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Abstract: Global warming, climate change, and ever-increasing energy demand are among the
pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of
energy consumption, requires immediate improvement to prevent energy crises. In this study, various
airfoil profiles were applied to create a window-type convection device that entrains air to improve
convection between indoor and outdoor airflows and adjust the indoor temperature. How the
geometric structure of the convection device affects its air entrainment performance was investigated
on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles
were designed according to the 4-digit series developed by the National Advisory Committee for
Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected
the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection
device was more than 10 times greater than at the inlet, demonstrating the potential of the device to
improve air convection. To validate these simulated results, the wind-deflector plate was processed
using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the
convection device to measure the resulting wind speeds and calculate the corresponding mass flow
rates. The experimental and simulated results were similar, with a mean error of <7%, indicating
that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection
device to the goal of reduced energy consumption and carbon emissions.

Keywords: airfoil profile; convection device; airflow multiplication; air convection; air entrainment

1. Introduction

Tackling global warming and climate change, and reducing energy use are currently
pressing issues for humanity. In Taiwan, air conditioning (A/C) and lighting account for
over 50% of the energy consumed in buildings, of which approximately 39% is used by A/C.
Figure 1 depicts the shares of energy consumption by various electrical devices in relation
to type of building [1,2], and Figure 2 presents the reasons for indoor A/C use in Taiwan
by proportion [2]. For example, “outside environment” comprises 27% of the reasons
because sunlight during the day substantially increases the indoor temperature. “Outside
wall” is also a main reason for using A/C indoors; thus, even at night, when the outdoor
temperature typically decreases to a comfortable level, people tend to adjust the indoor
temperature through A/C. To reduce dependence on A/C, cold air from outdoors can be
used to adjust the indoor temperature. This facilitates decreasing energy consumption,
carbon emissions, and improving sustainable management of Earth’s resources.

To introduce outdoor cold air effectively into buildings for indoor temperature ad-
justment, a wind-deflector plate was designed with an airfoil profile and installed in
windows. The plate acts as a convection device that uses air drag to facilitate air convection
inside and outside of a room. Figure 3 illustrates the use of the proposed window-type
convection device.
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Figure 1. Energy consumption by various electrical devices in relation to type of building [1]. 

 

Figure 2. Reasons for indoor A/C use in Taiwan [2]. 

Bladeless fans were designed by Dyson using computational fluid dynamics [3] and, 

since their advent, numerous studies have been conducted on the design of airflow mul-

tipliers. For example, Li et al. [4] found a strong relationship between the curvature radius 

of the Coanda surface and the blowing performance of a bladeless fan, and they identified 

the optimal Coanda surface curvature. Lasse and Simon [5] used ANSYS Fluent, a com-

putational fluid dynamics software tool, to study the airflow entrainment and induce-

ment, and air loop amplification, of a Dyson Air Multiplier. Hua et al. [6] used a high-

speed camera to observe airflow around the airfoil of a Dyson Air Multiplier, demonstrat-

ing that the operation of a bladeless fan depends on its unique airfoil design. Barlow et al. 

[7] determined that bladeless fans entrain air according to variations in air pressure be-

tween different environments; specifically, as compressed air is expulsed from an outlet 

slit on a bladeless fan, a region of low pressure is momentarily created, which allows rel-

atively high-pressure air from behind the fan to be drawn into the airflow. Thus, the fan 

uses a small amount of air inflow to generate a substantial amount of air outflow, attaining 

the goal of airflow amplification. Bladeless fans increase airflow through air entrainment; 

however, similar to conventional fans, they only enhance the convection of the indoor air 

and contribute nothing to the adjustment of the indoor temperature. This study, therefore, 

proposed an airfoil-shaped wind-deflector plate to act as a convection device to improve 

