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Featured Application: Core technology for intelligent virtual assistants.

Abstract: A conversation is based on internal knowledge that the participants already know or
external knowledge that they have gained during the conversation. A chatbot that communicates
with humans by using its internal and external knowledge is called a knowledge-grounded chatbot.
Although previous studies on knowledge-grounded chatbots have achieved reasonable performance,
they may still generate unsuitable responses that are not associated with the given knowledge. To
address this problem, we propose a knowledge-grounded chatbot model that effectively reflects
the dialogue context and given knowledge by using well-designed attention mechanisms. The
proposed model uses three kinds of attention: Query-context attention, query-knowledge attention,
and context-knowledge attention. In our experiments with the Wizard-of-Wikipedia dataset, the
proposed model showed better performances than the state-of-the-art model in a variety of measures.

Keywords: knowledge-grounded chatbot; multi-turn chatbot; context-knowledge attention
mechanism

1. Introduction

The ultimate goal of natural language processing is to let humans and machines freely communicate
with each other. In human-to-human conversations, people communicate based on contextual
knowledge (i.e., knowledge obtained from previous utterances) or external knowledge (i.e., knowledge
obtained from various media). A knowledge-grounded chatbot is a dialogue system that can
communicate by recalling internal and external knowledge (similar to a human). Knowledge-grounded
chatbots must understand the language, store internal/external knowledge during the conversations,
and respond in various ways based on the stored knowledge. Table 1 lists the differences between
the responses of a conventional chatbot (utterances 1-1 and 2-1) and a knowledge-grounded chatbot
(utterances 1-2 and 2-2). As shown in Table 1, the conventional chatbot provides general responses
such as “I see” and “Yes, it is” because it has no knowledge about “Avengers.” However, the
knowledge-grounded chatbot provides specific responses (such as “Sure, I like Iron Man” and “Oh!
Anthony and Joe Russo directed it”) based on external knowledge obtained from the documents
retrieved by an information retrieval system.
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Table 1. Examples of differences between conventional chatbots and knowledge-grounded chatbots.

ID Speaker Utterance

1 User Hi! Do you know Avengers is coming
out today?

1-1 General chatbot I see.
1-2 Knowledge-grounded chatbot Sure, I like Iron Man.
2 User It looks so funny.

2-1 General chatbot Yes, it is.
2-2 Knowledge-grounded chatbot Oh! Anthony and Joe Russo directed it!

To generate these specific responses, the knowledge-grounded chatbot must possess the following
three abilities.

• Knowledge retrieval: A chatbot should be able to search for documents associated with the
conversation topics.

• Knowledge extraction: A chatbot should be able to extract knowledge from the
retrieved documents.

• Response generation: A chatbot should be able to generate responses that reflect the
extracted knowledge.

In open-domain conversations, it is difficult for a chatbot to find documents that are closely
associated with the current conversation topic, because a multi-turn conversation references many
topics. Although we assume that the chatbot can find some documents associated with the current
conversation topic by using a state-of-the-art information retrieval system, it is difficult for the chatbot
to extract knowledge from the search results because the document may contain diverse knowledge
on the given topic [1]. In addition, it is difficult for the chatbot to generate appropriate responses
that reflect the acquired knowledge because the conversation history (i.e., contextual information
based on previous utterances) should also be considered. In this study, we ignore the knowledge
retrieval problem; instead, we focus on addressing the problems of knowledge extraction and response
generation. In particular, we propose a knowledge-grounded multi-turn chatbot model that generates
responses by considering new knowledge from previous utterances and a given document. This paper
is organized as follows. In Section 2, we review the previous works on generative chatbot models and
describe the proposed knowledge-grounded chatbot model in Section 3. In Section 4, we explain the
experimental setup and report on some experimental results. Section 5 concludes our study.

