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Abstract: Due to the limited battery energy of underwater wireless sensor nodes and the difficulty
in replacing or recharging the battery underwater, it is of great significance to improve the energy
efficiency of underwater wireless sensor networks (UWSNs). We propose a novel energy-efficient
clustering routing protocol based on data fusion and genetic algorithms (GAs) for UWSNs. In the
clustering routing protocol, the cluster head node (CHN) gathers the data from cluster member
nodes (CMNs), aggregates the data through an improved back propagation neural network (BPNN),
and transmits the aggregated data to a sink node (SN) through a multi-hop scheme. The effective
multi-hop transmission path between the CHN and the SN is determined through the enhanced GA,
thereby improving transmission efficiency and reducing energy consumption. This paper presents
the GA based on a specific encoding scheme, a particular crossover operation, and an enhanced
mutation operation. Additionally, the BPNN employed for data fusion is improved by adopting an
optimized momentum method, which can reduce energy consumption through the elimination of
data redundancy and the decrease of the amount of transferred data. Moreover, we introduce an
optimized CHN selecting scheme considering residual energy and positions of nodes. The experi-
ments demonstrate that our proposed protocol outperforms its competitors in terms of the energy
expenditure, the network lifespan, and the packet loss rate.

Keywords: data fusion; underwater wireless sensor network; back propagation neural network;
clustering routing protocol; genetic algorithm; network lifespan

1. Introduction

Underwater wireless sensor networks (UWSNs) consist of many underwater wireless
sensor nodes distributed within the marine environment, which support a wide variety
of applications such as surveillance, navigation, data acquisition, resource exploration,
and disaster prevention [1–3]. Each sensor node of UWSNs is equipped with an acoustic
modem because it uses acoustic signals to communicate with each other [4]. These nodes
are capable of forming a network without any infrastructure. The responsibility of the
sensor nodes is to monitor the underwater environment such as the temperature, and
send the collected data to a sink node (SN) through a single hop or multiple hops [5].
The SN, located on the sea surface, has the ability to receive the data from underwater
sensor nodes through acoustic signals and send the received data to terrestrial network
devices through radio signals [6]. In the underwater environment, the radio signals face
the absorption problem and attenuate quickly [7]. Hence, they are not suitable for long-
distance underwater communications. The sound wave is adopted during underwater
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communications because it is less affected by attenuation, scattering, as well as absorption
loss [6]. The acoustic signals propagate slowly, which causes the high propagation delay [8].
What is more, there are other drawbacks of the underwater acoustic channel, such as
low bandwidth, as well as high error rate [9]. Therefore, it consumes lots of energy to
successfully transmit data packets in UWSNs and keep the good performance of UWSNs.
Furthermore, the sensor nodes have restrained energy, and it is not easy to recharge or
redistribute them [10]. Therefore, the energy consumption and the network lifetime are
major concerns in UWSNs [11]. There are some energy-efficient routing approaches in
terrestrial wireless sensor networks (TWSNs), which could not be directly adopted by
UWSNs because UWSNs employ acoustic signals while TWSNs use radio signals to send
data [12]. Moreover, two-dimensional network models are usually employed in TWSNs,
whereas UWSNs often use three-dimensional network models, which is very challenging
for researchers [13]. As a result, how to choose effective transmission paths for complicated
three-dimensional UWSNs becomes crucial.

A number of works have shown that clustering routing protocols are effective and
efficient in finding optimal routing paths for data transmission, which can save energy
and extend the network lifespan [14,15]. The clustering routing protocols divide the whole
network into lots of clusters. Every cluster is composed of a cluster head node (CHN) and
some cluster member nodes (CMNs). After completion of the cluster formation, the CHN
allocates channel resources for the CMNs in the same cluster, and the CMNs send data
to the CHN based on the allocation, thereby decreasing collisions [16]. In every cluster,
after the CHN receives the data sent by the CMNs, it fuses the received data, which can
eliminate the redundant data and reduce the amount of data to be transmitted to the SN,
thus contributing to energy conservation [4]. Moreover, the decreased data size reduces
collisions during data transmissions. In addition, clustering routing protocols employ a
CHN rotation mechanism and select CHNs in every round, which helps avoid the excessive
energy dissipation of the selected CHNs, balance the energy consumption, and prolong the
network lifecycle [17].

The data fusion technique [18,19], which is used by CHNs to fuse data in this paper, is
a common and effective way to eliminate the data redundancy, reduce the data size, and
decrease the energy consumption. This paper uses an improved back propagation neural
network (BPNN) to implement the data fusion. In UWSNs, sensor nodes may collect the
data with high redundancy. When the redundant data are sent to the SN, unnecessary
energy consumption arises, leading to a premature death of the node and a shortened
lifespan of the network. In contrast, if the CHNs fuse the data and transmit them towards
the SN, it could greatly save energy [20]. The four advantages of data fusion technique are
concluded in [21]: decreasing energy consumption, enhancing data security, improving
transmission efficiency, and optimizing network resources.

The data transmission by the multi-hop mechanism, has been proven in [22] more
effective in energy conserving in long-distance transmissions compared to the single-hop
mechanism. Thus, we need to find the optimal multi-hop paths to achieve minimized
energy consumption, enhanced transmission efficiency, and reduced packet loss ratio
during data transmission. In the paper, the SN is the destination node, and the CHN
that has data packets to send becomes the source node. The relay node is chosen from
CHNs rather than CMNs. Genetic algorithms (GAs), which imitate the natural evolution
process to search for optimal solutions, have the potential to resolve the optimization
problem and they are effective in finding the optimal multi-hop routing paths [23,24]. The
population initialization of the GA is usually based on a random scheme. The fitness
function evaluates the individuals and the better ones are more likely to be chosen to
produce the next generation [25]. Through repeated crossover, mutation, and selection
operations, the population can be improved and the optimal solution can be found [26].

