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Abstract: In the paradigm of industry 4.0, manufacturing enterprises need a high level of agility to
adapt fast and with low costs to small batches of diversified products. They also need to reduce the
environmental impact and adopt the paradigm of the circular economy. In the configuration space
defined by this duality, manufacturing systems must embed a high level of reconfigurability at the
level of their equipment. Finding the most appropriate concept of each reconfigurable equipment
that composes an eco-smart manufacturing system is challenging because every system is unique in
the context of an enterprise’s business model and technological focus. To reduce the entropy and
to minimize the loss function in the design process of reconfigurable equipment, an evolutionary
algorithm is proposed in this paper. It combines the particle swarm optimization (PSO) method
with the theory of inventive problem-solving (TRIZ) to systematically guide the creative potential
of design engineers towards the definition of the optimal concept over equipment’s lifecycle: what
and when you need, no more, no less. The algorithm reduces the number of iterations in designing
the optimal solution. An example for configuration design of a reconfigurable machine tool with
adjustable functionality is included to demonstrate the effectiveness of the proposed algorithm.

Keywords: reconfigurability; reconfigurable equipment; evolutionary algorithm; particle swarm
intelligence; TRIZ; design optimization; industry 4.0

1. Introduction

The fourth industrial revolution, coined in some areas as industry 4.0, aims to trans-
form the manufacturing industry by adopting large-scale industrial-IoT, edge-cloud com-
puting and supporting technologies (industrial cybersecurity, machine learning, deep
learning, and data analytics) to increase predictability, connectivity within the supply
and value chains, agility, as well as capacity to optimize processes, such as to face with
an increased market dynamics and granularity of market requirements [1]. The circular
economy, in symbiosis with industry 4.0, aims to transform the manufacturing indus-
try into a more sustainable one from economic, ecologic, and social points of view by
changing the paradigm in which business models and offers are designed, developed,
produced, delivered, consumed, and withdrawn [2]. Value optimization, lifecycle thinking,
eco-innovation, stewardship, transparency and traceability, system thinking, and tight
collaboration in the value chains are key principles of the circular economy [3]. For the
manufacturing industry, circular economy pushes practices towards product-service sys-
tems [4] and servitization [5], as well as towards consideration of the 6R closed-loop for
sustainable manufacturing: reduce–recover–remanufacture–recycle–redesign–reuse [6].
Combining industry 4.0 with the circular economy and with efficient use of workforce and
machines, we reach the paradigm of industry 5.0 [7,8]. Industry 5.0-driven manufacturing
systems must embed high agility and adaptability for mass customization of products [9].
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Beyond any necessary transformations of processes in terms of digitalization and
data-driven business models, clean production, and mechanisms for recovery, recycling,
and reuse of products, consideration of lifecycle and lifetime perspectives in close connec-
tion with servitization and mass customization requires, with no reservation, embedded
capabilities of reconfigurability in the manufacturing systems and associated equipment to
fulfill the goals of industry 5.0.

Reconfigurability at the machine level is about modularity, convertibility, personalized
flexibility, scalability, diagnosability, integrability [10,11]. By comprising these capabilities,
a reconfigurable machine tool from a manufacturing system is aligned to industry 4.0,
circular economy, and smart workforce requirements. Thus it is aligned to the paradigm of
industry 5.0, also coined as intelligent manufacturing ecosystem [7].

Nevertheless, reconfigurability comes with an increased entropy in design. Therefore,
it is crucial for tackling the design process of reconfigurable equipment in the context of
a given manufacturing capacity to align it to the guiding principles of industry 5.0. The
major challenge is the necessity to handle the mix of objective functions (also named target
functions) that frames reconfigurable equipment.

Modularity is achieved by the ability of the independent, intelligent equipment to
cooperate and act as a compact unit [12]. Scalability is reached using the communication
protocol where theoretically, an unlimited number of high and low priority equipment
could be connected [12]. Convertibility and customization are accomplished at a certain
level by the ability to configure on request and in real time the functionality of intelligent
equipment [12]. Integrability is expressed by implementing solutions that ensure stability
and compatibility between old and new hardware modules and software packages [12].
Diagnosability is the ability of the main control unit to gather information from the con-
nected modules, identify incompatibilities, cancel commands to the concerned equipment,
and alert the operator about the identified issues [12].

The key characteristics of reconfigurability are interconnected. In principle, a robust
design requires tackling them concurrently. It is thus the purpose of this paper to focus
the research investigation on a generic design algorithm that incorporates the potential
to tackle simultaneously engineering key performance indicators (E-KPIs) that describe a
complex design optimization function (note: here, reconfigurability).

In this respect, the next section of the paper provides a synthesis of design algo-
rithms suitable for the purpose mentioned above. The investigation is not limited only to
algorithms strictly dedicated to reconfigurable machine-tool design, even if this area is
also included in our analysis. The reason is to explore contributions beyond the scope of
reconfigurable design that could be useful also for this specific topic.

2. Research Focus and Relevance

The conceptual design of new complex products is a very challenging task [13].
Various modes that combine creative thinking with logical thinking during the whole
process of product conceptualization are envisaged [14]. To handle the complexity of the
product conceptualization process, early formulation of the space of intervention (design
scope) is necessary [15]. Design boundaries, constraints, and priorities are defined in this
respect [16,17]. Literature reveals a wide range of means and approaches proposed in this
respect. It is usual nowadays to consider structured planning tools in the early stages of a
design project for defining and quantifying the design problem [18]. Integrated systems
of planning methods and methodologies help design engineers create relevant design
information before conceptualizing new products [19–21]. Such frameworks provide data
on expressed and latent market requirements [22], support ranking of design requirements
and specifications [23–25], establish design targets [26,27], determine design priorities in a
constrained space of intervention [28], as well as define both technological and economic
constraints [27,29]. This information is input for the conceptual design phase [30,31].

An extensive pallet of approaches is reported in the literature to support the product
conceptualization process (e.g., [19,30,32–36]). The individual and collective experience,
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creativity, and several other context-related factors contribute to the formulation and selec-
tion of the design framework for a given design problem [37–40]. Methods, methodologies,
and technologies increase the chance of getting out reliable results [30,37,41]. Positive
potentials in defining reliable solutions using conceptual design chains based on exis-
tent methods and design principles are analyzed and demonstrated by several works
(e.g., [14,36,42,43]). Chaining of the design method is based on different approaches, which
vary from physical laws to evolutionary algorithms (e.g., genetic algorithms [44], particle
swarm intelligence [45], as well as other stochastic search techniques [35]). In principle,
for various design problems, we need to select adequate design methods [46]. In this
respect, [37] reveals the importance of having a knowledge-based chain for supporting
conceptual design when engineers face multidisciplinary problems. They develop a plat-
form for synthesizing and reusing known design principles and solutions to support this
process. For ideas association during the dynamic process of product conceptualization,
contributors in [38] propose a cognitive theory of role-playing for modeling the distributed
interactions between actors involved in the ideation process and a linking model (DIM-2)
of ideas shared in the group. This approach improves idea generation and selection by
dynamically combining individual and collective contributions. In the same register of
solution formulation, [39] highlights the importance of collaboration in conceptual design
using various distributed platforms and means. Other studies, such as those reported
by [30,47], demonstrate the importance of stimulating and managing human creativity in a
structured framework during the conceptual design process for defining highly mature
and original solutions.

It is important to highlight here that optimization in the conceptual phase should not
be confused with dimensional optimization or multiobjective optimization, which is the
field of traditional optimization theory and operates with quantitative parameters for an
already given formulated concept or design [48]. Returning to our research subject, one can
conclude that one specificity of the approaches mentioned in the above paragraphs is they
mainly focus on qualitative improvements and less on concept optimization. However,
many research reports show that the complexity revealed by most of the design problems
makes identifying a global optimum solution of a concept impossible [16,17], with the goal
of concept design being limited to improvement issues rather than quantitative optimiza-
tion of design concepts [33,46]. Even if the quantitative optimization problems, in meeting
multiple targets during the conceptual design phase, are difficult to achieve for complex
design problems, defining solutions close to optimum is desirable. Therefore, various
evolutionary algorithms have been developed and used to meet this goal [46]. When some
partial solutions are formulated, these algorithms aim to automate at a certain extent the
conceptualization process. Several works demonstrate this conduit. Some relevant refer-
ences in this respect are further highlighted. For example, [41] uses functional reasoning
and a pool of building blocks to conceptualize an engineering solution to a given design
subject. Here, conceptualization is more based on combinations of predefined blocks to fit
some boundaries, as in a puzzle, without inducing a creative input in this operation. Pa-
per [49] uses particle swarm optimization (PSO) to define an optimal production equipment
configuration using a limited set of modules from a library. The best local solution is thus
obtained, but using a “frozen”, “mechanistic” space of intervention, in which no creative
support of engineers is brought during solution formulation. In the same spirit, the work
reported by [42] exploits genetic algorithms to handle this type of problem. Comparable
evolutionary algorithms are considered by [43,50] that automate the conceptualization
of a particular engineering design problem. In this register, the work conducted by [34]
can also be reported. These algorithms run on a computer without human interaction
in this process; thus, the optimization problem does not infuse any human input during
the incremental product conceptualization process. This is a limitation because we reject
from the algorithm an extremely valuable resource, the human expertise. Conceptually
speaking, this rejection contradicts the core law of ideality highlighted in [32].
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Despite the long history of engineering design, a conclusion coming up with clar-
ity from the current developments in this field is that no universal framework and tool
exists today as a “panacea” for tackling conceptual design [14,35]. Furthermore, there
are still insignificant contributions and know-how in combining qualitative improve-
ment/optimization with quantitative improvement/optimization in conceptual design.
Nevertheless, throughout the product conceptualization process, many design problems
require a balanced intercorrelation between qualitative optimization, led by structured
creativity/innovation, and quantitative optimization, led by optimal design algorithms to
efficiently direct design efforts towards highly effective solutions.