2. Related Work

Chatbot models are divided into retrieval-based models and generative models. The
retrieval-based models predefine a large amount of question-answer pairs. Then, they match users’
queries against predefined questions by using well-designed information retrieval models. Next, they
return answers of the matched questions as responses of users’ queries [2,3]. Since the retrieval-based
models predefine well-purified question-answer pairs in advance, they do not return responses
including grammatical errors. However, they have some deficiencies that chatbots’ responses are
restricted into a predefined set and are not sensitive to changes of users’ queries. To overcome these
deficiencies, generative models that automatically select word sequences proper to a response have been
recently proposed. Most recent studies on generative chatbots primarily use the sequence-to-sequence
(Seq2Seq; encoder-decoder) model [4,5]. Generally, Seq2Seq models consist of two recurrent neural
networks (RNNs) called an encoder for embedding input sentences and a decoder for generating
output sentences. Previous studies have some deficiencies that Seq2Seq-based chatbots often generate
safe and short responses such as “I don’t know” and “OKay” [6,7]. To overcome this problem, a
maximum mutual information (MMI) model and a variational autoencoder (VAE) model have been
proposed [6–9]. To diversify responses, in the MMI model, the standard objective function (the
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log-likelihood of a response given a query) is replaced with a new objective function based on mutual
information between a response and a query [6]. The VAE model is possible to give diversity to a
response by learning latent variables from inputs and outputs. However, the VAE model has collapse
problems that the decoder is trained to ignore the latent variable by simplifying them to a standard
normal distribution [10,11]. In other words, although the real response has a very complex distribution,
the latent variable of the VAE model has a posterior collapse problem because it learns a simple prior
distribution as the normal distribution. Some previous studies partially solved this problem by using
adversarial learning [11]. However, adversarial learning has generated a discrete token that cannot
be differentiated and, thus, cannot be learned [12,13]. To solve this problem, various studies have
proposed using adversarial learning not for generating responses but for generating latent variables.

There have been various studies on knowledge-grounded chatbots (i.e., chatbot models that
actively acquire and use knowledge for generating responses). The memory-to-sequence (Mem2Seq)
model acquires structured knowledge and contextual information through a memory network [14].
The neural knowledge diffusion model automatically acquires knowledge associated with the entities
in the previous utterances by looking up a knowledge base [15]. However, existing models have some
limitations. First, they require considerable time to build new external knowledge bases. Second, the
knowledge included in their responses is restricted to predefined knowledge bases [14–18]. Therefore,
most open-domain knowledge-grounded chatbots extract knowledge from unstructured texts and
generate responses using the extracted knowledge [19–21].

3. Knowledge-Grounded Chatbot Model

The proposed model comprises four submodules: A context encoder, knowledge encoder, latent
variable generator, and response generator, as shown in Figure 1.

Appl. Sci. 2020, 10, x 3 of 10 

collapse problems that the decoder is trained to ignore the latent variable by simplifying them to a 

standard normal distribution [10,11]. In other words, although the real response has a very complex 

distribution, the latent variable of the VAE model has a posterior collapse problem because it learns 

a simple prior distribution as the normal distribution. Some previous studies partially solved this 

problem by using adversarial learning [11]. However, adversarial learning has generated a discrete 

token that cannot be differentiated and, thus, cannot be learned [12,13]. To solve this problem, various 

studies have proposed using adversarial learning not for generating responses but for generating 

latent variables. 

There have been various studies on knowledge-grounded chatbots (i.e., chatbot models that 

actively acquire and use knowledge for generating responses). The memory-to-sequence (Mem2Seq) 

model acquires structured knowledge and contextual information through a memory network [14]. 

The neural knowledge diffusion model automatically acquires knowledge associated with the entities 

in the previous utterances by looking up a knowledge base [15]. However, existing models have some 

limitations. First, they require considerable time to build new external knowledge bases. Second, the 

knowledge included in their responses is restricted to predefined knowledge bases [14–18]. 

Therefore, most open-domain knowledge-grounded chatbots extract knowledge from unstructured 

texts and generate responses using the extracted knowledge [19–21]. 