To our knowledge, no existing routing protocol in UWSNs combines the advantages of
the clustering scheme, the data fusion technique and the GA. However, it is vital to propose
an energy-efficient routing protocol that is capable of minimizing the energy dissipation
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and ultimately maximizing the lifecycle of UWSNs. Hence, we present an energy-efficient
clustering routing protocol on the basis of a modified GA and an improved BPNN for
UWSNs, which could greatly enhance network performance. The proposed protocol has
three main phases: the CHN selection, the cluster formation, and the data transmission.
In the CHN selection phase, the protocol introduces an optimized CHN selecting scheme.
In the second phase, CMNs choose to join the CHNs according to depths of nodes and
distances between nodes, and the clusters are thus formed. In the third phase, the CMNs
transmit data to the CHNs through a single-hop mechanism. Once receiving the data, the
CHNs fuse them by using the improved BPNN algorithm, and forward the fused data
to the SN through a multi-hop scheme. Each effective multi-hop transmission path is
identified through the enhanced GA.

The innovations of our work are as follows:

1. Based on a new encoding scheme, which encodes routing paths as chromosomes
and sensor nodes as genes, this paper presents a modified GA to search for optimal
multi-hop routing paths for CHNs to transmit data packets to the SN.

2. This paper proposes a scaling function to reallocate the range of the fitness value
in the selection operator of the GA, which helps keep the population diversity and
improve the convergence of the GA.

3. This paper introduces a particular crossover operator and an improved mutation
operator in the GA, and also adopts an adaptive mutation probability scheme instead
of using the fixed mutation probability, which helps avoid the local convergence of
the GA.

4. This paper presents an improved BPNN by adopting an optimized momentum
method, which is employed by CHNs to fuse data in order to reduce the energy
consumption through the elimination of data redundancy and the decrease of the
amount of data.

5. This paper introduces an optimized CHN selecting scheme, and improves the cluster
formation process by taking into account the depth of the nodes and the distance
between nodes.

6. This paper combines the clustering routing protocols, the GA, and the data fusion
technique, which is an innovative application in UWSNs. Simulation results verified
its effectiveness in improving network performance.

The remainder of this paper is as follows. Section 2 introduces the related work.
Section 3 describes the network model and the energy consumption model. The modified
GA is presented in Section 4. Section 5 focuses on the improved BPNN. Section 6 presents
the proposed clustering routing protocol. The experiments are analyzed in Section 7. The
conclusion is drawn in Section 8.

2. Related Work

To reduce the energy consumption and prolong the network lifetime, many studies
have been done. This section presents related works concerning the clustering routing
protocol, the data fusion technique, and the GA. In Section 2.1, some clustering routing
protocols are presented and the difference between these protocols and the proposed
underwater clustering routing protocol in this paper is provided. In Sections 2.2 and 2.3,
some researches about the data fusion technique and the GA are reviewed. Because the
proposed underwater clustering routing protocol cannot be comparable to the data fusion
technique or the GA, we just summarize the advantages of the data fusion technique and
the GA, and present that they can reduce energy dissipation in UWSNs.

2.1. The Clustering Routing Protocol

This section presents related works on clustering routing protocols and discusses
the difference between them and our proposed protocol. The earliest one is the low-
energy adaptive clustering hierarchy (LEACH) protocol that uses a probabilistic method
to select CHNs, but the remaining energy of nodes is not considered [27]. This makes
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some selected CHNs die too early, which affects the balance and efficiency of the network
energy. Moreover, the LEACH does not support the multi-hop transmission mechanism.
Therefore, researchers proposed the improved clustering routing protocols based on the
LEACH. Lee et al. optimized the LEACH based on expected residual energy (LEACH-
ERE), which adopts an improved CHN selection scheme based on the LEACH protocol,
employs energy predication, and distributes the network load evenly in order to extend the
network lifetime [28]. Mohapatra et al. presented a partitioned-based and energy-efficient
LEACH (PE-LEACH) protocol that divides the whole network into quadrants, which is
energy-efficient and fault-tolerant [29]. In addition, the CHN selection scheme and the data
transmission process are improved in PE-LEACH protocol. However, the protocols in [28]
and [29] are designed for TWSNs, and they should be modified for UWSNs. Wang et al.
adopted an energy-efficient grid routing based on 3D cubes (EGRCs) for UWSNs, where
the network is divided into lots of small cubes and each cube is regarded as a cluster [30].
What is more, the EGRC protocol optimizes the CHN selection and improves the search
process for the next-hop node. However, the EGRC does not present the detail of the
data fusion mechanism as the data redundancy may exist and should be reduced. In [31],
an underwater clustering protocol on the basis of the fuzzy c means and the moth-flame
optimization (FCMMFO) was proposed to enhance the performance of UWSNs. In the
FCMMFO, the optimal number of clusters is determined by using the fuzzy c means and the
appropriate CHNs are selected by the moth-flame optimization. Nevertheless, a multi-hop
mechanism is not provided in the FCMMFO. Krishnaswamy et al. presented an energy-
efficient underwater clustering protocol based on the fuzzy scheme and particle swarm
optimization (FBCPSO) in [32], where the fuzzy scheme and particle swarm optimization
are used to form clusters and select CHNs respectively, which can balance and reduce
the energy dissipation. However, the multi-hop routing mechanism and the data fusion
method are not considered by the authors. Wang et al. put forward an underwater
clustering scheme based on the magnetic induction for UWSNs [33], where the Voronoi
diagram is employed to form clusters and the jellyfish breathing process is used for CHN
selection. This scheme can achieve the high energy-efficiency and prolong the network
lifetime. However, the multi-hop routing path has not been optimized in [33]. Ahmed
et al. introduced an underwater clustering protocol according to redundant transmission
control (RTC), which eliminates the data redundancy at the CHN level and at the region
head level [6]. Moreover, the authors presented a dynamic CHN rotation method, which
can balance the energy consumption and improve the reliability of the network. However,
this scheme relies on a mobile SN that moves from the surface to the bottom to collect data.
Islan et al. presented an underwater clustering-based localization protocol [34], where
the CHNs perform localization procedure rather than the whole cluster. Furthermore,
the retransmission control mechanism is carried out to control unnecessary transmission,
which can reduce energy dissipation. Nevertheless, this protocol does not consider the
data redundancy that affects the energy consumption. Wan et al. presented an underwater
adaptive clustering routing scheme [35], where the CHNs perform the data fusion in order
to decrease the energy loss. Moreover, the competition radius of nodes is decided based
on the distance factor and the residual energy of nodes. The selection of CHNs and the
routing rules are in the light of node energy, but the influence of the distance has not been
considered. Bansal et al. provided a multilevel underwater clustering protocol [36], where
the cluster and the logical level are formed based on the remaining energy of nodes rather
than the geography. The nodes with the similar level of energy are thought to be in the
same level and only the nodes with the highest level of energy communicate with the
SN. Moreover, the protocol employs the multi-hop transmission mechanism and the data
fusion technique, but the details are not given. Zou et al. proposed an underwater cluster-
based adaptive routing (CBAR) protocol [37], which optimizes the network architecture and
establishes the routing path based on the focus beam routing. Moreover, the CBAR employs
a dynamic routing update mechanism and a power control mechanism. However, the
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multi-hop routing path is not optimized and the detail of the data redundancy elimination
scheme is not given in the CBAR.