Narrowing the space of investigation to the design algorithms for reconfiguration,
we can report that most of the cases focus on control algorithms or on reconfigurable
manufacturing systems, and fewer are directed towards designing reconfigurable machine
tools. Those related to reconfigurable machine tools put a clear emphasis on modularity;
thus, being too sectorial for our research. Searching in Clarivate Analytics with the keyword
“reconfigurable machine tool”, 128 references are displayed. Refining the search with the
word “algorithm”, references are reduced to 21, from which only 5 papers introduce
algorithms for reconfigurable machine-tool design. Searching in the Scopus database with
the same combination of keywords, 25 papers are returned, from which only 1 paper is
referring to reconfigurable machine-tool design and is new to those identified in Clarivate
Analytics. The first work referenced here is [49]. It formulates a design problem by
considering three conflicting parameters: configurability, cost, and process accuracy. This
research is outside the scope of our focus because it does not treat reconfigurability from
the perspective of its intrinsic characteristics and has nothing to do with the conceptual
design of the reconfigurable machine tools. Nevertheless, it draws on the angle of applying
the PSO algorithm to solve the multiobjective optimization problem, but in the register
delimited by dimensional optimization [48]. In [51], the authors propose a framework for
rapid design of the architectural layout of a reconfigurable machine tool. The focus is strict
on modularity, which is only a secondary characteristic of reconfigurability, and consists of
a step for layout configuration and a subsequent step of layout evaluation. This limitation
places research from [51] outside the scope of the job investigated in this paper. Paper [52]
also deals with design in the case of reconfigurable machine tools, but the focus is on a
different design stage; that is, after the stage of configuration design, treating the problem
of accuracy of the machine in the case of a new reconfiguration. Despite the value of this
research, the design focus is not in the same area as the one indicated by our paper. As
the case of [51], paper [53] also treats reconfigurable machine-tool design from the limited
scope of modularity. It proposes an algorithm to define the minimum number of modules
necessary for the machine to solve a given family of parts. It is more an algorithmic search
for a minimum in a predefined space, which does not require an infusion of creativity, but
rather a search in the space of possibilities. From this perspective, this work is also not
related to the scope of research investigated in this paper. In [54], the research stays in the
same register as the one in [53], dealing with minimization of modules changed when parts
are changed. This is an important element in the reconfigurable machine-tool design but
is mainly related to a single key performance indicator that optimizes modularity layout.
Using tabu search algorithms, paper [55] operates with the same optimization problem of
defining the optimal path for reconfiguring a machine tool. It is another way to solve the
same problem investigated by [53,54]. The layout design of a reconfigurable machine tool
starting from the space defined by the family of parts using metaheuristics is proposed
in [56]. Even if the design problem remains in the register signaled by [53–55], this work
has the merit of putting the design in a more concrete context—the lifecycle perspective of
the parts that will be manufactured on that machine. This idea is also considered in our
research. The last paper identified in the databases dealing with reconfigurable machine-
tool design is [57]. It is about applying typical multiobjective optimization problems to
measure machine reconfigurability from a modularity perspective and machine capability.
It uses genetic algorithms to identify the non-dominated combinations and afterward a
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multicriteria method to rank Pareto frontiers. The topic of optimization is at the stage of
design conceptualization where quantitative parameters are already known; thus, being
possible to map the space of possibilities with a classical optimization formalism. The idea
to take this aspect in an earlier phase of conceptualization is imported into our research.

Our literature survey led us to conclude that, even if many of the design algorithms
have merits to be considered for the problem of reconfigurable machine-tool design, some
limitations still exist, in the sense that they are too sectorial. In practice, the problem is a bit
more complex than in the simplified spaces investigated by the reference papers.

These aspects motivated us to investigate new frontiers for knowledge creation and to
propose an augmented design algorithm that simultaneously combines computer-driven
evolutionary intelligence and human intelligence to formulate a mature solution to a
problem. The thesis behind this proposal is that augmentation compensates drawbacks of
both pure automatic algorithms that are suitable for implementation in a computer program
and pure human judgment, which faces difficulties in dealing with the complexity. It tries
to aggregate the strengths of the two sectoral approaches, such as to handle in a better
way the underdefined and highly entropic space of ideation. Thus, this paper explores
the space of engineering design by proposing a spiral approach that combines structured
innovation and stochastic search algorithms to tackle the design of reconfigurable machine
tools, but not only; the ambition is to propose an algorithm that can be expanded to other
similar problems. The idea is to involve the creative potential of engineers at each iteration
stage of the evolutionary algorithm and to direct this potential towards the most effective
vectors of evolution. This means the design framework should be subject to the law of
convergence [58] and the law of ideality [32]. The law of convergence states that a good
design process leads to a mature solution for the problem under consideration after a small
number of intermediary attempts (minimum possible iterations). The law of ideality strives
for solutions that include as much as possible useful functions and as minimum as possible
harmful functions (no harm at the limit).

The novel conceptual design method adapts the traditional PSO theory proposed
in [45] and combines it with the inventive problem-solving theory [32] to handle solution
generation in the spirit of ideality and convergence laws. PSO is considered for guiding
concept formulation towards meeting a set of quantitative design targets, whereas struc-
tured innovation, integrated within the evolutionary algorithm, is considered for directing
iterations of the design process towards appropriate directions of problem resolution. Thus,
the design method here proposed, called space of convergence vectors (SCV), is intended
to provide a framework for balancing the mix of qualitative (creativity) and quantitative
(KPI-driven) optimization throughout the complicated, nonlinear, and adaptive process of
product concept design.

Hence, the remainder of the paper is organized as follows: In Section 3, fundamentals
about PSO and structured innovation are introduced. The purpose is to provide basic
insights on these paradigms for supporting explanations of their particular use here because
the SCV algorithm adapts and applies them in a nonconventional way. In Section 4, the
SCV algorithm is presented in detail. Section 5 is the place where the effectiveness of the
SCV algorithm is tested on an illustrative case study, dealing with the conceptual design
of a reconfigurable machine tool with adjustable functionality, which is a key element
at the foundation of eco-smart manufacturing systems in the paradigm of industry 5.0.
This case study represents the design problems where both qualitative and quantitative
optimizations are necessary during the conceptual design phase. The paper ends with
discussions and conclusions on the proposed algorithm. The capacity of the SCV algorithm
to integrate high potentials for managing complexity in new product design during the
early phase of conceptualization, as well as its applicability to a wider area of design
problems in the field of eco-industry 4.0, are emphasized in the section of conclusions.
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3. Background

The following subsections briefly describe two topics relevant to this paper. They are
referring to particle swarm intelligence and structured innovation.

3.1. Basics about Particle Swarm Intelligence

The theory of particle swarm intelligence was proposed by [45] to solve some optimiza-
tion problems in engineering. The theory is inspired by the animal world by imitating the
swarm behavior in searching for food [59]. Particle swarm optimization (PSO) algorithms
prove effective for handling nonlinear spaces with discontinuities [48,59,60].