indoor ventilation. 
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Bladeless fans were designed by Dyson using computational fluid dynamics [3] and,
since their advent, numerous studies have been conducted on the design of airflow multi-
pliers. For example, Li et al. [4] found a strong relationship between the curvature radius
of the Coanda surface and the blowing performance of a bladeless fan, and they identified
the optimal Coanda surface curvature. Lasse and Simon [5] used ANSYS Fluent, a compu-
tational fluid dynamics software tool, to study the airflow entrainment and inducement,
and air loop amplification, of a Dyson Air Multiplier. Hua et al. [6] used a high-speed
camera to observe airflow around the airfoil of a Dyson Air Multiplier, demonstrating
that the operation of a bladeless fan depends on its unique airfoil design. Barlow et al. [7]
determined that bladeless fans entrain air according to variations in air pressure between
different environments; specifically, as compressed air is expulsed from an outlet slit on
a bladeless fan, a region of low pressure is momentarily created, which allows relatively
high-pressure air from behind the fan to be drawn into the airflow. Thus, the fan uses
a small amount of air inflow to generate a substantial amount of air outflow, attaining
the goal of airflow amplification. Bladeless fans increase airflow through air entrainment;
however, similar to conventional fans, they only enhance the convection of the indoor air
and contribute nothing to the adjustment of the indoor temperature. This study, therefore,
proposed an airfoil-shaped wind-deflector plate to act as a convection device to improve
indoor ventilation.
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Figure 3. Conceptual design of the proposed window-type convection device. 
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Figure 3. Conceptual design of the proposed window-type convection device.

2. Method and Numerical Computation

A convection device for windows was designed in the shape of an airfoil and analyzed
to alleviate the reliance on A/C for temperature adjustment. To determine the effects of the
geometric structure of the window-type convection device on its outdoor air entraining
performance, ANSYS Fluent was used to compute the flow field of the device. Specifically,
the finite volume method was adopted to divide the calculation regions (i.e., the inner
flow region of the window-type convection device, the outdoor flow region, and the
indoor flow region) into finite control volumes, and the discrete equation for each control
volume was estimated in accordance with the principles of mass conservation, momentum
conservation, and energy conservation. Given the complexity of the inner runner of the
window-type convection device, the following assumptions were proposed to expedite
numerical computation without affecting gas dynamics:

1. The flow field is steady.
2. The flow velocity of the centrifugal fan that propels the window-type convection

device is negligibly low; thus, the flow field is assumed to be incompressible.
3. Air is defined as a Newtonian fluid with constant density.
4. The impact of gravity is neglected.
5. The relative velocity between the solid surface and the fluid is zero, satisfying the

no-slip condition.
6. The roughness of the solid surface is neglected.

2.1. Development of an Analysis Model

Figure 4 depicts the design and structure of the window-type convection device used
here. The device comprises an airflow multiplier (composed of a wind-deflector plate and
wind-deflector cover) and centrifugal fan, with the bottom of the multiplier attached to the
fan (Figure 4a). The multiplier draws air through the rotation of the fan and discharges
the air via its outlet slit to entrain outdoor air. Figure 4b presents the runner profile and
outlet slit of the airflow multiplier. The present study defined the outlet slit size of the
airfoil as the shortest vertical distance between the surfaces of the wind-deflector plate
and the wind-deflector cover. In addition, the profile of a wind-deflector plate is based on
the 4-digit National Advisory Committee for Aeronautics (NACA) airfoil series, a type
of low-speed airfoil with a high lift coefficient and low resistance coefficient, which are
extensively applied in the design of airfoil fans [8]. Figure 4c presents the position of the
NACA airfoil in the wind-deflector plate, where the cross-section of the NACA airfoil is
shown in red. The first NACA airfoil digit denotes the relative camber of the airfoil, or the
maximum camber as a percentage of the chord length; the second indicates the distance
from the leading edge of the airfoil to the location of the maximum chamber, measured in
tenths of the chord length; and the last two represent the relative thickness of the airfoil,
or the maximum thickness of the foil as a percentage of the chord length. For example,
the NACA 2412 airfoil has a relative camber of 2%, with a maximum camber located 40%
(0.4 chords) from the leading edge and a maximum thickness of 12% of the chord length.
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Figure 5 depicts the profile of the airfoils we discuss in this paper, in which Figure 5a–e
presents the profiles of NACA1412, NACA2412, NACA4412, NACA4418, and NACA4424,
respectively. NACA1412, NACA2412, and NACA4412 are used to discuss the influence of
the relative camber of the airfoil on the mass flow rate and flow velocity, while NACA4412,
NACA4418, and NACA4424 are selected to discuss the influence of the relative thickness
of the airfoil on the mass flow rate and flow velocity.
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view and right-side sectional view of the airflow multiplier. (c) Position of the NACA airfoil in the wind-deflector plate.
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Figure 5. Profile of NACA airfoils (a) NACA1412, (b) NACA2412, (c) NACA4412, (d) NACA4418, and (e) NACA4424.