3. Knowledge-Grounded Chatbot Model 

The proposed model comprises four submodules: A context encoder, knowledge encoder, latent 

variable generator, and response generator, as shown in Figure 1. 

 

Figure 1. Overall architecture of the proposed knowledge-grounded chatbot. RNN: Recurrent neural 

network; FNN: Fully connected neural network. 

The context encoder takes m previous utterances 
− − −2 1

,  ...,  ,  
n m n n

U U U  (i.e., a dialogue context) 

and a current utterance n
U  (i.e., a user’s query) as inputs. Then, it calculates the degrees of 

association between the previous utterances and the current utterance based on a scaled dot product 

attention mechanism [22]. Finally, it generates a context vector. The knowledge encoder takes 

knowledge K  (i.e., a document containing evidence to generate a response) and the current 

utterance n
U  as inputs. Then, it calculates the degrees of association between knowledge and the 

current utterance based on a scaled dot product attention mechanism [22], and it generates a 

knowledge vector. During the training, the latent variable generator takes the context vector and the 

next utterance 
+1n

U  (i.e., a chatbot’s response) as inputs. Then, it creates a context vector similar to 

the RNN-encoded next-utterance vector using an adversarial learning method [23]. Next, it decodes 

Figure 1. Overall architecture of the proposed knowledge-grounded chatbot. RNN: Recurrent neural
network; FNN: Fully connected neural network.

The context encoder takes m previous utterances Un−m, . . . , Un−2, Un−1 (i.e., a dialogue context)
and a current utterance Un (i.e., a user’s query) as inputs. Then, it calculates the degrees of association
between the previous utterances and the current utterance based on a scaled dot product attention
mechanism [22]. Finally, it generates a context vector. The knowledge encoder takes knowledge K
(i.e., a document containing evidence to generate a response) and the current utterance Un as inputs.
Then, it calculates the degrees of association between knowledge and the current utterance based on a
scaled dot product attention mechanism [22], and it generates a knowledge vector. During the training,
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the latent variable generator takes the context vector and the next utterance Un+1 (i.e., a chatbot’s
response) as inputs. Then, it creates a context vector similar to the RNN-encoded next-utterance vector
using an adversarial learning method [23]. Next, it decodes an encoded next-utterance vector using an
autoencoder learning method. Finally, the trained latent variable vector z̃ is used at the inference time.
To generate various responses, the response generator creates an encoded response vector (i.e., a gold
response vector) similar to a response vector decoded by the RNN (i.e., a generated response vector)
using an adversarial learning scheme.

3.1. Context Encoder

The context encoder calculates the degrees of association between a dialogue context
Un−m, . . . , Un−2, Un−1 and a current utterance Un. The current and previous utterances in the
dialogue context are individually encoded with bidirectional gated recurrent units (Bi-GRU; a kind of
bidirectional RNN) [24]:

→

hi = GRU(xi,
→

hi−1),
←

hi = GRU(xi,
←

hi+1),

hi = [
→

hi;
←

hi],

(1)

where xi denotes the i-th word vector in an utterance,
→

hi and
←

hi denote the i-th word vectors encoded
by the forward and the backward state of Bi-GRU, and [ ; ] denotes concatenation. Then, by analogy,
each utterance in a dialogue context is encoded by unidirectional gated recurrent units (Uni-GRU; a
kind of unidirectional RNN) [25]:

u j = [h1; hlast],
c j = GRU(u j, c j−1),

(2)

where u j denotes the concatenation of the first word vector and the last word vector in the j-th utterance
encoded by Bi-GRU, and c j denotes the j-th utterance vector encoded by Uni-GRU. After encoding the
dialogue context and the current utterance, the context encoder computes attention scores Ac between
the current utterance and each utterance in the dialogue context by using scaled dot products [22]:

Ac = g(so f tmax

Wc∗C+
(
Wh1
∗H

)T

√
d

 ∗H + C),

g(x) = x ∗ σ(Wg ∗ x),
(3)

where C denotes a matrix of an encoded dialogue context, [c1, c2, . . . , cm], and H denotes a matrix of
an encoded current utterance, [h1, h2, . . . , hlast]. Then, Wc, Wh1 , and Wg are weights; d is a normalizing
factor, which is set to 300; and g(x) is a sigmoid gate function. After passing through the self-attention
layer between Ac and Ac [20], the final attention matrix Aqc(called QC-Attention) is calculated as
follows:

Aqc = Ac
∗ so f tmax

 N∑
i=1

tanh(Ac
i ∗ hi)

 (4)

3.2. Knowledge Encoder

The knowledge encoder calculates the degrees of association between a current utterance Un and
given knowledge K. We assume that knowledge is represented as unstructured text (a sequence of
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words). Knowledge K is encoded with Bi-GRU as in the context encoder. After encoding knowledge and
the current utterance, the knowledge encoder computes attention scores Ak as in the context encoder:

Ak = g(so f tmax

Wk∗K+
(
Wh2
∗H

)T

√
d

 ∗H + K),

Aqk = Ak
∗ so f tmax

(
N∑

i=1
tanh(Ak

i ∗ hi)

)
,

(5)

where H denotes a matrix of an encoded current utterance, [h1, h2, . . . , hk], and K denotes a matrix of
encoded knowledge, [k1, k2, . . . , klast], in which k j is a concatenation of the i-th forward state and the i-th
backward state of Bi-GRU. Then, Wc, Wh2 , and Wg are weights; d is a normalizing factor, which is set to
300; and g(x) is a sigmoid gate function. Then, the final attention matrix Aqk (called QK-Attention) is
calculated. Finally, the knowledge encoder calculates Ack (called QC-QK-Attention) that represents the
degrees of association between the dialogue context and knowledge:

Ack = g(so f tmax

WAk ∗Ak + (WAc ∗Ac)T

√
d

 ∗Ak + Ac). (6)

3.3. Latent Variable Generator

The latent variable generator is a module that is responsible for generating latent variables that
help the response decoder generate various responses. To generate latent variables, we adopted
an autoencoder model using Wasserstein distance [4,11,23]. The conventional VAE dialogue model
assumes that latent variables follow a simple prior distribution. However, we train latent variables
using a Wasserstein generative adversarial network (WGAN) because responses in the real world
follow very complex distributions. Formally, we model distributions z and z̃ in latent spaces as follows:

z = Gθ(ε), ε ∼ N
(
ε;µ, σ2I

)
,
[

µ
logσ2

]
= W ∗ fθ




Aqc

hi
ui+1


+ b,

z̃ = Q∅(ε̃), ε̃ ∼ N
(̃
ε; µ̃, σ̃2I

)
,
[

µ̃
logσ̃2

]
= W̃ ∗ g∅

([
Aqc

hi

])
+ b̃,

(7)

where fθ(·) and g∅(·) are feed-forward neural networks for generating latent variables z and z̃,
respectively. The difference between the two neural networks is whether ui+1, the next utterance (i.e., a
chatbot’s response) encoded by Bi-GRU, is used as an input or not. In Equation (7), ui+1 is represented
by the concatenation of the first word vector and the last word vector encoded by Bi-GRU. Our goal
is to minimize the divergence between z and z̃. Therefore, we made the two distributions similar,
according to the well-known GAN training scheme [26]:

min
θ,∅,ϕ

E
[
Dϕ (̃z)

]
− E

[
Dϕ(z)

]
+ λ ∗ E

[(
‖∇z̃Dϕ (̃z)‖2 − 1

)2
]
, (8)

where D(·) is a discriminator based on a feed-forward neural network. The discriminator plays the
role of distinguishing between z and z̃.