Each position of a particle in the swarm is a potential solution to the given problem.
The particle’s position is modified through a variable vector, called “velocity vector,” at each
iteration of the algorithm [45]. The mathematical equation, which describes the velocity
vector, has no unitary form, a wide diversity of formulations existing in the literature,
depending on the specific problem [48,59,61]. In the classical form of the PSO algorithm,
the position and velocity of a particle are given by [45]:

xi(t + 1) = xi(t) + vi(t + 1) (1)

vi(t + 1) = ω · vi(t) + c1 · r1(t) · [yi,t − xi(t)] + c2 · r2(t) · [zt − xi(t)] (2)

where: xi(t) is the position of particle i at iteration t, xi(t + 1) is the position of particle i
at iteration t + 1, vi(t) is the velocity of particle i at iteration t, vi(t + 1) is the velocity of
particle i at iteration t + 1, ω is the inertia (a coefficient, which serves as the memory of the
previous velocities), c1 and c2 are “acceleration” constants, r1(t) and r2(t) are random real
numbers, chosen in the interval [0,1]; 0 ≤ r1(t), r2(t) ≤ 1, yi,t is the best position visited by
particle i up to that moment, yi,t − xi(t) is the cognitive component (representing the own
experience of particle i), zt is the best position up to the moment t identified by the whole
swarm of particles, zt − xi(t) is the social component (representing the opinion of the whole
swarm about the best experience that the swarm met up to the moment t). According
to the literature in the field, c1 and c2 are chosen in the interval [0,4] (e.g., [45,48,59–66]).
The evolutionary algorithm is repeated while a termination criterion is achieved or the
changes to the level of velocity are close to 0. A utility function f (xi(t)) is associated with
the algorithm for assessing the solution’s optimality. In the context of Equations (1) and (2),
one can conclude that:

yi,t+1 =

{
yi,t { f (xi(t + 1)) C f (yi,t)}

xi(t + 1) { f (xi(t + 1)) B f (yi,t)}
(3)

where / shows that f (xi(t + 1)) is a better solution than f (yi,t), whereas . shows that
f (xi(t + 1)) is a better solution than f (yi,t).

3.2. Basics about the Theory of Inventive Problem-Solving

The theory of inventive problem-solving is about structured analysis of technical
problems and formulation of generic patterns where solutions to a particular problem
must be defined and generated [32]. This operation is done through various tools and
algorithms like TRIZ, ARIZ, Su-Field, DE, CSDT, etc. (e.g., [30,32]). In this pool of structured
innovation tools, the TRIZ matrix of contradictions (TRIZ-MC) is of interest for the scope
of this paper [32]. TRIZ-MC considers an engineering problem as a conflict between two
parameters, which describe the performance of the technical system, in the sense in which
the conflict makes a parameter to be negatively affected while attempting to improve the
other one. For example, if one intends to optimize two parameters (e.g., weight and strength
of a body, in the sense to reduce the weight while increasing the strength), the problem falls
into a conflicting one. For a pair of conflicting parameters, TRIZ-MC associates a generic
pair of conflicting parameters from a pool of 39 “generic engineering parameters causing
conflicts” (GEPs) [32]. Examples of GEPs are the weight of a moving object, productivity,
amount of substance, etc. [32]. TRIZ-MC includes a 39 × 39 matrix that indicates in each of



Appl. Sci. 2021, 11, 4446 7 of 27

its boxes a set of “generic inventive vectors” (GIVs). Some boxes have 0 GIV, some others
have 1 GIV, some others 2 GIVs, and so on, up to a maximum of 4 GIVs for some of the
TRIZ-MC boxes. The GIVs are general directions where design engineers should search
for specific solutions to the given problem. In all, TRIZ-MC encapsulates 40 GIVs [32].
Examples of GIVs are segmentation, composite construction, inversion, dynamicity, nesting,
etc. [32]. TRIZ-MC is already a well-known tool of structured innovation, with plenty of
documented sources found on the Internet, in scientific papers and in books.

4. The Algorithm: Space of Convergence Vectors (SCV)

The conceptual design of a technical system is an iterative process. At each increment,
a solution is formulated and afterward analyzed against a set of specifications (performance
indicators and related target values). If the solution does not satisfy the intended targets, a
derived solution is further formulated, and iterations continue until an acceptable solution
is derived. The SCV algorithm works similarly. Here, a particle swarm intelligence-type
formalism defines the “position” of each iteration. Position in the SCV algorithm means a
well-defined set of GIVs. Each GIV of the set is related to a certain performance indicator
in the list of design specifications. Using the indications given by the GIVs, a solution to
the design problem is formulated.

Results are verified against a utility function, defined through the performance in-
dicators and their related targets. Accordingly, a new “position” is formulated, or the
process is stopped if an acceptable solution is obtained. An acceptable solution means a
“close to ideality” solution (if ideality cannot be reached). Ideality is when all targets of
all performance indicators for the design problem under consideration are reached. It is
important to highlight here that, for some complex design problems, consideration of a
unique, best solution is not realistic, if it may be possible that several concepts to reach the
target. A rule for verifying convergence after each iteration is also considered within the
SCV algorithm.

A detailed step-by-step description of the SCV algorithm is the subject of the next
paragraphs of this section. The SCV algorithm includes two major phases. The first
phase is about preparation for algorithm application, and the second phase is the effective
application of the algorithm.

4.1. Planning the SCV Algorithm

In the preparatory phase, also called the planning phase, the performance indicators i,
i = 1, ..., n and their related target values VTi, i = 1, ..., n are defined. Further, a normalized-
to-1 value weight βi, i = 1, ..., n; β1 + β2 + ... + βn = 1, is associated with each performance
indicator i, i = 1, ..., n. The utility function T is defined as follows:

max T =

[
n

∑
i=1

βi ·
(

VEi
VTi

)k(i)
]
|

k(i) = 1 (max)
k(i) = −1 (min)

(4)

where VEi, i = 1, ..., n is the effective value of the performance indicator i, i = 1, ..., n
and k(i), i = 1, ..., n is a coefficient that defines the optimization trend of the performance
indicator i, i = 1, ..., n. Coefficient k(i) = 1 if the performance indicator i must be maximized,
k(i) = −1 if the performance indicator i must be minimized. When ideality is achieved,
T = 1 (considering that VEi, i = 1, ..., n does not exceed VTi, i = 1, ..., n). The convergence of
the algorithm is thus described by the following condition:

|VTi −VEi|t+1 < |VTi −VEi|t; |VTi −VEi|t→N → 0; i = 1, n (5)

where N is the maximum number of planned iterations, and t is the symbol of the current
iteration (t = 1, . . . , N).

For each performance indicator i, i = 1, ..., n, the barrier in achieving its target value VT
is formulated. This barrier is expressed in terms of TRIZ-MC language, meaning that a pair
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of GEPs is associated (please revisit Section 3.2 for the acronym). It is denoted with GEPB
the GEP that must be improved for reaching VT and with GEPW, the GEP, which is affected
because of the action on GEPB. In the TRIZ-MC, at the intersection of the raw GEPB with
the column GEPW a subset of GIVs is revealed (please consult [32] or other references about
TRIZ, including Internet sources for details about the list of 40 GIVs and their locations in
the boxes of TRIZ-MC). The elements of this subset are denoted GIVi,v(i), i = 1, ..., n; v(i) = 0,
..., hi, where hi is the size of the subset of GIVs associated with the performance indicator i,
i = 1, ..., n (hi, i = 1, ..., n, can take the value 0, 1, 2, 3 or 4, as they are disclosed by TRIZ-MC).

At the end of this process, it is possible that some of the GIVs to be associated with
several performance indicators. To each GIV from the subsets, a rank b is assigned. The
rank is the sum of the value weights of the performance indicators to which the respective
GIV is associated. For example, considering that the generic inventive vector GIVe is met
in the subsets belonging to the performance indicators x, y and z, which have the value
weights βx, βy and βz, the rank be of GIVe will be = βx + βy + βz.

If it is denoted with p(j), j = 1, ..., 40, the positions of the GIVs in the list of 40 GIVs of
TRIZ = MC [32], to each GIVi,v(i), i = 1, ..., n; v(i) = 0, ..., hi from the identified subsets, the
corresponding order from the list of 40 GIVs of TRIZ-MC can be assigned. For example, if
GIVe belonging to three subsets that correspond to the performance indicators x, y and z,
is in the position p(l) (e.g., l = 21) in the list of 40 GIVs of TRIZ-MC, the number l will be
assigned to GIVe in all the three GIV-subsets of the indicators x, y and z. The association
of GIVs with numbers is necessary when the SCV algorithm is implemented in computer
software for a more efficient application.

TRIZ method respects both the ideality and convergence paradigms mentioned in
Section 2 of the paper [58]. Thus, during the conceptualization process, each iteration of
the SCV algorithm conducts the creative effort towards intervention directions proposed
by a certain combination of GIVs. Each GIV is nothing more than a design principle. The
maximum number of combinations of GIVs, noted with H, is determined as follows:

H =
n

∏
i=1

hi (6)

Each combination of GIVs should lead to a possible solution for the design problem.
From practical considerations, the number of performance indicators must be limited to a
reasonable value—the key indicators (e.g., n ≤ 6). For example, having n = 5 performance
indicators (denoted x, y, z, u and w), with their GIV subsets of sizes hx = 2, hy = 3, hz = 4,
hu = 1, hw = 4, the result is H = 96 combinations.

4.2. The Proposed Algorithm

The SCV algorithm, generated as a combination of the PSO formalism and TRIZ-MC
structured innovation formalism, is aligned to the following set of questions:

• How do we define the representation space for particle position?
• What is the best start combination of the swarm algorithm (initialization combination)?
• What is the termination condition of the algorithm?
• What are the satisfactory values of the learning factors and inertial factors from the

composition of the mathematical model that describes the swarm behavior?
• What is the adequate mathematical model for describing swarm behavior for the

problem under consideration?
• What is the frame for verifying the convergence of the algorithm?