2.2. The Data Fusion Technique

This section presents related works on the data fusion technique and describes that
it can be used to eliminate the data redundancy, thus reducing the energy consumption
during data transmissions. Sun et al. presented a data fusion method based on BPNNs,
and they put the input layer of the BPNNs in CMNs, and put the hidden and output layers
in CHNs [20]. Only the fused data representing the features of the input data are sent to
the SN in order to improve energy efficiency. Cao et al. developed a clustering protocol in
the light of data fusion scheme by using BPNNs for TWSNs, which adopts a stable election
protocol model based on the LEACH protocol to select appropriate CHNs [38]. The selected
CHNs fuse the data after receiving them and send the fused data to a destination node.
Yue et al. proposed a data fusion scheme by employing an improved radial basis function
neural network in mobile TWSNs, which improves the data fusing model so as to reduce
the energy consumption [39]. Nevertheless, the underwater environment has not been
taken into account in [20,38,39]. Goyal et al. introduced a fuzzy-based clustering routing
protocol combined with the data fusion technique for UWSNs, where the residual energy,
the distance, the node density, the load, and the link quality are considered as inputs to
the fuzzy logic as a way to select CHNs and determine the cluster size [40]. The selected
CHNs fuse the received data and transmit them to a destination node, reducing the energy
dissipation and enhancing the network lifespan. The clustering routing protocol with a two-
tier data fusion for UWSNs is described in [41], where CMNs reduce the data redundancy
before transmitting the data to CHNs. The CHNs adopt a developed K-means method
based on an ANOVA model to aggregate the received data, and send the aggregated data to
the SN, thereby minimizing the energy consumption. Wang et al. introduced a data fusion
technique based on the BPNN, which combines with clustering routing protocols [42]. The
scheme optimizes the selection of CHNs, and the selected CHNs extract features from the
data and send them to the SN, which can save energy. Gang et al. described a data fusion
method on the basis of the rough set theory and the BPNN [43], where the rough set theory
is used to reduce redundant data and the reduced useful data are used to train the BPNN.
It has been validated that this protocol can enhance the performance of the data fusion
system and improve the training speed of the BPNN. Lin et al. introduced a data collection
and fusion mechanism that uses a mobile SN to collect the data from collection points [44].
The collection points are selected periodically and the collection points are the places where
the data fusion is performed, which is capable of reducing the energy consumption and
extending the network lifetime.

2.3. The GA

This section presents the related works concerning the GA, which demonstrate its
effectiveness in finding the optimal multi-hop transmission paths, thereby saving energy,
extending the network lifetime, and decreasing the transmission delay. Lorenzo et al.
proposed an improved GA to optimize the routing paths, which encodes the paths as
chromosomes and presents special crossover and mutation operations for realizing the
optimal topology [45]. Moreover, they developed the fitness function by considering
power consumption, time delay, and throughput of the network. The GA they proposed
possesses the merits of fast convergence and robustness. Lu et al. presented an improved
GA to optimize the multicast routing by using a simplified encoding operation, a special
crossover operation, and a modified mutation operation [46]. In addition, they defined the
fitness function based on the energy cost and time delay, which can decrease the energy
consumption and extend the life expectancy of the network. Silva et al. put forward a
routing protocol based on GAs that are used to look for suitable routing paths to satisfy the
requirements of anycast sessions, which can improve the efficiency of the delay tolerant
network [47]. An optimal multi-hop path finding method (OMPFM) was proposed in [48],
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where an enhanced GA is adopted to find the optimal paths through the proposal of a
fitness function. Furthermore, the performance of the GA is improved in the execution
time and the chromosome quality. Results show that the OMPFM can find an optimal
multi-hop path, thereby saving energy and prolonging the network lifetime. In [49],
Thamaraikannan et al. introduced a compact GA to select the optimal path for mobile
ad-hoc networks, which can reduce the path cost, improve the packet delivery rate and
decrease the energy consumption. Xin et al. presented a modified GA through the increase
in the number of offspring and the conduction of the second fitness assessment that can
remove the undesirable offspring and keep the dominant individuals [50]. Moreover, this
enhanced GA was used in the navigation, as well as the control system of unmanned
surface vehicles, and simulation results indicate the GA performs well in the convergence
speed, the robustness, and the optimal path searching.

Therefore, combining the clustering routing protocol, the data fusion technique, and
the GA in UWSNs could greatly reduce the energy dissipation and prolong the network
lifetime. In our proposed underwater clustering routing protocol, the data fusion technique
is used by CHNs to eliminate the data redundancy and the GA is employed to find the
optimal multi-hop transmission paths when CHNs transmit the fused data to the SN.

3. Model Assumptions
3.1. Network Model

In the section, we present a three-dimensional network model, which is shown in
Figure 1. Underwater acoustic sensors are distributed at random within the marine envi-
ronment, and other details are:

1. There are two kinds of nodes: underwater sensor nodes, which are immobile and
divided into CHNs and CMNs after cluster formation, and an SN, which is located
on the surface of the monitoring area.

2. There is only one SN in the network, which is the destination node and has energy
supplies. Nevertheless, underwater sensor nodes have limited energy and they do
not have energy supplies.