Figure 6 presents the analysis model used in this study, which comprised three flow
regions: (1) the outdoor flow region (438 mm × 438 mm × 250 mm), (2) the indoor flow
region (438 mm × 438 mm × 500 mm), and (3) the inner flow region of the window-type
convection device (a runner composed of a wind-deflector plate and wind-deflector cover).
The outdoor and indoor flow regions pertain to the neighboring outdoor and indoor
environments where the convection device was installed. The geometric dimensions of
the inner flow region were specified according to the airfoil structure and the slit size
to optimize the performance of the device in entraining outdoor air. During analysis,
the relative camber of the airfoil of the wind-deflector plate ranged from 0% to 4%; the
maximum camber from the leading edge measured in tenths of the chord length ranged
from 0% to 4%; its relative thickness ranged from 8% to 24%; and its outlet slit size ranged
from 0.3 to 1.5 mm. The airflow rate and pressure generated by the centrifugal fan were
specified on the basis of the boundary condition at the convergence of the airflow multiplier;
thus, the structure of the fan was overlooked during the analysis.
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Figure 6. Geometric model for flow-field analysis, which comprises the outdoor flow region, the
indoor flow region, and the inner flow region of the window-type convection device.

2.2. Meshing and Boundary Condition Specifications

After a geometric model for flow-field analysis was established, meshing was applied
to the outdoor flow region, indoor flow region, and inner flow region of the window-type
convection device, as illustrated in Figure 7. Specifically, panel (a) depicts the overall
appearance of the mesh model, panel (b) is a sectional view of the model along its center



Appl. Sci. 2021, 11, 267 6 of 14

(cut along the A-A sectional line of Figure 4b), panel (c) is the magnified view of a boxed
area in panel (b) (which allows for the determination of the meshing quality of the inner
flow region of the window-type convection device), and panel (d) is the magnified view
of a boxed area in panel (c) (which allows for observation of the meshing of flow regions
around the airfoil and the outlet slit). Because of the highly complex fluid dynamics around
the outlet slit, six boundary-layer meshes were applied to the flow region on the airfoil
surface to improve computational convergence and reduce computational time. Therefore,
the number of meshes and the number of iteration times were effectively reduced in the
boundary layer meshes without affecting the precision of the ANSYS Fluent simulation. In
addition, a mesh convergence analysis of 5.6 million meshes indicated that convergence
occurred in numerical solutions; thus, meshes were established according to this figure.
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outlet slit.

Specifying boundary conditions is critical to flow-field analysis because proper bound-
ary conditions enable more accurate reflection of the actual circumstance(s) of the flow field.
In this study, boundary conditions were specified for the runner inlet of the window-type
convection device, the inlet and outlet of the flow field, and the wall surface; all of these
boundary conditions are highlighted in blue in Figure 8. Specifically, the boundary condi-
tion for the runner inlet of the window-type convection device was defined as the amount
of airflow and static pressure provided by the centrifugal fan to the airflow multiplier
(Figure 8a). The boundary condition for the flow-field inlet was defined as the boundary
environmental setting in the outdoor flow region during flow-field analysis (Figure 8b),
with pressure at the boundary of the flow-field inlet set at 1 atm to simulate air entrainment
by the window-type convection device. The boundary condition for the flow-field outlet
was defined as the boundary environmental setting in the indoor flow region (Figure 8c);
pressure at the boundary of the flow-field outlet was also set at 1 atm to simulate how the
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convection device delivered airflow to the boundary of the indoor flow region. In addition,
because the window-type convection device was mounted on a wall, the boundary con-
dition for the wall surface of the model was also simulated to satisfy no-penetration and
no-slip conditions (Figure 8d).
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3. Discussion and Validation of Results