4.2.1. Space of Representation for Particle Position

Because the position of a particle represents a possible solution to the problem under
consideration, the SCV algorithm uses the representation space of a particle as defined by
the package of GIVs (and implicitly by the design principles assigned to the GIVs) to guide
engineers for solution formulation. For the maximization of the utility function T from (4),
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at each iteration of the SCV algorithm, to the level of each performance indicator i, i = 1,
..., n, are undertaken design interventions in the direction imposed by the associated GIV.
Considering the performance indicator i, i = 1, ..., n, with hi associated GIVs (hi is 0, 1, 2,
3 or 4), these GIVs can be ordered according to their ranks b(1), ..., b(hi), starting with the
one having the highest rank and ending with the one having the lowest rank. Having, for
example, the performance indicator i = 3 in the set of n performance indicators (n ≥ i), to
which are associated hi = 4 generic inventive vectors (e.g., vectors #10, #18, #26, #32 in the
list of 40 GIVs of TRIZ-MC), and having the ranks b(1) = 0.21 for the GIV #10, b(2) = 0.32 for
the GIV #18, b(3) = 0.09 for the GIV #26, and b(4) = 0.14 for the GIV #32, the four vectors can
be ordered as {#18, #10, #32, #26}. To use this information more conveniently in a software
application, to each vector a number is further assigned: #18 ≡ 1, #10 ≡ 2, #32 ≡ 3, #26 ≡ 4.
Thus, for a facile use in software applications, the representation space of a particle can
be symbolized through numbers assigned to the performance indicators and numbers
assigned to their associated GIVs, ordered according to their ranks. For the example above
this looks like: 3{1}, 3{2}, 3{3}, 3{4}.

4.2.2. Algorithm Initialization

There is no predefined rule for initializing a swarm algorithm [61,63]. Thus, consid-
ering s particles in the system, the proposed combination of GIVs for initializing the SCV
algorithm is as follows: particle 1 allocates for each performance indicator the associated
GIV of the highest rank (i.e., 1{1}, 2{1}, ..., n{1}); particle 2 allocates for each performance
indicator the associated GIV of the highest rank, excepting the performance indicator 2,
to which the second GIV from the list of its ranked GIVs will be considered—if the 2nd
performance indicator has at least two GIVs in the list, otherwise the rule is applied to
the 3rd performance indicator, etc. (e.g., 1{1}, 2{2}, ..., n{1}); particle 3 allocates for each
performance indicator the associated GIV of the highest rank, excepting the performance
indicator 2, to which the third GIV from the list of ranked GIVs will be considered—if the
2nd performance indicator has at least three GIVs in the list, otherwise the rule is applied
to the 3rd performance indicator, etc. (e.g., 1{1}, 2{3}, ..., n{1}); and the rule continues.

4.2.3. Termination Condition

The termination condition refers to the reasonable number of iterations of the SCV
algorithm. In this respect, the number of H possible combinations (see Formula (6)) and the
number of particles s in the system are considered. The highest integer N, which is ≤ H/s,
reveals the maximum number of iterations to be covered by the relevant combinations; or
in other words, the position where the convergence condition should be obvious. However,
from a practical perspective, if solutions generated at each iteration are defined by the
creative intervention of people and not by an automatic artificial intelligence process, it
would be desirable to define the mature solution as soon as possible (after a reduced
number of iterations, e.g., Q = 7 ÷ 10 iterations).

4.2.4. The Mathematical Model of the SCV Algorithm

For defining the mathematical model that describes the swarm behavior in the SCV
algorithm, an important issue is the specificity of the problem under consideration—the
design of a new technical system, where people have active and significant interventions
in the creation/conceptualization process at every iteration of the algorithm. Thus, we
propose an augmented approach, where the computer and humans iteratively collaborate
to design the system.

Hence, a series of aspects that differentiate this problem concerning other optimal
design problems using PSO algorithms must be highlighted. The first aspect is about the
fact that when solutions associated with each particle are defined and when comparative
analysis of various solutions belonging to various particles is done, the premise is that
humans are integrated part of the algorithm (e.g., experience, intellect), even if he/she is in
the outer space of the mathematical formalism.
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The second aspect concerns that, at every iteration, humans are inspired and influ-
enced by all previous solutions belonging to all particles; in other words, the proposed
solution assigned to a certain particle, at a certain iteration, accumulates experiences and
knowledge from all previous iterations.

The third aspect is referring to the fact that, during the formulation of a solution, new
connections occur in the human brain, and unexpected creative ideas could occur, thus,
randomizing the leading direction in formulating a solution.

Considering the elements highlighted before, an enhanced relation for describing the
velocity of the particle is here considered, in the sense of adding a supplementary term [62]:

vi(t + 1) = ω · vi(t) + c1 · r1(t) · [yi,t − xi(t)] + c2 · r2(t) · [zt − xi(t)] + c3 · r3(t) · [u
t
− xi(t)] (7)

where c3 is the passive congregation coefficient (e.g., ω = 1, c1 = 0.5, c2 = 0.5, c3 = 0.5
according to [62], r3 is a random real number in the interval [0,1], and ut is the position at
iteration t of a randomly selected particle in the swarm.

In the problem under consideration, inertia ω, accelerations c1, c2, c3, as well as redirec-
tion of particles (r1, r2, r3) are actions happening in the mental space of engineers and not in
the computer space of mathematical formalism. Therefore, all these factors are considered
here of value 1. With these considerations, the mathematical model that describes particles’
behavior in the SCV model is proposed in Equations (8) and (9). Equation (8) defines
particle’s position, and Equation (9) defines particle’s velocity:

1i{j1(t + 1)}
2i{j2(t + 1)}
3i{j3(t + 1)}

. . .
ni{jn(t + 1)}

 =


1i{j1(t)}
2i{j2(t)}
3i{j3(t)}

. . .
ni{jn(t)}

⊕


vi{j1(t + 1)}
vi{j2(t + 1)}
vi{j3(t + 1)}

. . .
vi{jn(t + 1)}

, i = 1, s (8)


vi{j1(t + 1)}
vi{j2(t + 1)}
vi{j3(t + 1)}

. . .
vi{jn(t + 1)}

 =


vi{j1(t)}
vi{j2(t)}
vi{j3(t)}

. . .
vi{jn(t)}

⊕ cextern
1 ⊗ rextern

1 (t)⊗




yi,t{j1}
yi,t{j2}
yi,t{j3}

. . .
yi,t{jn}

 ∼


1i{j1(t)}
2i{j2(t)}
3i{j3(t)}

. . .
ni{jn(t)}



⊕

cextern
2 ⊗ rextern

2 (t)⊗




zt{j1}
zt{j2}
zt{j3}
. . .
zt{jn}

 ∼


1i{j1(t)}
2i{j2(t)}
3i{j3(t)}

. . .
ni{jn(t)}



⊕ cextern
3 ⊗ rextern

3 (t)⊗




ut{j1}
ut{j2}
ut{j3}

. . .
ut{jn}

 ∼


1i{j1(t)}
2i{j2(t)}
3i{j3(t)}

. . .
ni{jn(t)}



,

cextern
1 , cextern

2 , cextern
3 = {1}; rextern

1 (t), rextern
2 (t), rextern

3 (t) = {1}; i = 1, s.

(9)

In Equations (8) and (9), symbols ⊕ and ~define the addition and subtraction opera-
tions. For this, in Equation (9), symbol ⊗ defines the multiplication operation. In (8) and
(9), symbols jk(t), k = 1, . . . , n, describe the GIVs that are associated with the performance
indicators k, k = 1, . . . , n at iteration t. Because the acceleration factors c1

extern, c2
extern,

c3
extern and the random redirecting factors r1

extern(t), r2
extern(t), r3

extern(t) are associated with
external space, not to the computer space (i.e., the human mind), the multiplication opera-
tion ⊗ between a GIV and a coefficient has no sense in Equation (9). However, for addition
⊕ and subtraction ~of GIVs, specific rules must be defined. In this respect, the existence
of a maximum of four GIVs to each performance indicator is considered for simplifying
the formalism for addition ⊕ and subtraction ~of GIVs. The nonconventional addition
⊕ and subtraction ~of GIVs is happening in an abstract space, defined by a finite set of
elements (1, 2, 3, or 4, by the case). The formalism is presented in Figure A1 under a matrix
form, showing all four possible cases (i.e., subsets with four GIVs, subsets with three GIVs,
subsets with two GIVs, and subsets with a single GIV).