3. The ordinary underwater nodes have the equal initial energy and the unique IDs.
4. The locations of nodes could be acquired through the localization algorithm [51].
5. We could control transmitting power based on the different distances to receiving

nodes.
6. CMNs gather data and transmit them to CHNs through a single hop. Once the CHN

receives the data, the CHN fuses them and forward them towards the SN through
multiple hops. If one CHN is close to the SN, it sends data towards the SN through
one hop.
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3.2. Energy Consumption Model

The underwater energy consumption model provided in [52] is employed in the paper.
This paper assumes P0 is minimal power that a node needs to receive packets, and minimal
transmitting power should reach P0A(l), where A(l) denotes an attenuation function. The
energy consumption for transmitting and receiving can be calculated by:

Et(l) = TtP0 A(l) (1)

Er = TrP0 (2)

A(l) = l1.5al (3)

a = 10α( fc)/10 (4)

α( fc) = 0.11
fc

2

1 + fc2 + 44
fc

2

4100 + fc2 + 2.75× 10−4 fc
2 + 0.003 (5)

where Et (l) is the energy consumption for transmitting, and Er is the energy consumption
for receiving. Tt is the time for nodes to send packets, and Tr is the time to receive packets.
l is the distance between transmitting nodes and receiving nodes. α(fc) is the absorption
coefficient in dB/km and fc is the frequency in kHz.

4. The Improved GA

This section presents the improved GA that is used to find the optimal multi-hop
paths between the CHNs and the SN, where the novel encoding scheme, as well as the
specific selection, crossover, and mutation operators is proposed. The optimal paths can im-
prove transmission efficiency, reduce packet loss ratio, and minimize energy consumption,
thereby prolonging the network lifetime and improving the network performance.

4.1. The Problem Description

We assume that there are N-1 CHNs and 1 SN when implementing the GA to search
for the optimal paths. The SN is the destination node. The CHN that needs to transmit data
becomes the source node. The relay node is chosen from CHNs. Let xij, cij, dij, and lij denote
the link indicator, the link energy cost, the link delay, and the link length between node i
and node j, respectively. Tti is the time duration for the node i to transmit packets and Trj
is the time duration for the node j to receive packets. Dtmax presents the maximum delay
of the path. The value of xij is 1 when a link exists between node i and node j. Otherwise,
the value of xij is 0. We regard the search process of multi-hop paths as a combinatorial
optimization problem, finding the optimal path with the minimum cost. The objective
function is given by:

minimize : Fobj =
N

∑
i=1

N

∑
j=1

cijxij (6)

where cij = TtiP0 A(lij) + TrjP0 (7)

subject to :
N

∑
i=1

N

∑
j=1

dijxij < Dtmax (8)

The constraint Equation (8) makes sure that the total transmission delay is limited to a
certain value so that it will not be too high.

4.2. The Encoding Scheme

This paper encodes routing paths as chromosomes and nodes as genes. The first gene
of the chromosome presents the source node and the last gene of the chromosome denotes
the destination node. The number of genes in one chromosome is not an invariant, which
means that different routing paths could consist of different number of nodes. Moreover,
one gene cannot appear at the different locations of one chromosome, which means that
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one node can only appear once in one routing path so as to prevent the loops and improve
the efficiency of the path. However, if it happens, this paper adopts the repair mechanism
to solve it as described in Section 4.6. Figure 2 demonstrates the encoding process of a
routing path from the source node to the destination node.
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4.3. The Initialization

The initialization of population size, which is the number of the chromosomes, and the
initialization of the chromosome formation should be taken into account before implement-
ing the operation of the GA. The population size is vital to the GA and should be decided
by the specific circumstance. It is more likely for the GA having more initial chromosomes
to search for optimal solutions. However, it takes more time for the algorithm to converge
and it is also a waste of resources. A small number of chromosomes may save network
resources, but may lead to an undesired outcome. The initialization of the chromosome
formation is based on the random selection. In this paper, the first gene represents the
source node. The second gene is chosen randomly from the neighboring nodes of the source
node and the third gene is picked randomly from the neighboring nodes of the second
node. The procedure does not stop until the destination node is found. Additionally, one
node should not be chosen repeatedly on one path in order to avert loops in paths.

4.4. The Fitness Function

In the GA, it is more likely for the individual with higher fitness value to be selected to
generate the next generation. Hence, it is indispensable to design the fitness function, which
demonstrates the characteristics of chromosomes so as to find the optimal chromosome
that is the optimal routing path with the minimal cost. Accordingly, we define the fitness
function:

Fm =
Φ(z)
Fobj

=

Φ(
N
∑

i=1

N
∑

j=1
dijxij − Dtmax)

N
∑

i=1

N
∑

j=1
cijxij

(9)

Φ(z) =
{

1, if z ≤ 0
λ, if z > 0

(10)

where Fm represents the fitness function of the mth chromosome, Φ(z) denotes the penalty
function, and λ ranging from 0 to1 decides the level of penalty. When the total path delay
exceeds the maximum value Dtmax, the penalty function will affect the value of fitness
function and always decrease the value, which means the penalty function could reduce
the chance of a chromosome being selected for the next generation. If the value of λ is high,
the level of penalty will be low. Otherwise, the level of penalty will be high.

4.5. The Selection Operator

One chromosome represents one routing path from the source node to the destination
node. However, some paths may cost too much energy and it is better not to choose the
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corresponding chromosomes to produce the next generation. Therefore, we adopt the
roulette wheel selection as the selection operator to choose the chromosomes with high
quality. The probability of choosing one chromosome to perform the crossover operation is
presented by:

Pm =
Fm

M
∑

m=1
Fm

(11)

where Pm is the probability for choosing the mth chromosome as a parent, which is higher
when the chromosome has a higher fitness value. M represents the population size. How-
ever, this operator may result in the loss of population diversity because it is sensitive to
the probability. To alleviate this problem, we propose a scaling function to reallocate the
range of the fitness value. By referring to the simulated annealing algorithm, the scaling
function is given as follows:

Qm = exp(−100βg−1Fm) (12)

where Qm denotes the scaled fitness function of the mth chromosome. β is adjustment
coefficient ranging from 0 to 1. g represents the number of generations. As shown in
Equation (12), in early generations, it can narrow the gap between the fitness values of
different chromosomes so that the potential chromosomes can be selected, thereby settling
the local optimum problem. In late generations, it can amplify the difference between the
chromosomes that have the close fitness values so as to highlight the advantages of the
good-quality chromosomes, which renders the superior chromosomes selected to pass on
to the next generation for the purpose of accelerating the convergence of the algorithm.