This section discusses the air entrainment performance of the window-type convec-
tion device with the airfoil and outlet slit size under various geometric parameterization
schemes. The air entrainment performance of the device was determined on the basis of
the mass flow rate, flow velocity, and pressure measured on four planes (S, M1, M2, and
M3), as depicted in Figure 9. Plane S was the junction between the centrifugal fan and
the airflow multiplier, and it was used to estimate the mass flow rate at the convection
device inlet. Plane M1 was spaced 1 mm away from the air inlet plane of the convection
device, and it was used to estimate the performance of the device in entraining outdoor air.
Plane M2 was spaced 1 mm away from the air outlet plane of the device and was used to
estimate the total amount of air entrained. Finally, Plane M3 was 438 mm away from the
air outlet plane of the device and was used to estimate the overall effects of the device on
air convection.

3.1. Effects of Airfoil Camber and Outlet Slit Size on Air Entrainment Performance

The flow velocity distributions generated by the NACA1412, NACA2412, and
NACA4412 airfoils with various slit sizes were examined to investigate the effects of
the airfoil camber and outlet slit size on the air entrainment performance of the convec-
tion device, as shown in Figure 10, which shows the simulation results of flow velocity
distributions at the YZ cross-section of the center of the airflow multiplier. In Figure 10,
the upper part is the indoor flow region, and the lower part is the outdoor flow region.
The flow velocity is presented by color variation. Dark blue is the low-flow velocity, while
light blue is the high velocity. In addition, the gray can be regarded as airflow multiplier
and wall. Applying a constant slit size and increasing the airfoil camber enabled increas-
ing the distribution of high-velocity airflow around the slit. Thus, increasing the airfoil
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camber can induce low pressure around the outlet slit, entraining outdoor air through the
pressure difference.
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The effects of airfoil camber and outlet slit size on air entrainment performance were
quantified according to the mass flow rates on Planes S, M1, M2, and M3 observed using
the three airfoils. At identical slit sizes, increasing the airfoil camber had a negligible effect
on the mass flow rate on Plane S, although the mass flow rate increased notably when the
slit was enlarged (Figure 11a). For example, with a slit of 1.5 mm, all airfoils demonstrated
a mass flow rate of approximately 0.016 kg/s, which was three times that of the foils with
a 0.3 mm slit. Accordingly, the slit size affected the mass flow rate more than the airfoil
camber did. Figure 11b illustrates the effects of the airfoil camber on the mass flow rate on
Plane M1 of three airfoils at various slit sizes, suggesting that the airfoil camber notably
affected the mass flow rate. For example, the NACA4412 at slit sizes of 1.5, 1.2, 0.9, 0.6, and
0.3 mm attained mass flow rates 1.12, 1.09, 1.07, and 1.23 times higher than those of the
NACA1412 at equivalent slit sizes, respectively. Thus, increasing the airfoil chamber can
increase the mass flow rate on Plane M1, with a peak air entrainment performance at a
slit size of 0.6–0.9 mm. Table 1 presents a summary of the airflow velocity and pressure
induced on Plane M1 by all of the airfoils at various slit sizes, which determine the air
entrainment performance of the convection device. As shown in Table 1, the higher the
flow velocity on Plane M1, the lower its corresponding pressure (negative pressure). These
corresponding flow pressure changes were due to changes in the velocity of flow passing
the slit, indicating that negative pressure around the slit facilitates the convection device to
draw more outdoor air.
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Figure 11c depicts the mass flow rate at the outlet of Plane M2, which was the sum
of those on Planes S and M1, and whose airflow was comprised largely of entrained air.
Finally, Figure 11d presents the mass flow rate on Plane M3, which exhibits similar changes
to those shown in Figure 11c (namely, decreasing mass flow rate as the airfoil camber
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decreases); this panel also suggests that the mass flow rate on Plane M3 at a 1.2 mm slit
was notably higher than at other slit sizes. Moreover, the mass flow rate on Plane M3
was higher than that on Plane M2, indicating that the convection device also entrained
indoor air.