In Figure A1 from Appendix A, the rule is that the GIV from the raw is added (or
subtracted, by the case) with (from) the GIV from the column. Symbols p1, p2, p3, p4 in
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Figure 1 describe the GIVs in a subset, in the order of their ranks (that is, the GIV with the
highest rank in the subset is p1). More insights on how these operations are applied are
given in the case study from Section 5. The convergence of the algorithm is verified by
comparing the evolution of the utility function T (Equation (4)) from one iteration to the
next one, as well as by comparing the evolution of the result of subtracting the target value
and the current value for each performance indicator (see Equation (5)).

Figure 1. The generic part and its reference system.

4.3. Roadmap of the SCV Algorithm

Based on the developments introduced in Section 4.2, the SCV algorithm consists of
seven steps.

Step 1: Define the number of particles in the swarm and the number of iterations.
Because a particle is a possible solution to the problem under consideration, a set of
solutions equal to the number of particles must be proposed at each iteration. From
practical considerations, this paper recommends limiting the number of particles in the
swarm at s = 3. Knowing the number of possible combinations of GIVs (see Equation (6)),
the maximum number of iterations is determined as N = round(H/s − 0.5).

Step 2: Feed the database with support elements. Information about the performance
indicators, their related GIVs, their weights, and targets (see Equation (4)) are introduced
in the system.

Step 3: Particle initialization. For each particle in the swarm, a GIV from the subset is
assigned to the level of each performance indicator. A possible way to initialize this state is
given in Section 4.2.2.

Step 4: Concurrent conceptualization of the first set of solutions based on the initial
position of particles in the swarm. For each combination of GIVs defined at step 3 (i.e., for
each initial position of the particles in the system), a solution to the problem is formulated.
Thus, s initial solutions should emerge by directing the conceptualization effort towards
the intervention zones recommended by the GIVs assigned at step 3. There is no barrier at
this step to use any kind of supporting tool (e.g., modeling and simulation, morphological
charts, mind maps, etc.) to inspire and/or guide engineers in finding solutions within the
zones of interventions suggested by GIVs. Once solutions are formulated, the values for
VEi, i = 1, ..., n are determined (see Equation (4)).

Step 5: Calculation of the utility function T concerning each particle and determining
the best local solutions and the best global solution. At each iteration, for each particle,
the utility function T is calculated (see Equation (4)). Results are compared with the target
value, which is 1 (∆T = 1 − T; ∆T→ 0). A set of s values for ∆T will result (one for each
particle in the system). The solution with the smallest ∆T is chosen as the best solution
in the swarm (zt in Equation (9)). For the positions y1,1, ..., ys,1 (yi,t, i = 1, ..., s; t = 1)
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in Equation (9), afferent to the first iteration, initialization will be done according to the
recommendations from step 3. For the next iterations, ∆T belonging to all solutions to
the level of each particle and to the global level will be compared each other, and the zt
and yi,t, i = 1, ..., s will be selected for which ∆T is the smallest at global level and local
levels, respectively. Practically, as iterations progress, the number of solutions increases. At
iteration t, s × t solutions are compared for selecting zt, and t solutions are compared for
selecting the best local solution for each particle.

Step 6: Algorithm indexing and calculation of new positions and velocities for particles.
Equations (8) and (9) are used for starting a new iteration. Position u is randomly selected
from all solutions proposed up to that moment in the previous iterations. Practically, a
solution is identified within the algorithm using a combination of GIVs. Therefore, an
association between every solution and a well-defined combination of GIVs is realized. A
modality to do this is by identifying the particle and the iteration. For example, for particle
2, at iteration 5, the solution could be symbolized as SOL (2:5).

Step 7: Convergence and termination condition verification. Equation (5) is considered
at this step. Until the number of iterations t respects the condition t < N, the algorithm is
resumed from step 4.

5. Illustrative Example

The SCV algorithm is further exemplified for designing the structure of a reconfig-
urable machine tool with adjustable functionality [67–69]. Reconfigurable machine tools
are manufacturing equipment whose structure can be modified in a way they are capable
of providing alternative functionality and/or capacity, as it is required at a certain moment
by production (no more, no less) [66]. They are designed around common characteristics
of a family of parts [67]. By embedding this property, a reconfigurable machine tool fits
the paradigm of industry 4.0 because it facilitates rapid adaptability and agility with mini-
mum waste (i.e., underutilized production resources) and fits the paradigm of the circular
economy. It is aligned with value optimization, stewardship, system thinking, and the 6R
eco-innovation principle [6].

5.1. Problem Definition

Figure 1 shows the generic part associated with the reconfigurable machine tool whose
configuration must be designed in this case study, as well as its reference system. Thus,
OpXpYpZp is the part (piece) reference system, OdXdYdZd is the reference system of
the part-gripping device, OoXoYoZo is the reference system of the machine tool, OdOp
is the vector of transformation from OdXdYdZd to OpXpYpZp, OoOd is the vector of
transformation from OoXoYoZo to OdXdYdZd (Figure 1).

Figure 2 highlights the sequences of manufacturing part surfaces. THx indicates the
technological translation motion along axis x, THy the technological translation motion
along axis y, THz the technological translation motion along axis z, with RHx the techno-
logical rotation motion around axis x, RHy the technological rotation motion around axis y,
and RHz the technological rotation motion around axis z.

Figure 2. Sequences in manufacturing the generic part.

The translation motion for tool positioning along axis x is denoted with TPx, with TPy
the translation motion for tool positioning along axis y, TPz the translation motion for tool
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positioning along axis z, RPx the rotation motion for tool orientation around axis x, RPy
the rotation motion for tool orientation around axis y, and RPz the rotation motion for tool
orientation around axis z. Considering an axis A: as a result of tool orientation because of
two or more rotary motions RPx, RPy, RPz, the axis is denoted with THA, the translation
motion of the tool along with axis A, and with RHA the rotation motion of the tool around
axis A.

Using the notations above, the following motions are necessary to manufacture the
five surfaces of the generic part (see in Figure 1, from # 2 to #6):

• Surface 1 (#2 in Figure 2): TPx, TPy, TPz, RPx, THx, RHA;
• Surface 2 (#3 in Figure 2): TPx, TPy, TPz, RPx, RPz, THx, RHA;
• Surface 3 (#4 in Figure 2): TPx, TPy, TPz, THx, RHz;
• Surface 4 (#5 in Figure 2): TPx, TPy, TPz, RPx, THA, RHA;
• Surface 5 (#6 in Figure 2): TPx, TPy, TPz, RPx, RPz, THA, RHA.

It is important to highlight here that both the posing motions and technological
motions of the reconfigurable machine tool can be obtained from various structural combi-
nations. The goal is to identify those structural combinations, which maximize the utility
function T (Equation (4)).

5.2. Design Planning

For conceptualizing the reconfigurable machine tool, in this case, study, we selected a
set of E-KPIs that come in front of the paradigms of industry 4.0 and circular economy. At
this point, we want to highlight the fact that selecting the E-KPIs for this case study was
influenced by the concept of “waste” applied in lean manufacturing; that is, to eliminate
all activities that do not bring value-added to the system. In an eco-smart manufacturing
system from the paradigm of industry 5.0, modules of machines come as independent
cyber-physical systems, with plug-and-play capabilities, in a master-slave reconfigurable
architecture. This type of solution has already been investigated by the authors of this
paper and is published in [10]. Thus, in the design problem under investigation in this case
study, we consider all modules embedding this capacity, which, in principle, is a key KPI
of reconfigurability but not a dependent one from other KPIs. Therefore, it is not included
in the optimization problem from this research.

Considering the aspects mentioned above, we finally limited the optimization problem
to five performance indicators (E-KPIs) for the conceptual design of the reconfigurable
machine tool with adjustable functionality under the space of possibilities imposed by the
family of parts described by the generic part from Figure 1:

• Time for reconfiguring machine’s functionality (code in the set: 1 (i = 1); trend: mini-
mize (k(1) = −1));

• Variety of available constructive modules of the machine (code in the set: 2 (i = 2);
trend: maximize (k(2) = 1));

• Number of locations for the interfaces between modules (code in the set: 3 (i = 3);
trend: maximize (k(3) = 1));

• Number of possible configurations (code in the set: 4 (i = 4); trend: maximize
(k(4) = 1));

• Granularity level (code in the set: 5 (i = 5); trend: maximize (k(5) = 1)).

Based on expert judgments and applying a structured ranking tool (in this case the
analytical hierarchy process [24,25]), the following normalized-to −1 value weights are
assumed in this case study: β1 = 0.11; β2 = 0.25; β3 = 0.26; β4 = 0.24; β5 = 0.14. The target
values for the performance indicators in this case study are: VT1 = 120 min; VT2 = 10 #;
VT3 = 2 locations/module; VT4 = 12 #; VT5 = 75%.

To measure the effective values VEi, i = 1, ..., 5, while applying the SCV algorithm, the
following aspects are considered:

• If a certain module in the structure is of pure rotation or translation, the assumption is
that it can be easily ordered from the producer, thus available when required.
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• If a certain module in the structure is of pure rotation or translation, it is assumed that it
is no difficult to consider two locations on the module for joining with other modules.