4.6. The Crossover Operator

Using the selection operator, the chromosomes are picked for the crossover operation
to produce the offspring according to the crossover probability. In this process, two
chromosomes generate two new chromosomes by exchanging some parts of them, but it is
noted that these two chromosomes (paths) should have one or more same genes (nodes)
besides the source node and the destination node because it may produce infeasible routing
paths easily otherwise. The places of the same genes in two chromosomes are where
the crossing points lie. Two crossover methods are adopted in this paper: single-point
crossover and two-point crossover, which differ from the traditional ones. The single-point
crossover is carried out when there is only one common gene in the two chromosomes
and they exchange the latter parts of themselves, which start from the crossing point to
the destination node. Two new chromosomes are thus formed as demonstrated in Figure 3.
Additionally, as shown in Figure 4, the two-point crossover is used when two common
genes exist in the two chromosomes and they exchange the parts that are between the two
same genes so as to form two new chromosomes. If three or more same genes exist in
two chromosomes, the paper still adopts the two-point crossover method and the crossing
points are selected randomly from the same genes.
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As illustrated in Figures 3 and 4, some of the new produced chromosomes are better
than the original ones, which ensures that the preferable paths can be found. Therefore,
the crossover operation can improve the ability of the path search, thus accelerating the
algorithm convergence and finding the optimal path. However, sometimes the crossover
operation may cause path loops, which is not desirable in the path search. Therefore, the
repair mechanism is adopted to look for the loops and then wipe them out. The key point
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is to find out whether one node exists in the different locations of one path. For example,
there are two chromosomes representing the two paths:

Path 1 : SN → N1 → N3 → N2 → N5 → · · · → DN
Path 2 : SN → N2 → N4 → N3 → N5 → · · · → DN

The two crossing points are N3 and N5. After crossover operation, the produced
paths are:

Path 3 : SN → N1 → N3 → N5 → · · · → DN
Path 4 : SN → N2 → N4 → N3 → N2 → N5 → · · · → DN

There exists a loop N2 → N4 → N3 → N2 in path 4. After the loop is wiped out, the
path becomes a feasible one: SN → N2 → N5 → · · · → DN .

4.7. The Mutation Operator

The mutation randomly happens to chromosomes and changes the genes according to
the mutation probability, which could provide the genes that do not exist in the population
or those that are lost in the early operation, thereby retaining the diversity of the population
and avoiding the local convergence. The mutation operator starts a new path search from
the mutation gene (node) to the destination node at random, and this process of the partial
path search is the same as the process of the initialization of the path (chromosome) as
described in Section 4.3. In addition, the partial path between the source node and the
mutation node stays the same as shown in Figure 5. What calls for special attention is that
the nodes that already exist in the previous path extending from the source node to the
mutation node should not be added to the path during the new partial path searching
process in order to prevent loops.
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Figure 5. The mutation procedure.

To avoid the local convergence, this paper adopts an improved mutation operator by
adjusting mutation probability adaptively instead of using the fixed mutation probability
applied in the conventional algorithm. The proposed one is given by:

Pmmut =


Pmutmax−Pmutmin

1+exp(µ(
2(Qm−Qavg)
Qmax−Qmin

))
+ Pmutmin, Qm ≥ Qavg

Pmutmax, Qm < Qavg

(13)

where Pmmut denotes the mutation probability of the mth chromosome. Pmutmax and Pmutmin
are the maximum mutation probability and the minimum mutation probability. Qavg,
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Qmax, and Qmin denote the average, maximum, and minimum scaled fitness values in
the population, respectively. As displayed in Equation (13), the mutation probability of
chromosomes is related to its scaled fitness value. The individual with a smaller fitness
value has a higher chance to mutate so as to help remain the good-quality chromosomes,
as well as keep the diversity of the population, which prevents the premature convergence
of the algorithm.

4.8. The Termination Mechanism

When the mutation operation finishes, the next generation is produced. After the
maximum number of iterations, one optimal multi-hop routing path from the source node
to the destination node can be determined by selecting the chromosome with the largest
fitness value in the population. That means one path between one CHN and the SN is
determined. However, it is noted that there are N-1 CHNs in the network. Hence, the
improved GA ends when all the CHNs find their paths to the SN.

5. The Improved BPNN

This section presents an improved BPNN that is used by the CHNs to perform data
fusion after they receive data sent by CMNs, which can eliminate the redundant data and
reduce the amount of transmitted data, thus saving the network energy and extending the
network lifespan.

5.1. The BPNN Description

The three-layer neural network consisting of one input layer, one hidden layer, and
one output layer is adopted in this paper, which is competent for most of the complicated
problems. Figure 6 illustrates the structure of the BPNN. We assume that the input signal
and the output signal for the structure are U = [u1, u2, . . . , uU] and Y = [y1, y2, . . . , yY],
respectively. U, R, and Y denote the number of neurons of the input layer, hidden layer,
and output layer, respectively. Then the outputs of the hidden layer and the output layer
can be calculated by:

hj = fv(
U

∑
i=1

wijui + bj) (14)

yk = fv(
R

∑
j=1

wjkhj + bk) (15)

fv(v) =
1

1 + exp(−v)
(16)

where hj and yk represent the outputs of the jth neuron in the hidden layer and the kth
neuron in the output layer, respectively. wij denotes the weight value connecting the ith
neuron in the input layer and the jth neuron in the hidden layer, and wjk indicates the
weight value connecting the jth neuron in the hidden layer and kth neuron in the output
layer. bj and bk are the biases of the jth neuron in the hidden layer and the kth neuron in
the output layer, respectively. fv(v) is the activation function of the hidden layer and the
output layer. The overall output is usually different from the expected output and the error
function is thus employed, which is to be minimized and is given by:

eerr =
1
2

Y

∑
k=1

ek
2 =

1
2

Y

∑
k=1

(yk − y′k)
2 (17)

where y′k represents the expected output of the kth neuron in the output layer. By propa-
gating the error backward, the weights and biases can be adjusted based on the gradient
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descent method. Hence, the error can be reduced gradually. The adjustments for the
weights and the biases can be obtained by:

wij(t + 1) = wij(t)− η
∂eerr

∂wij(t)
(18)

wjk(t + 1) = wjk(t)− η
∂eerr

∂wjk(t)
(19)

bj(t + 1) = bj(t)− η
∂eerr

∂bj(t)
(20)

bk(t + 1) = bk(t)− η
∂eerr

∂bk(t)
(21)

where η is the learning rate that should be set appropriately so as to speed up the training
process, and t denotes the number of training times. The training does not cease until
the error is decreased to a certain value or the preset number of training times is reached.
However, the fixed learning rate sometimes cannot achieve high efficiency during the train-
ing. Accordingly, this paper employs an adaptive adjustment method for η as described in
next section.
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Figure 6. The structure of BPNN.

5.2. The Improved Momentum Method

The standard BPNN algorithm has the problem of slow convergence and is easy to run
into a local minimum as a result of the adoption of the gradient descent method. This paper
brings in the momentum method to adjust the weights and the biases as shown below:

∆w(t + 1) = −η(1− γ)
∂eerr

∂w(t)
+ γ∆w(t) (22)

∆b(t + 1) = −η(1− γ)
∂eerr

∂b(t)
+ γ∆b(t) (23)

∆w(t + 1) = w(t + 1)− w(t) (24)

∆b(t + 1) = b(t + 1)− b(t) (25)

where ∆w(t + 1) and ∆b(t + 1) are the increments of the weights and the bias, respectively.
γ ranging from 0 to 1 denotes the momentum factor. As shown in (22), the added momen-
tum γ∆w(t) can reduce the oscillation of the training process and thus, the convergence can
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be improved. To further enhance the performance of the method, we propose an improved
momentum method as follows:

∆w(t + 1) = −η(1− γ)
∂eerr

∂w(t)
+ γ∆w(t) + σ∆w(t− 1) (26)

∆b(t + 1) = −η(1− γ)
∂eerr

∂b(t)
+ γ∆b(t) + σ∆b(t− 1) (27)

where σ is a constant that should be smaller than γ. However, the learning rate η is a
fixed value in the method, which can be improved because during the training process, the
learning rate should be higher when the learning process needs to be accelerated and it
should be lower when the algorithm stability is the priority. Therefore, this paper employs
an adaptive adjustment method for the learning rate, which is presented by:

ηw(t + 1) = ηw(t)× 2 fsig1 (28)

ηb(t + 1) = ηb(t)× 2 fsig2 (29)

fsig1 = sign[(− ∂eerr

∂w(t)
)× (− ∂eerr

∂w(t− 1)
)] (30)

fsig2 = sign[(− ∂eerr

∂b(t)
)× (− ∂eerr

∂b(t−1)
)] (31)

sign(x) =


1, x > 0
0, x = 0
−1, x < 0

(32)

where ηw(t + 1) and ηb(t + 1) denote the adaptive learning rate for the weights and the
bias, respectively. The adaptive adjustment method can coordinate the training speed and
the algorithm stability, thereby improving the convergence performance and finding the
optimal solution.

6. The Proposed Clustering Routing Protocol

This section presents our proposed energy-efficient clustering routing protocol (EECRP)
based on the modified GA and the improved BPNN that is used for data fusion. Referring
to the LEACH protocol [27], the EECRP has three phases: CHN selection, cluster formation,
and data transmission. In every cluster, CMNs transmit data to the CHN through one
hop. Once the CHNs receive the data, they perform data fusion by using the improved
BPNN algorithm and transmit the processed data to the SN through multiple hops. The
relay nodes are other CHNs and the optimal multi-hop transmission paths are determined
through the improved GA.

6.1. CHN Selection Phase

Selecting appropriate CHNs is of great importance to reduce and balance energy
consumption. The CHNs receive the data from the CMNs, fuse the data, and transmit
the fused data to the SN. The original LEACH generates CHNs through a probabilistic
selection and the residual energy of nodes has not been taken into account. These selected
nodes may die too early as a result of their insufficient remaining energy, which affects
the balance and efficiency of the network energy. Hence, by taking the residual energy of
nodes into consideration, we propose an improved CHN selection scheme as follows:

Hth =


PCHN

1−PCHN×(rmod 1
PCHN

)
× Eres

Eav
, node ∈ G

0 , otherwise
(33)
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where Hth is the threshold for the node, and PCHN denotes the percent of CHNs in the
network (e.g., PCHN = 10%), and r is the current round, and Eres represents the residual
energy of the node, and Eav is the average residual energy of all nodes, and G is the node
set where the nodes do not become CHNs in the last 1/PCHN rounds. In this process, every
node produces a random number ranging from 0 to 1 and if the number of one node is less
than its threshold Hth, it turns into a CHN candidate. Then the CHN candidate broadcasts
candidate-messages with the residual energy to its neighbor nodes. If one neighbor node
that receives the candidate-message is also a CHN candidate, the one with higher residual
energy becomes a CHN, which can prevent the geographically close nodes from being
CHNs. If one CHN candidate does not receive any candidate-messages from its neighbor
nodes for a certain time, it becomes the CHN.

6.2. Cluster Formation Phase

When CHNs are successfully selected, every CHN broadcasts a CHN-message to
invite non-CHNs to join it, which carries information such as the node ID, the node energy,
and the node location. When a non-CHN receives the broadcast message, it judges whether
the CHN is deeper than it is because the non-CHN only chooses to join the CHN in a
shallower position. If a non-CHN receives two (or more) CHN-messages from CHNs
in shallower positions, it selects the nearer (or nearest) CHN to join and replies with an
acknowledgement message. If a non-CHN receives only one CHN-message, it directly
replies to the CHN with an acknowledgement message. If a non-CHN does not receive any
CHN-message, it will wait for a period of time until it receives one. After non-CHNs join
CHNs, they become CMNs and clusters are hence formed.