3.4. Response Generator

First, the response generator generates a response by using a concatenation of an encoded current
utterance vector un, QC-Attention Aqc, QC-QK-Attention Ack, and a generated latent variable (i.e., z for
training and z̃ for inferencing) as the initial state of a decoder. Then, it makes the generated response
vector similar to un+1, which is a gold response vector encoded by Bi-GRU using the Wasserstein
autoencoder (WAE) process based on WGAN [23].
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3.5. Implementation and Training

We implemented the proposed model by using TensorFlow 1.14.1 [27]. Bi-GRUs have 300 hidden
units in each direction, and Uni-GRUs have 600 hidden units. The dimensions of QC-Attention,
QK-Attention, and QC-QK-Attention are 600. The discriminators of the latent variable and response
generators are three-layer FNNs with 100 hidden units and rectified linear unit activation [28]. The
vocabulary size, the word-embedding size, and the dialogue context size was set to 47,186, 300, and
3, respectively. All word-embedding vectors were initialized to random values. Responses were
generated by using a greedy decoding algorithm. The model training was performed through three
steps [2]. In the first step, we trained the WGAN in the latent variable generator by using an adversarial
learning method. In the second step, we trained the entire model, except the WAE in the response
generator. At last, we trained the WAE in the response generator by using an adversarial learning
method. When we train the discriminant models [26], we used the gradient penalty which was set to
10. Then, we used a cross-entropy function as a cost function to maximize the log-probability. In the
inference step, we used z̃ as a latent variable.

4. Evaluation

4.1. Datasets and Experimental Settings

We evaluated our model on a Wizard-of-Wikipedia dataset [1]. The dataset is used for three
tasks: Knowledge prediction (i.e., selecting documents containing proper knowledge from a document
collection), response generation (i.e., generating responses using the given knowledge), and an
end-to-end task (i.e., both knowledge prediction and response generation). In this study, we focused
on response generation. Owing to hardware limitations, we refined the Wizard-of-Wikipedia dataset to
use two previous utterances as the dialogue context. Our refined dataset comprises 83,247 utterances
for training, 4444 utterances for verification, and 4356 utterances for testing.

We used Bilingual evaluation understudy (BLEU) [29,30], perplexity (PPL) [1,31], and bag-of-words
(BOW) embedding [32] as performance measures. BLEU measures a ratio of overlapped words between
generated responses and gold responses, as shown in the following equation.

BLEU = min(1,
length o f a generated sentence

length o f a gold sentence
)(

n∏
i=1

precisioni)
1
n , (9)

where n is the maximum length of n-grams, which is commonly set to 4, and precisioni is a word
i-gram precision (i.e., the number of correct word i-grams divided by the number of word i-grams
in a generated sentence). The precision of BLEU is the average score of BLEUs for 10 generated
sentences (for these experiments, the decoder returned 10 candidate sentences per query by a beam
search algorithm) per query. The recall of BLEU is the maximum score among BLEUs for 10 generated
sentences per query. As many studies used unigram-F1, we also used word an unigram F1, called
F1-score [1,31]. PPL is a measure for evaluating language models, and it is commonly used in traditional
generative chatbot models that mainly use an RNN decoder. The BOW embedding metric is the cosine
similarity of BOW embedding between generated and gold responses. It consists of three metrics:
Greedy [33], average [34], and extrema [35]. In our test, we report the maximum BOW embedding
score among the 10 sampled responses.

4.2. Experimental Results

In our first experiment, we evaluated the effectiveness of the knowledge encoder at the architecture
level. The results are summarized in Table 2.
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Table 2. Performance comparison depending on changes in the architecture (The bolds indicate the
highest scores in each evaluation measure).

Model F1-Score PPL
BOW Embedding

A G E

CE 0.210 75.71 0.259 0.356 0.162
CE+KE 0.267 81.40 0.320 0.411 0.210

CE: Context encoder; KE: Knowledge encoder; PPL: Perplexity; A: Average; E: Extrema; G: Greedy;
BOW: Bag-of-words.