• If it is denoted with gr the granularity level of the structure, with nf the number of
functionalities of the structure, and with nm the number of modules integrated into
the structure to ensure the necessary functionalities for manufacturing the generic
part, the following equation is established: gr= (nf /nm)·100[%].

• If it is denoted with tr the time required for reconfiguration, with tm the estimated
average time for assembly/disassembly of a module (e.g., approx. 20 min), with mi
the number of modules that must be replaced or repositioned, with ma the number
of new modules that must be added in the system, and with ta the time allocated for
various adjustments (e.g., here, ta could be considered as 20% from tm·(mi + ma)), the
following equation is established: tr = tm·(mi + ma) + ta.

5.3. Identification of GIVs

For each performance indicator, the set of GIVs must be determined. The conflict
associated with each performance indicator is determined in the first step. Thus, the
following results are obtained:

• Reconfiguration time (#1): adaptation speed versus automation level (GEP #9 versus
GEP #38 in TRIZ language (see TRIZ-MC, p. 280, [32]));

• Module availability (#2): the time required for reconfiguration versus the waste of
modules (GEP #9 versus GEP #23 in TRIZ language (see TRIZ-MC, p. 280, [32]));

• Number of interfaces/module (#3): convenience in use versus complexity of solution
(GEP #33 versus GEP #36 in TRIZ language (see TRIZ-MC, p. 280, [32]));

• Number configurations (#4): adaptability versus waste of functional units (GEP #35
versus GEP #23 in TRIZ language (see TRIZ-MC, p. 280, [32]));

• Granularity (#5): adaptability versus complexity of control and precision (GEP #35
versus GEP #37 in TRIZ language (see TRIZ-MC, p. 280, [32])).

For the contradictions above, the GIVs revealed by TRIZ-MC [32] are put into evidence
in Table 1.

Table 1. GIVs for the case study under consideration.

Performance
Indicator

GIV Position in
TRIZ Table

GIV Description (See TRIZ Table of 40 GIVs, p. 284,
[32])

#1
#10 Perform in advance arrangements of components
#18 Use the “resonance frequency”

#2

#10 Perform in advance arrangements of components

#13 Inversion (e.g., from mobile into immobile or vice
versa)

#28 Replace the rigid system with a flexible one

#38 Strong interactions (e.g., enrich the system with
elements)

#3

#12 Ensure equipotentiality
#17 Multilayer assembly and multidimensional motions

#26 Use simple copies instead of a compact, complex
system

#32 Use some additive elements

#4

#2 Extract the disturbing part from the system
#10 Perform in advance arrangements of components

#13 Inversion (e.g., from mobile into immobile or vice
versa)

#15 Create interchangeable modules with automatic
adjustment

#5 #1 Increase the level of segmentation



Appl. Sci. 2021, 11, 4446 15 of 27

GIV #10 occurs three times in Table 1. Considering the value weights of the asso-
ciated performance indicators, β1 = 0.11, β2 = 0.25 and β4 = 0.24, the rank of GIV #10 is
b(#10 )= 0.60. Similarly, with the logic above, the ranks of the other GIVs from Table 1 are
determined. They are b(#18) = 0.11, b(#13) = 0.49, b(#28) = 0.25, b(#38) = 0.25, b(#12) = 0.26,
b(#17) = 0.26, b(#26) = 0.26, b(#32) = 0.26, b(#2) = 0.24, b(#15) = 0.24, b(#1) = 0.14.

Thus, GIVs in the subset belonging to each performance indicator can be ordered,
starting with the highest rank. In cases where the ranks of two GIVs in the subset are of
the same value, the position of GIVs in the subset is given randomly. For example, all
GIVs belonging to performance indicator #3 in Table 1 have the same rank. Thus their
order in the subset may be {#26, #32, #12, #17}. Based on the calculated ranks, the result of
ordering GIVs is illustrated in Table 2. Symbols associated with GIVs in Table 2 are taken
from Figure A1.

Table 2. Order of GIVs.

Performance
Indicator

Position 1 Position 2 Position 3 Position 4

GIV Symbol GIV Symbol GIV Symbol GIV Symbol

#1 #10 p1 #18 p2
#2 #10 p1 #13 p2 #28 p3 #38 p4
#3 #26 p1 #32 p2 #12 p3 #17 p4
#4 #10 p1 #13 p2 #15 p3 #2 p4
#5 #1 p1

Addition ⊕ and subtraction~ in Equations (8) and (9) using the symbols from Table 2
are further exemplified. In this respect, it is assumed for example, that particle #1 in
the swarm at iteration t is defined by the following GIVs of the performance indicators:
performance indicator #1 by GIV #10, performance indicator #2 by GIV #28, performance
indicator #3 by GIV #17, performance indicator #4 by GIV #2, performance indicator #5
by GIV #1. Using symbols from Equation (8) this combination is represented as 11{j1(t)},
21{j2(t)}, 31{j3(t)}, 41{j4(t)}, 51{j5(t)} and using symbols from Figure A1 it looks like 11{p1},
21{p3}, 31{p4}, 41{p4}, 51{p1}. Thus, the position of particle #1 at iteration t can be expressed
using the symbols in Equation (8) and Figure A1 as x1(t) ={11{p1}, 21{p3}, 31{p4}, 41{p4},
51{p1}}T. It is assumed that at iteration t + 1, after applying Equation (9), particle #1 has
the velocity v1(t + 1) = {v1{p1}, v1{p1}, v1{p2}, v1{p3}, v1{p4}}T. Using the formalism from
Figure A1, the sum x1(t) ⊕ v1(t + 1) leads to a new position of particle #1, corresponding to
iteration t + 1, x1(t + 1) = {11{p1⊕p1}, 21{p3⊕p1}, 31{p4⊕p2}, 41{p4⊕p3}, 51{p1⊕p4}}T or x1(t +
1) = {11{p2}, 21{p4}, 31{p2}, 41{p3}, 51{p1}}T. Translating this result in the space of GIVs, the
position x1(t + 1) of particle #1 at iteration t + 1 is given by GIV #18 for the performance
indicator #1, GIV #38 for the performance indicator #2, GIV #32 for the performance
indicator #3, GIV #15 for the performance indicator #4, and GIV #1 for the performance
indicator #5 (see notations from Table 2). Subtraction is done on the same logic, but matrices
from Figure A1 associated with this operation are considered. For example, it is assumed
that ut is the position of particle #2 at iteration t − 5. In addition, it is assumed that x2(t
− 5) = {12{p2}, 22{p2}, 32{j3(p3}, 42{p2}, 52{p1}}T. The subtraction ut ~x1(t) becomes x2(t − 5)
~x1(t) = {12{p2~p1}, 22{p2~p3}, 32{p3~p4}, 42{p2~p4}, 52{p1~p1}}T or ut ~x1(t) = {11{p1}, 21{p1},
31{p1}, 41{p2}, 51{p1}}T. In the space of GIVs this result is j1(t) ≡ GIV # 10, j2(t) ≡ GIV #10,
j3(t) ≡ GIV #26, j4(t) ≡ GIV #13, j5(t) ≡ GIV #1.

5.4. Algorithm Initialization

For defining the combination of GIVs for algorithm initialization, recommendations
from Section 4.2.2 are considered. For s =3 particles in this case study, the following
situation is considered:

• Particle #1: indicator #1{GIV #10}, indicator #2 {GIV #10}, indicator #3 {GIV #26},
indicator #4 {GIV #10}, indicator #5 {GIV #1},
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• Particle #2: indicator #1{GIV #10}, indicator #2 {GIV #13}, indicator #3 {GIV #26},
indicator #4 {GIV #10}, indicator #5 {GIV #1},

• Particle #3: indicator #1{GIV #10}, indicator #2 {GIV #28}, indicator #3 {GIV #26},
indicator #4 {GIV #10}, indicator #5 {GIV #1}.

Symbolically, the initialization condition looks like: 11{p1}, 21{p1}, 31{p1}, 41{p1},
51{p1}; 12{p1}, 22{p2}, 32{p1}, 42{p1}, 52{p1}; 13{p1}, 23{p3}, 33{p1}, 43{p1}, 53{p1}. In a
practical language, the following directions (see Table 1) are given for conceptualizing the
first three possible variants of the reconfigurable machine tool under consideration:

• Variant 1 should be defined by the combination: reduce the time for reconfiguration
by “arranging in advance some functional units” AND increase variety of available
modules by “arranging in advance some functional units” AND ensure sufficient
interfaces by “using simple copies instead of a complex system” AND increase the
number of possible configurations by “arranging in advance some functional units”
AND reach the granularity level by “increasing the level of segmentation”;

• Variant 2 should be defined by the combination: reduce the time for reconfiguration
by “arranging in advance some functional units” AND increase variety of available
modules by “inversion: from mobile to immobile or vice versa” AND ensure sufficient
interfaces by “using simple copies instead of a complex system” AND increase the
number of possible configurations by “arranging in advance some functional units”
AND reach the granularity level by “increasing the level of segmentation”;

• Variant 3 should be defined by the combination: reduce the time for reconfiguration
by “arranging in advance some functional units” AND increase variety of available
modules by “replacing the rigid system with a flexible one or with a field” AND ensure
sufficient interfaces by “using simple copies instead of a complex system” AND increase
the number of possible configurations by “arranging in advance some functional units”
AND reach the granularity level by “increasing the level of segmentation”.