6.3. Data Transmission Phase

After the clusters are formed, data transmission phase could start. In every cluster,
the CHN allocates time slots through the time division multiple access mechanism for
its CMNs, and the CMNs transmit data to the CHN based on the time slots through a
single hop, thereby decreasing collisions. After transmitting the data for this round, the
CMNs go into sleep mode so as to save energy. Once the CHNs receive the data, they
fuse the data by using the improved BPNN algorithm and forward the processed data
to the SN by employing the carrier sense multiple access with collision detection scheme.
Each effective multi-hop transmission path to the SN is identified through the enhanced
GA. If one CHN is close to the SN, it sends data towards the SN through one hop. It is
noted that the training processes of the BPNN algorithm are conducted by the SN due to
its energy supplies. Once clusters are formed, the SN transmits the trained wights and
biases of the BPNN to the CHNs. Based on the trained model, the CHNs fuse the data,
eliminate the redundancy, extract the features, and then send the processed data to the SN.
In addition, the searching process of the multi-hop transmission paths is also completed in
the SN. After the CHN selection phase, all the CHNs transmit the message packets with
information such as the node ID, the node energy, and the node location to the SN. Then
the SN figures out the optimal multi-hop transmission paths by employing the GA and
sends the routing path information to the CHNs.

After the SN receives the data from all the CHNs, one round ends. If the remaining
energy of every CHN is over half of the average residual energy of all the nodes, the CHNs
of the next round remain unchanged, thereby saving time and energy. Hence, the next
round directly begins with the data transmission phase. Otherwise, the next round starts
with the CHN selection phase.

7. Simulation Results and Performance Analyses

In this section, some existing underwater clustering routing protocols: EGRC [30],
LEACH-ERE [28], LEACH [27], FCMMFO [31], and FBCPSO [32] were selected as the
references to verify the proposed EECRP. The used metrics for evaluating the performance
were the network lifetime, the energy consumption, and the packet loss rate. We used



Appl. Sci. 2021, 11, 312 16 of 23

MATLAB to conduct the experiments. MATLAB is a simulation software, which can be
applied to sensor networks, data analysis, deep learning, image processing, computer
vision, risk management, control systems, communications, signal processing and so
on. It is an abbreviation of matrix and laboratory and it is developed by MathWorks.
The MATLAB settles the high-tech computing problems such as scientific computing,
visualization, and interactive programming. It integrates many powerful functions like
numerical analysis, matrix calculation, scientific data visualization, and nonlinear dynamic
system modeling and simulation in an easy-to-use software environment. It provides a
comprehensive solution for scientific research, engineering design, and many scientific
problems that require effective numerical calculations. Moreover, it gets rid of the editing
mode of traditional non-interactive programming languages, such as C and Fortran, to a
large extent, and it provides many feature-rich practical toolboxes such as signal processing
toolboxes and communication toolboxes. Figure 7 displays the MATLAB workspace and
Figure 8 illustrates some code of calculating the nodes alive.
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Table 1. The simulation parameters.

Simulation Parameters Values

Network size 5 km × 5 km × 1 km
The number of nodes 200, 250, 300
The percent of CHNs 10%

SN coordinate (2500, 2500, 0)
Data packet size

Other packets size
1024 bits

64 bits
Sound velocity 1500 m/s

Transmission rate 2048 bps
Receiving power 50 µW

Energy initialization of nodes 100 J
Energy consumption for data fusion 50 nJ/bit

Frequency (fc) 10 kHz

7.1. The Network Lifetime

This section compares the six protocols and analyzes the network lifetime of them by
the number of surviving nodes in deferent rounds when 300 nodes are considered in the
network. As illustrated in Figure 9, regardless of which protocol we use, the number of
surviving nodes decreases as the number of rounds increases. Nevertheless, our proposed
EECRP outperforms its competitors in the number of nodes alive. For better evaluation
of the EECRP, we bring in indicators namely FND (first node dead), HND (half of the
nodes dead), and LND (last node dead). As shown in Figure 10, the first node of the
LEACH, LEACH-ERE, EGRC, FBCPSO, FCMMFO, and EECRP dies in about the 353rd,
451st, 505th, 548th, 574th, and 623rd round, respectively, which means that in terms of
the FND indicator, the efficiency of the EECRP is 8.5%, 13.7%, 23.4%, 38.1%, and 76.5%
higher than that of the FCMMFO, FBCPSO, EGRC, LEACH-ERE, and LEACH, respectively.
In terms of the HND and the LND, the EECRP outperforms the LEACH protocol by
57.3% and 46.5%, respectively. To conclude, the proposed EECRP is the most effective
in extending the network lifetime as it uses the enhanced CHN selecting scheme, which
distributes the network load equally. In addition, the EECRP uses the BPNN to fuse data
and adopts the GA to identify the optimal multi-hop transmission paths, reducing and
balancing the energy consumption. The LEACH performs the worst among these protocols
because it does not take the residual energy of nodes into account when selecting CHNs,
which makes some selected nodes with low energy die too early. Additionally, the multi-
hop transmission paths between the CHNs and the SN have not been considered in the
LEACH. The FCMMFO and the FBCPSO outperform the LEACH, LEACH-ERE and EGRC.
Nevertheless, they are both inferior to the EECRP, which is because they do not optimize
the multi-hop routing paths between the CHNs and the SN.
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Figure 9. The number of nodes alive versus the number of rounds for different protocols.
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Figure 10. The number of rounds when FND (first node dead), HND (half of the nodes dead), and
LND (last node dead) arise for different protocols.

7.2. The Energy Consumption

This section compares and analyzes the six protocols by the energy consumption.
As displayed in Figure 11, when 300 network nodes are considered, the total energy
consumption of the network increases as the number of rounds rises no matter which
protocol is used. Nevertheless, the proposed EECRP has the best performance in energy
consumption. For instance, in round 400, the total energy consumption of our proposed
EECRP, FCMMFO, FBCPSO, EGRC, LEACH-ERE, and LEACH accounts for 26.5%, 28.6%,
33.4%, 36.2%, 51.2%, and 63.6% of the initial energy of the whole network, respectively.
With respect to the situation where the network energy is exhausted, the EECRP has
improved the energy efficiency by 46.5%, 8.2%, 18.8%, 26.7%, and 5.1% compared to the
LEACH, FBCPSO, EGRC, LEACH-ERE, and FCMMFO, respectively. That is because the
EECRP employs the BPNN to fuse the data and uses the optimal multi-hop paths for data
transmission, thus minimizing the energy consumption.
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Figure 11. The total energy consumption of the network versus the number of rounds.