To further elucidate the effects of the thickness, camber, and slit size of the airfoil
on the air entrainment performance of the convection device, the airfoil thickness was
adjusted from 12% to 18% and 24%. The results revealed mass flow rate changes similar to
those presented in Figure 11. Notably, the mass flow rate peaked when the slit size was
reduced from 0.8 to 0.6 mm when the airfoil thickness was increased to 24%. Thus, the
effects of airfoil thickness and outlet slit size on air entrainment performance necessitate
further investigation.

Table 1. Velocity and pressure of airflow induced on Plane M1 by all of the airfoils, with fixed airfoil thickness and varying
airfoil cambers and outlet slit sizes.

Slit (mm)
NACA1412 NACA2412 NACA4412

VM1 (m/s) PM1 (Pa) VM1 (m/s) PM1 (Pa) VM1 (m/s) PM1 (Pa)

0.3 1.98 −2.74 2.33 −3.75 2.44 −4.08
0.6 2.94 −5.96 3.01 −6.20 3.16 −6.81
0.9 3.05 −6.39 3.11 −6.59 3.33 −7.45
1.2 2.81 −5.46 3.04 −6.31 3.15 −6.76
1.5 2.65 −4.89 2.77 −5.31 2.97 −6.09

3.2. Effects of Airfoil Thickness and Outlet Slit Size on Air Entrainment Performance

As illustrated in Figure 12a, increasing the airfoil thickness exerted negligible effects
on the mass flow rate on Plane S, with a relative camber of 4%, a maximum camber located
40% from the leading edge, an increase in the maximum thickness from 12% to 24%, and a
lengthening of the slit size from 0.3 to 1.5 mm. Furthermore, the mass flow rate on Plane S
of the NACA4424 airfoil demonstrated less noticeable improvement in relation to the slit
size than those of the NACA4412 and NACA4418 airfoils did. Next, Figure 12b depicts the
effects of the airfoil thickness on the mass flow rate on Plane M1. The highest mass flow
rate on Plane M1 of the NACA4424 airfoil occurred with a slit size of 0.6–0.9 mm; however,
increasing the airfoil thickness decreased the volume of the runner, thereby reducing the
optimal size of the slit. Figure 12c shows the mass flow rate at the outlet of Plane M2 in
relation to the airfoil thickness, which was the approximate sum of the mass flow rate at the
inlet of Plane S and that on Plane M1; this finding concurs with that illustrated in Figure 11c.
In addition, as the slit size increased, the mass flow rate at the inlet of Plane S rose, whereas
that at the outlet of Plane M2 declined (Figure 12a,c), indicating that increasing the slit size
impeded air entrainment. Finally, Figure 12d outlines the effects of airfoil thickness on the
mass flow rate on Plane M3. Notably, the mass flow rate on Plane M3 was higher than that
on Plane M2, suggesting that airflows passing Plane M2 induced indoor air entrainment.
This phenomenon coincides with the results shown in Figure 11d. Moreover, analyzing
the effects of airfoil thickness on the mass flow rate under the relative camber of 1% to 4%
revealed similar mass flow rate changes to those presented in Figure 12.