The three possible solutions that will emerge from applying the guidelines above
represent the initialization particles of the SCV algorithm. Based on these guidelines and
using the expertise and creative potential of the team involved, the first three possible
variants are illustrated in Figures 3–5.

Figure 3. Particle 1 at iteration 1: variant 1.



Appl. Sci. 2021, 11, 4446 17 of 27

Figure 4. Particle 2 at iteration 1: variant 2.

Figure 5. Particle 3 at iteration 1: variant 3.

For variant 1 in Figure 3, GIVs are identified as follows: increase the level of segmentation
is reflected in a higher number of functional modules, arrangement in advance of some
functional units is reflected in the concept of the positioning structure of the tools, simple
copies instead of a complex system is found in the idea of using some similar (independent)
units for driving and positioning each tool. Granularity for variant 1 is gr= 45% (nf = 5,
nm = 11; see Section 5.2). The estimated time for structure reconfiguration in the case of
variant 1 is tr = 264 min (tm = 20 min in this case study, mi = 4, ma = 7; see Section 5.2). For
calculating tr in the case of variant 1, the following operations for structure reconfiguration
were considered: the supporting columns and two modules for drilling operation are
replaced, two modules for milling operations are repositioned, as well as four modules
for drilling operations, an orientation module, a supporting structure and a module for
piece orientation are added in the system. Reconfiguration is considered for the worst-case
scenario (from the simplest piece to the most complex piece in the family of pieces).

For variant 2 (see Figure 4), GIVs related to segmentation, simple copies and arrange-
ment in advance are similarly exploited as in the case of variant 1 but reflected in a different
concept (a gantry structure). The inversion principle is identified in reducing the degrees of
freedom of the supporting platform for the working piece. For this variant, granularity is
gr= 63% (nf = 5, nm = 8), and the reconfiguration time is tr = 192 min (tm = 20 min, mi = 2,
ma = 4). In the case of variant 2, reconfiguration requires the replacement of a drilling
module, repositioning of the milling module, the addition of a piece orientation module,
two drilling modules and a horizontal translation module.
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In the case of variant 3 (see Figure 5), GIVs related to segmentation, simple copies and
arrangement in advance are similarly exploited as in the case of variant 1 but reflected in a
different concept. The GIV requiring replacement of a rigid system with a more flexible one is
introduced in variant 3 in the increase of the degrees of freedom of the supporting platform
for the working piece and the solution of posing the working tools. For this variant,
granularity is gr= 63% (nf = 5, nm = 8), as in the case of variant 2, and the reconfiguration
time is tr = 72 min (tm = 20 min, mi = 0, ma = 3). In the case of variant 3, reconfiguration
requires the addition of two modules for drilling, a module for piece orientation and
removal of two modules (piece orientation and drilling). Here, the reconfiguration time tr
exceeds the target (120 min).

The SCV algorithm considers the target as being also the effective value introduced in
Equation (4) for calculating the utility function T. A software application written in Java
was developed to calculate the utility function T from Equation (4) and the convergence
index from Equation (5) for each particle, as well as for performing all operations from
Equations (8) and (9). For example, a screenshot from this application highlighting the
results after four iterations of the SCV algorithm is shown in Figure 12. Making the
calculations (see Equation (4)), at iteration 1 the utility function T for particle 1 is T1 = 0.88,
for particle 2 is T2 = 0.94, and for particle 3 is T3 = 0.98. Thus, the maximum value
after iteration 1 is attained by particle 3. The convergence index, in this case, is 0.02
(Equation (5)).

5.5. Solution Improvement by Incrementing the SCV Algorithm

For the second iteration, the combination of GIVs given by the SCV algorithm is:
11{p2}, 21{p4}, 31{p2}, 41{p1}, 51{p1}; 12{p2}, 22{p3}, 32{p2}, 42{p2}, 52{p1}; 13{p2}, 23{p2}, 33{p2},
43{p2}, 53{p1}. These results are obtained by applying the formalism from Equations (8) and
(9). Table 2 shows the associated GIVs for the symbols p1, p2, p3, p4 above. For particle
1, the proposed variant is shown in Figure 6. In this case granularity is gr= 83% (nf = 5,
nm = 6), and the reconfiguration time is tr = 24 min (tm = 20 min, mi = 1, ma = 0). The utility
function in this case is T1 = 1, thus variant 4 in Figure 6 might be considered one of the
reliable solutions for the machine tool.

Figure 6. Particle 1 at iteration 2: variant 4.

For particle 2, at iteration 2, the solution is shown in Figure 7. For variant 5 the
following results are obtained: granularity gr= 83% (nf = 5, nm = 6), and the reconfiguration
time is tr = 24 min (tm = 20 min, mi = 1, ma = 0). The utility function in this case is T2 = 1,
thus variant 5 in Figure 8 may be considered another reliable solution for the machine tool.
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Figure 7. Particle 2 at iteration 2: variant 5.

Figure 8. Particle 3 at iteration 2: variant 6.

For particle 3, the solution from Figure 8 is proposed after the second iteration. In this
case, granularity is gr= 71% (nf = 5, nm = 7), and the reconfiguration time is tr = 24 min
(tm = 20 min, mi = 1, ma = 0). The utility function in this case is T3 = 0.99.

One can conclude that after the second iteration of the SCV algorithm, at least two
reliable solutions were identified (variant 4 and variant 5, both reaching the target of the
utility function and leading to a convergence index equal to 0). The best position in the
swarm after the first and second iterations is reached by particle 1 (variant 4:11{p2}, 21{p4},
31{p2}, 41{p1}, 51{p1}).

In principle, the SCV algorithm could be stopped after the second iteration. However,
continuation with one or two more increments may be useful to see if there is some more
potential for innovation (e.g., in this case, particle 3 still has further potential to explore the
space of solutions). If the new iterations lead to distancing from the targets for the utility
function and the convergence index, algorithm incrementing should be stopped.

Thus, the third iteration of the SCV algorithm leads to the following combination of
GIVs: 11{p1}, 21{p3}, 31{p1}, 41{p1}, 51{p1}; 12{p1}, 22{p2}, 32{p1}, 42{p1}, 52{p1}; 13{p1}, 23{p1},
33{p1}, 43{p1}, 53{p1}. Vectors’ significance is given in Table 2, with further details in Table 1.
The new positions of particles in the swarm are identical with the positions from iteration
1, excepting the fact that particle 1 takes the place of particle 3 and vice versa. Therefore,
at the third iterations, particles move away from the maximum position in the searching
space. Thus, a new iteration is considered.

At the fourth iteration, the space for solution search is given by the following combi-
nation of GIVs: 11{p1}, 21{p3}, 31{p3}, 41{p3}, 51{p1}; 12{p1}, 22{p4}, 32{p3}, 42{p3}, 52{p1}; 13{p1},
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23{p1}, 33{p3}, 43{p3}, 53{p1}. Vectors’ significance is given in Table 2, with supplementary
details in Table 1. Figure 10 displays the solution associated with particle 1 at iteration 4 of
the SCV algorithm. In this case, granularity is gr= 83% (nf = 5, nm = 6), the reconfiguration
time is tr = 24 min (tm = 20 min, mi = 1, ma = 0). The utility function is T1 = 1 and the
convergence is 0. Thus, variant 7 from Figure 9 is another reliable solution for the structure
of the machine tool.

Figure 9. Particle 1 at iteration 4: variant 7.

Figure 10 illustrates the solution of particle 2, at iteration 4. For variant 8, the following
results are revealed: granularity gr= 71% (nf = 5, nm = 7), reconfiguration time tr = 24 min
(tm = 20 min, mi = 1, ma = 0). The utility function is T2 = 0.99.

Figure 10. Particle 2 at iteration 4: variant 8.

For particle 3, at iteration 4 of the SCV algorithm, the result is shown in Figure 11.
Solution in this case reveals a granularity gr= 71% (nf = 5, nm = 7), a reconfiguration time
tr = 24 min (tm = 20 min, mi = 1, ma = 0). The utility function in this case is T3 = 0.99. Thus,
the best position at iteration 4 is given by the first particle in the swarm.
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Figure 11. Particle 3 at iteration 4: variant 9.

In conclusion, after four iterations, three reliable solutions were identified for the
machine tool (variants 4 and 5 from iteration 2 and variant 7 from iteration 4). For this
example, iterations are stopped at this point.