In Table 2, CE is a model that only uses QK-Attention vector, and CE + KE uses QC-QK-Attention.
As shown in Table 2, CE+KE exhibit better performances for all measures except PPL. PPL is the
average number of options when a language model is generating words. With a lower PPL, the model
has fewer options for generating words, such as general words (“I know”). Hence, PPL is not important
for chatbots that need to generate various responses. This means that QC-QK-Attention improves the
quality of responses.

In the second experiment, we compared the performance of the proposed model with those of
state-of-the-art models. For a fair comparison, we downloaded the code provided by the authors
of each model from GitHub (https://github.com/lizekang/ITDD) [31]. Then, we trained and tested
the models by using the refined Wizard-of-Wikipedia dataset. Table 3 compares the performance of
these models.

Table 3. Performance comparison between the proposed and previous models. (The bolds indicate the
highest scores in each evaluation measure).

Model F1-Score PPL
BOW Embedding

A G E

Dinan-End2End [1] 0.172 70.03 0.127 0.248 0.118
Dinan-TwoStage [1] 0.150 50.55 0.127 0.235 0.104

ITDD [31] 0.193 11.16 0.250 0.332 0.136
Proposed Model 0.267 81.40 0.320 0.411 0.210

In Table 3, Dinan-End2End and Dinan-TwoStage are the most well-known knowledge-grounded
chatbot models proposed by Dinan et al. who deployed the Wizard-of-Wikipedia dataset [1].
Dinan-End2End performs the end-to-end task, and Dinan-TwoStage separately performs knowledge
prediction and response generation. ITDD is a state-of-the-art model based on Transformer, and it
generates a response using a two-pass decoder. We replaced the document with the context. As shown
in Table 3, the proposed model exhibits better performances for all measures except PPL. The compared
models show lower PPL because they generate more general words than the proposed model does,
as shown in Table 4. Table 4 shows an example of the response of each model. Dinan-End2End,
Dinan-TwoStage, and ITDD models generated answers such as “I know” or “I’m not sure.” These
general responses help lower PPL. However, the proposed model generated a response that mentioned
the names of the band members, reflecting the acquired knowledge.

https://github.com/lizekang/ITDD
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Table 4. Comparison of proposed and previous models.

Knowledge
The first stable line-up consisted of Brian Jones (guitar, harmonica), Mick Jagger
(lead vocals), Keith Richards (guitar, backing vocals), Bill Wyman (bass), Charlie

Watts (drums), and Ian Stewart (piano).

Context

I used to listen to the Rolling Stones a lot when I was a child.

Me too. I can’t believe they were formed in London as far back as 1962! What’s
your favorite song?

I can’t even remember, to be honest! Do you know who the band members were?

Gold Response Mick (of course), Brian Jones, Keith Richards, Bill Wyman, and I don’t remember
who else.

Dinan-End2End I know, they were formed in London in 1962.

Dinan-TwoStage I’m not sure, but I know that the band was formed in 1981 by drummer Lars Ulrich
and vocalist James Hetfield.

ITDD I’m not sure, but I know they were formed in 1962.

Proposed Model Mick Jagger, Keith Richards, Bill Wyman, Charlie Watts, and Ian Stewart.

5. Conclusions

We proposed a knowledge-grounded multi-turn chatbot model to effectively reflect newly-acquired
external knowledge. To generate responses in the context of conversation history, it used an attention
mechanism between a query and a context in the query-encoding step. To generate responses that
reflect external knowledge, it used the query-knowledge mechanism in the knowledge encoding step.
Furthermore, the model effectively mixed the two kinds of attention to consider the degree of association
between the dialogue context and the given knowledge. In experiments with the Wizard-of-Wikipedia
dataset, the proposed model showed better performances than the previous state-of-the-art models and
generated responses more effectively, reflecting external knowledge. However, the proposed model has
a limitation; that is, proper external knowledge should be given in advance. To overcome this, we will
study an end-to-end knowledge-grounded chatbot model that searches external documents containing
proper knowledge, summarizes the retrieved documents, and extracts proper knowledge from the
summarized documents. As the future work, we will study a method to generalize an input utterance
to a shallow semantic form that is a set of keywords, tense information, and modality information (e.g.,
“I’ll be able to go there.”→ “[[I, go, there], future, possibility]”). Then, we will study a method to use
the semantic form as an input of a Seq2Seq model.