To examine the effects of the geometric structure of the window-type convection
device on its air entrainment performance, the mass flow rates at the outlet of Plane M3
and that at the inlet of Plane S were proportionally calculated to determine the ratio of
which the flow rate was magnified. Analysis of a range of geometric parameters revealed
that the NACA4424 airfoil with a 1.2 mm outlet slit size attained the optimal magnification
ratio of 11.59. Therefore, a convection device was constructed on the basis of this parameter
to measure the actual flow rate of the device and validate the aforementioned simulation
results. Section 3.3 details this validation process.
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3.3. Experimental Validation

The optimized geometric dimensions of the air multiplier were experimentally vali-
dated to examine the accuracy of the ANSYS Fluent simulation and the feasibility of the
convection device. Figure 13 details the assembly, physical appearance, and mass flow
rate measurement for the convection device. Specifically, the device was assembled by
combining a wind-deflector plate and wind-deflector cover to form the NACA 4424 airfoil
with a 1.2 mm slit; the plate and cover were attached to a centrifugal fan, and the three
components were mounted on the center of a device substrate (Figure 13a). Figure 13b
illustrates the mass flow rate measurement method for the convection device. Specifically,
in accordance with Chinese National Standard 547 regarding flow rate measurement, the
convection device was positioned 438 mm ahead of the mass flow rate measurement panel.
Wind speed data for 64 equally divided areas of the measurement panel were captured to
estimate and sum up the mass flow rate on each of the areas, which determined the ability
of the convection device to enhance air convection. Wind speed was measured using an
anemometer (LM-81AM, Lutron Electronic Enterprise Co., Ltd., Taipei, Taiwan).
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Figure 13. (a) Assembly of the window-type convection device, and (b) the mass flow rate measurement method for the
convection device.

Figure 14 illustrates the measurement of flow fields around the convection device.
As shown in Figure 14a, the flow-field direction was measured with smoke blown by the
centrifugal fan powered at 12 V; the equivalent simulation results are depicted in Figure 14b.
Overall, the flow-field measurement results in Figure 14a,b indicate qualitatively similar
changes, confirming the feasibility of the convection device.

To examine the quantitative differences between the experimental and simulated flow-
field measurement results, wind speed data were captured, and the mass flow rates under
the experimental and simulated conditions were estimated. Figure 15 shows the mass flow
rate under simulated and experimental conditions at three voltages at which the centrifugal
fan operated. The mass flow rate under both conditions exhibited similar changes and
increased with the operating voltage of the fan. Moreover, the mean error between the
simulated and experimental measurements at these varying operating voltages was 6.3%,
suggesting that the ANSYS Fluent simulation conducted in this study was highly reliable.
This error was attributed to the assumptions of the simulation, the surface roughness of
the 3D-printed parts, and the assembly error in the convection device.
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4. Conclusions

This paper presented a window-type convection device prepared in accordance with
the principles underlying the operation of airflow multipliers. The air entrainment per-
formance of the convection device was optimized by designing its wind-deflector plate
in the shape of an airfoil and adjusting the outlet slit size. The analysis results revealed
that the mass flow rate of the convection device increased alongside the airfoil camber and
thickness. Although decreasing the slit size reduced the flow velocity, it also facilitated
improving the entrainment of outdoor air, which is affected by ambient pressure; more
specifically, reducing the size of the slit induced lower ambient pressure around it, thereby
enhancing the entrainment of outdoor air. Moreover, the mass flow rate at the convection
device outlet was 11.6 times that at the inlet, implying that the device has the potential
to improve convection between indoor and outdoor airflows, and then to reduce energy
consumption and carbon emissions.

The NACA4424 airfoil (namely, 4% relative camber, maximum camber located 40%
from the leading edge and maximum thickness of 24% of the chord length) with a 1.2 mm
slit, which delivered the highest air entrainment performance during simulation, was
applied to conduct an experiment and validate the simulated results. The mean error
between the experimental and simulated mass flow rates was 6.3%, suggesting that the
ANSYS Fluent simulation was highly accurate, and that the convection device was feasible.
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