Moreover, Figure 12 illustrates the number of rounds when the energy of the whole
network is completely consumed under the different number of network nodes, which
verifies the influence of the different number of nodes on energy dissipation. With the
decrease in the number of nodes, the distances between nodes increase, which consumes
more energy for nodes to transmit data and thus shortens the network lifetime. However,
the EECRP has the best performance among these protocols in all situations. For instance,
when 250 nodes are considered in the network, the proposed EECRP protocol is 9.5%, 16.6%,
23.5%, 32.4%, and 67.1% more efficient than the FCMMFO, FBCPSO, EGRC, LEACH-ERE,
and LEACH, respectively.
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7.3. The Packet Loss Rate

This section analyzes the performance of the network with 300 nodes and compares
the six protocols by the packet loss rate, which is defined as the rate of the number of data
packets sent by CHNs to the number of data packets received by the SN. The network
load is defined as the number of data packets sent by every CHN per minute. Figure 13
illustrates the packet loss rate versus the network load for these six protocols, from which
we conclude that the packet loss rate rises as the network load increases for these six
protocols. However, the EECRP always has the lowest packet loss ratio. For example, when
the network load is 3 packets per minute, the packet loss ratio of the EECRP, FCMMFO,
FBCPSO, EGRC, LEACH-ERE, and LEACH is 16.8%, 18.1%, 19.8%, 21.6%, 24.6%, and
30.8%, respectively. The LEACH has approximately a 1.8 times higher packet loss rate
than the EECRP does, which is because the EECRP employs the BPNN to fuse the data.
Furthermore, it uses the improved GA to find the optimal multi-hop transmission paths,
which is capable of reducing the risk of packet loss. Figure 14 displays the number of
the packets that the SN receives versus the number of rounds for different protocols. The
protocol is more effective when more packets are received by the SN. Apparently, the
EECRP protocol is the most effective one, the efficiency of which is 86.7%, 18.1%, 31.3%,
46.9%, and 10.1% higher than that of the LEACH, FBCPSO, EGRC, LEACH-ERE, and
FCMMFO, respectively, in round 1000.
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7.4. The Time Complexity

In this section, we analyze the time complexity of our proposed EECRP and its com-
petitors, which is shown in Table 2. We can see that the time complexity of the LEACH
and the LEACH-ERE is lower compared to other four algorithms. This is because they
are older and more basic algorithms, and they are simpler and easier to be implemented.
However, their performances in energy consumption are not as good as the newer algo-
rithms that have been improved on the basis of the classic clustering approaches. The
improved algorithms such as the EGRC, the FBCPSO, and the FCMMFO have the time
complexity of O(n2). The time complexity of our proposed EECRP is the same as these three
algorithms, but the EECRP has the best performance in reducing the energy consumption,
prolonging the network lifecycle, and decreasing the packet loss rate. Moreover, in the
EECRP, the training process of the BPNN and the process of the GA are accomplished by
the SN as the SN has energy supplies. That can save the energy of nodes and extend the
lifecycle of UWSNs. Therefore, our proposed EECRP possesses a high value and a wide
prospect of applications in UWSNs. In addition, in the future research, we plan to lower the
computational complexity of our protocol while keeping the energy-efficiency in UWSNs.

Table 2. The time complexity of six algorithms.

Algorithms The Time Complexity

LEACH O(n)
LEACH-ERE O(n)

EGRC O(n2)
FBCPSO O(n2)

FCMMFO O(n2)
EECRP O(n2)

8. Conclusions

Due to the energy limitation of the underwater sensor nodes, we introduced an
energy-efficient clustering routing protocol on the basis of the GA and the data fusion for
UWSNs. The contributions were as follows. Firstly, this paper proposed the modified
GA by proposing the new encoding scheme, the particular crossover operation, as well as
the improved mutation operation. Secondly, this paper provided the improved BPNN by
the developed momentum method to adjust the weights and biases, which is used by the
CHNs to fuse the data in order to reduce energy consumption during data transmissions.
Thirdly, the CHN selection operation was optimized, and the cluster formation process was
improved. Finally, the experiments verified the effectiveness of our proposed EECRP in
improving the network performance, and especially, the EECRP has improved the energy
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efficiency by 46.5%, 26.7%, 18.8%, 8.2%, and 5.1% compared to the LEACH, LEACH-ERE,
EGRC, FBCPSO, and FCMMFO, respectively.

However, this work focuses on the simulation experiment rather than the real im-
plementation. The explanation is that the simulation experiment is our first step of the
evaluation of our proposed EECRP. The sea experiment, which is extremely complicated
and expensive to perform, is our following work. We have already done some small-scale
sea experiments, which are the solid foundations of large-scale sea experiments where the
EECRP can be conducted. In the real implementation, lots of underwater sensor nodes
and a ship on the sea surface are needed. The nodes are equipped with the sensors to
sense and acquire information, the battery to provide energy, the memory device to store
data, the processor to achieve controlling and processing functions, the acoustic modem to
achieve underwater wireless acoustic communications, the power amplifier, the waterproof
device and so on. In terms of processing, the nodes should be high-speed, stable, and
energy-saving. In memory, they need to have the large storage capacity and ensure that
no data are lost after the death of nodes. As for the underwater wireless communica-
tion technology, we are trying to achieve low latency, low error rate, and long-distance
communications. In addition, the nodes can provide functions like data acquisition, data
storage, data processing, and data transmission and reception through underwater wireless
acoustic communications. The ship acts as the SN and gathers information from the nodes.
What is more, because the data transmissions between CHNs and the SN consume lots of
energy, we plan to utilize autonomous underwater vehicles to get close to the CHNs and
gather data from them, which further saves the energy of nodes and prolongs the lifecycle
of UWSNs.
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