Author Contributions: Conceptualization, H.K.; methodology, H.K.; software, S.K.; validation, S.K.; formal
analysis, H.K.; investigation, H.K.; resources, S.K.; data curation, S.K.; writing—original draft preparation, S.K.;
writing—review and editing, H.K.; visualization, H.K.; supervision, H.K. and O.-W.K.; project administration,
H.K. and O.-W.K.; funding acquisition, H.K. and O.-W.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Institute for Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (2019-0-00004, Development of semi-supervised
learning language intelligence technology and Korean tutoring service for foreigners). This research was also
supported by the MSIT (Ministry of Science, ICT), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2020-2016-0-00465) supervised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation).

Acknowledgments: We especially thank the members of the NLP laboratory at Konkuk University for
technical support.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 3335 9 of 11

References

1. Dinan, E.; Roller, S.; Shuster, K.; Fan, A.; Auli, M.; Weston, J. Wizard of Wikipedia: Knowledge-Powered
Conversational Agents. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

2. Qiu, M.; Li, F.-L.; Wang, S.; Gao, X.; Chen, Y.; Zhao, W.; Chen, H.; Huang, J.; Chu, W. Alime chat: A sequence
to sequence and rerank based chatbot engine. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), Vancouver, BC, Canada, 30 July–4 August 2017;
pp. 498–503.

3. Yan, Z.; Duan, N.; Bao, J.; Chen, P.; Zhou, M.; Li, Z.; Zhou, J. Docchat: An information retrieval approach
for chatbot engines using unstructured documents. In Proceedings of the Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12
August 2016; pp. 516–525.

4. Kim, J.; Oh, S.; Kwon, O.-W.; Kim, H. Multi-Turn Chatbot Based on Query-Context Attentions and Dual
Wasserstein Generative Adversarial Networks. Appl. Sci. 2019, 9, 3908. [CrossRef]

5. Vinyals, O.; Le, Q.V. A Neural Conversational Model. In Proceedings of the ICML Deep Learning Workshop,
Lille, France, 10–11 July 2015.

6. Li, J.; Galley, M.; Brockett, C.; Gao, J.; Dolan, B. A Diversity-Promoting Objective Function for Neural
Conversation Models. In Proceedings of the Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA,
USA, 12–17 June 2016; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 110–119.

7. Sato, S.; Yoshinaga, N.; Toyoda, M.; Kitsuregawa, M. Modeling Situations in Neural Chat Bots. In Proceedings
of the Proceedings of ACL 2017, Student Research Workshop, Vancouver, BC, Canada, 30 July–4 August
2017; Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 120–127.

8. Zhao, T.; Zhao, R.; Eskenazi, M. Learning Discourse-level Diversity for Neural Dialog Models using
Conditional Variational Autoencoders. In Proceedings of the Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4
August 2017; pp. 654–664.

9. Shen, X.; Su, H.; Niu, S.; Demberg, V. Improving variational encoder-decoders in dialogue generation. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7
February 2018.

10. Goyal, P.; Hu, Z.; Liang, X.; Wang, C.; Xing, E.P.; Mellon, C. Nonparametric Variational Auto-Encoders
for Hierarchical Representation Learning. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5104–5112.

11. Gu, X.; Cho, K.; Ha, J.W.; Kim, S. Dialogwae: Multimodal response generation with conditional Wasserstein
auto-encoder. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, 6–9 May 2019.

12. Li, J.; Monroe, W.; Shi, T.; Jean, S.; Ritter, A.; Jurafsky, D. Adversarial Learning for Neural Dialogue Generation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, 9–11 September 2017; pp. 2157–2169.

13. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9
February 2017.

14. Madotto, A.; Wu, C.-S.; Fung, P. Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End
Task-Oriented Dialog Systems. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 1468–1478.