Figure 12 illustrates the implementation of the SCV algorithm in a dedicated software
application written in Java. The left-side window shows the results after the second
iteration, whereas the right-side window shows the results after the fourth increment.

Figure 12. Screenshots showing SCV implementation in a software application.
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As Figure 12 shows, in all cases where the current value exceeds the target of a certain
parameter, the value of the target is introduced for calculating the utility function. This
is appropriate for the intended objective, and it is done in this way to follow the form
imposed by the utility function in Equation (4). Another important remark is about the
values given to three performance indicators (i.e., variety of available modules, number of
locations for interfaces, number of possible configurations) in all the variants highlighted
in this example. It is seen in Figure 12 that, for all cases, these three performance indicators
reached their target values. The reason is further justified.

For module availability, all modules are simple rotation or translation units; thus,
they can be easily ordered. Because all modules are of pure rotation or translation, there
is no difficulty in that each module is designed with two locations for interfacing with
other modules. If all parts in the family of parts (see Figure 1 for the generic part) can
be manufactured with any of the proposed variants, configurability reaches the target in
all cases.

6. Discussion on the Results from the Case Study

Results from Section 5 reveal that more solutions can be defined for maximizing the
utility function of a certain multicriteria-related design problem. From this perspective,
the selection of the final solution requires supplementary criteria for analysis, criteria that
are not necessarily related to the design process. For example, referring to the case study
illustrated in this paper, an important selection step involves identifying suppliers for the
functional modules identified to the three candidate variants of the machine tool. This
process could lead to several cases. One such case is when one or two of the three solutions
are rejected because no suppliers exist for some of their functional units. Another case
is when all three solutions are rejected because of a lack of suppliers for some functional
modules. In this situation, another variant in the set must be selected (one, which is close
as global performance to the three variants, but, which can be provided by suppliers of
modules, e.g., variants 6, 8 or 9), or the SCV algorithm is further applied for defining
a new solution. If all three or at least two of the preferable variants (4, 5 and 7) can be
supplied, supplementary analyses are considered, too. In this respect, static and dynamic
analyses, including thermal behavior and/or other behavioral analyses, are performed
for each variant (e.g., using 3D finite element formalisms). If the technical analyses still
do not reveal a final solution, the economic criterion should be further considered (e.g.,
servitization-led business models based on subscription). If the economic criterion leads to
slight differences between variants, the business risk is added to the analysis. This could
involve issues about guarantees from suppliers, response time, etc.

7. Discussion on Reconfigurable Machine-Tool Design

In the context of industry 5.0, reconfigurable machine tools play a crucial role. They
facilitate agility in production and cost-effectiveness along the lifecycle. Today, technolo-
gies allow designing functional modules of machine tools that can be interconnected via
distributed control architectures that facilitate convertibility and scalability. Thus, from a
technological point of view, engineering achieved the level of development that allows the
design of reconfigurable systems. However, reconfigurable machine tools are still rarely
seen in the industry. This is a consequence of the fact that manufacturing organizations are
still lagging in adopting circular economy and lifecycle models, and their markets did not
reach yet the stage where mass customization is critical. However, signs indicate that this
is the trend, and producers must be prepared for that moment.

In this foreseen paradigm, the conceptualization of reconfigurable machine tools
remains a challenge because tools must be designed in context. This requires a good
understanding of the families of parts to be manufactured over longer periods, in terms
of financial sustainability (e.g., net present value and return on investment), ecological
sustainability (e.g., longer use of functional modules, more reconditioning and reuse of
such modules and less material disposal), and social sustainability (e.g., support of mass
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customization with fewer resources, assurance of coexistence of machines and people in
the factory shop, etc.). Hence, reconfigurability is more than the capacity to interconnect
functional modules in different machine tool architectures. It is also about finding the best
architectures for each manufacturing context (minimum number of modules and the most
appropriate types of modules that can be configured and reconfigured over the lifecycle
of a family of products to meet all manufacturing needs as required without involving
redundant or underutilized units). For this challenge, this paper introduces a design
algorithm that helps engineers to narrow the space of investigation, speed up the time, and
reduce the effort involved for reconfigurability optimization in machine-tool design.

8. Conclusions

The conceptual design of complex products is an iterative process involving many
factors of influence and plenty of options in the search for solutions. Reducing the number
of attempts until a reliable solution is defined represents an important goal in this process.
Therefore, the focalization of the conceptualization effort towards the key issues of the
problem is desirable. In this respect, a boundary of the design space is defined using
performance criteria and related targets. This space of constraints creates premises for
exploiting creativity.

This paper concentrates on combining optimal design philosophy with structured
management of creativity for reducing the number of iterations until a mature solution to a
design problem is envisaged. This is possible by leading searches every time towards those
directions of intervention that are significant for the design problem under consideration
(i.e., framed by the laws of ideality and convergence). Optimal design algorithms are
usually applied after concept creation for improving some measurable parameters of the
solution. In this paper, the optimal design is applied in an earlier design phase, specifically
for defining the concept. Moreover, it is known that the mathematical formalisms behind
the optimal design algorithms are automatically conduced for determining the best solution
in the considered space of design, with no room for human intervention during algorithm
application. The formalism proposed in this paper lets engineers interfering in a structured
way (via some well-defined vectors of intervention) in the evolutionary design algorithm
(in all iterations) for bringing their creative potential and knowledge in solution creation.
PSO combined with TRIZ-based structured innovation formalisms look to be suitable
for performing this task. The case study presented in the paper is very illustrative in
this respect.

The quality of the SCV algorithm is the fast convergence to a reliable solution without
diminishing the creative role of engineers and without narrowing the space of search.
However, instead of adopting a trial-and-error approach, which is usually the core modality
of action in conceptual design, it increases the effectiveness of ideation by directing the
creative and experiential capacity of engineers towards those directions that indicate
the highest potential for the ideal solution. Thus, the conceptual design, which induces
the highest impact on later developments, is guided by an expert system. Imagining that
engineers would benefit from a large database of technical solutions, the SCV algorithm can
semi-automatize the conceptual design process or even automatize it using a supervised
machine-learning algorithm or a reinforcement learning algorithm. However, this requires
access to a large pool of data. Even if for the problem introduced in the case study, such
databases are not yet available, in several other engineering fields, this can be feasible.
Therefore, we claim that the SCV algorithm can experiment in future research as part of an
artificial intelligence algorithm for conceptual design. From this perspective, a comparative
analysis of the SCV algorithm concerning other conceptual design algorithms introduced
in Section 2 ([14,36,42,43]) could have merit. Nevertheless, there are some challenges
and limitations of this algorithm. One challenge is that for any field of application, the
proper set of GIVs must be extracted from TRIZ-MC. The second challenge is avoiding
many calculations and learning the whole mathematical formalism behind it. It must be
implemented in a piece of software program for easy adoption by engineers. It is also
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limited to those conceptual design problems where clear KPIs and targets can be formulated
from the early stages and where an objective function can be shaped. In practice, not all
design problems fit into this use case.

The SCV algorithm is not limited only to design reconfigurable machine tools. It
can be adapted to more design problems. The SCV algorithm brings value-added to
the conceptualization process by replacing the unstructured framework (trial-and-error
approach) with a structured one by tackling the psychological inertia without removing
creativity from the design process. At each step of the conceptual design process, the SCV
algorithm directs the search towards effective positions in the design space. It also provides
a measure of local and global effectiveness during process rolling, such as the subsequent
searches to be directed only to other effective positions. The effectiveness of searching is
ensured because both the PSO algorithm and the associated GIVs of the search positions
simultaneously contribute to achieving this goal. All these elements create premises for
reducing the number of iterations until a mature solution is generated.

The SCV algorithm is left for future work, in the sense of investigating the potential of
other optimal design evolutionary formalisms and structured innovation means in framing
the conceptual design process. New forms of the utility function could also be considered.

Because of its intrinsic characteristics, the SCV algorithm is suitable for the design
problems related to modules or systems that fall in the paradigm of industry 4.0 or industry
5.0. Usually, the design of cyber-physical systems or green technologies is led by clear,
measurable technical specifications. As the SCV algorithm operates with such kinds
of inputs within the conceptual design, it can handle the process by breaking down
complexity without affecting the overall focus. Therefore, we envisage the potential to
use this algorithm for other specific systems, such as robot design, smart end-effector
design, logistic unit design, controller design, etc. It can also be used as an algorithm
in supervised machine learning for those cases that benefit from a big amount of data
(e.g., classification of various ideas) or by increasing the efficiency of PSO algorithms in
quantitative optimization problems, including multiobjective function optimization. These
areas represent future lines of studies.
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Appendix A

In Figure A1, we propose a mathematical formalism for addition and subtraction in a
discrete space of operators (e.g., p1, . . . , p4).



Appl. Sci. 2021, 11, 4446 25 of 27

Figure A1. Addition and subtraction operations of GIVs.
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