 2170.301 2274.070 403.707 670.465 789.270 273.409
2025.839 −1103.981 −192.592 525.886 −1867.434 −611.169 2222.555 1144.297 403.746 722.630 380.599 −14.830
2025.808 −1155.974 −192.526 525.806 −1909.943 −581.114 2222.521 1092.226 403.623 722.554 338.263 15.129
1973.868 −1155.897 −192.571 473.872 −1909.917 −581.157 2170.597 1092.349 403.654 670.639 338.232 15.073
1973.894 −1103.986 −192.651 473.840 −1867.343 −611.211 2170.608 1144.349 403.683 670.507 380.619 −14.907
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