15. Liu, S.; Chen, H.; Ren, Z.; Feng, Y.; Liu, Q.; Yin, D. Knowledge Diffusion for Neural Dialogue Generation. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia, 15–20 July 2018; pp. 1489–1498.

16. Kim, S.; Kim, H.; Kwon, O.-W.; Kim, Y.-G. Improving Response Quality in a Knowledge-Grounded Chat
System Based on a Sequence-to-Sequence Neural Network. In Proceedings of the 2019 IEEE International
Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; pp. 1–4.

http://dx.doi.org/10.3390/app9183908


Appl. Sci. 2020, 10, 3335 10 of 11

17. He, S.; Liu, C.; Liu, K.; Zhao, J. Generating Natural Answers by Incorporating Copying and Retrieving
Mechanisms in Sequence-to-Sequence Learning. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017;
pp. 199–208.

18. Parthasarathi, P.; Pineau, J. Extending Neural Generative Conversational Model using External Knowledge
Sources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, 31 October–4 November 2018; pp. 690–695.

19. Yavuz, S.; Rastogi, A.; Chao, G.-L.; Hakkani-Tur, D. DeepCopy: Grounded Response Generation with
Hierarchical Pointer Networks. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and
Dialogue, Stockholm, Sweden, 11–13 September 2019; pp. 122–132.

20. Ghazvininejad, M.; Brockett, C.; Chang, M.-W.; Dolan, B.; Gao, J.; Yih, W.; Galley, M. A Knowledge-Grounded
Neural Conversation Model. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

21. Ye, H.-T.; Lo, K.-L.; Su, S.-Y.; Chen, Y.-N. Knowledge-grounded response generation with deep attentional
latent-variable model. Comput. Speech Lang. 2020, 63, 101069. [CrossRef]

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is All You Need. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Dutchess County, NY,
USA, 2017; pp. 5998–6008.

23. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, Sydney, Australia, 6–11 August 2017; pp. 214–223.

24. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. Signal Process. IEEE Trans. 1997, 45,
2673–2681. [CrossRef]

25. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1724–1734.

26. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 5767–5777.

27. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.
TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

28. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

29. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. BLEU: A Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.

30. Chen, B.; Cherry, C. A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA, 26–27 June
2014; pp. 362–367.

31. Li, Z.; Niu, C.; Meng, F.; Feng, Y.; Li, Q.; Zhou, J. Incremental Transformer with Deliberation Decoder for
Document Grounded Conversations. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 12–21.

32. Liu, C.W.; Lowe, R.; Serban, I.V.; Noseworthy, M.; Charlin, L.; Pineau, J. How NOT To Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX,
USA, 1–5 November 2016; pp. 2122–2132.

33. Rus, V.; Lintean, M. A Comparison of Greedy and Optimal Assessment of Natural Language Student Input
Using Word-to-Word Similarity Metrics. In Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP, Montréal, QC, Canada, 7 June 2012; pp. 157–162.

http://dx.doi.org/10.1016/j.csl.2020.101069
http://dx.doi.org/10.1109/78.650093


Appl. Sci. 2020, 10, 3335 11 of 11

34. Mitchell, J.; Lapata, M. Vector-based Models of Semantic Composition. In Proceedings of the ACL-08: HLT,
Columbus, OH, USA, 15–20 June 2008; pp. 236–244.

35. Forgues, G.; Pineau, J.; Larchevêque, J.-M.; Tremblay, R. Bootstrapping dialog systems with word embeddings.
In Proceedings of the Nips, Modern Machine Learning and Natural Language ProcessingWorkshop, Geneva,
Switzerland, 12 December 2014.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Knowledge-Grounded Chatbot Model 
	Context Encoder 
	Knowledge Encoder 
	Latent Variable Generator 
	Response Generator 
	Implementation and Training 

	Evaluation 
	Datasets and Experimental Settings 
	Experimental Results 

	Conclusions 
	References

