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Abstract: The case-based reasoning (CBR) method can effectively predict the future health condition
of the system based on past and present operating data records, so it can be applied to the prog-
nostic and health management (PHM) framework, which is a type of data-driven problem-solving.
The establishment of a CBR model for practical application of the Ground Special Vehicle (GSV)
PHM framework is in great demand. Since many CBR algorithms are too complicated in weight
optimization methods, and are difficult to establish effective knowledge and reasoning models for en-
gineering practice, an application development using a CBR model that includes case representation,
case retrieval, case reuse, and simulated annealing algorithm is introduced in this paper. The purpose
is to solve the problem of normal/abnormal determination and the degree of health performance
prediction. Based on the proposed CBR model, optimization methods for attribute weights are
described. State classification accuracy rate and root mean square error are adopted to setup objective
functions. According to the reasoning steps, attribute weights are trained and put into case retrieval;
after that, different rules of case reuse are established for these two kinds of problems. To validate
the model performance of the application, a cross-validation test is carried on a historical data
set. Comparative analysis of even weight allocation CBR (EW-CBR) method, correlation coefficient
weight allocation CBR (CW-CBR) method, and SA weight allocation CBR (SA-CBR) method is carried
out. Cross-validation results show that the proposed method can reach better results compared with
the EW-CBR model and CW-CBR model. The developed PHM framework is applied to practical
usage for over three years, and the proposed CBR model is an effective approach toward the best
PHM framework solutions in practical applications.

Keywords: case based reasoning; data analytics; optimization; simulated annealing; prognostic
health management

1. Introduction

Ground special vehicle is a kind of complex equipment that is used for the purpose
of satellite transportation and space launch preparation, which contains hydraulic con-
trol subsystem, temperature control subsystem, fixed aiming subsystem, power supply,
and distribution subsystem, fuel subsystem, electronic control subsystem, communication
subsystem, and so on.

In a mission-critical launch, The GSV is required to operate in a reliable and efficient
way; at the same time, the incident of system degradations and fault-related abnormality
must be reduced or prevented in advance. In the case of system degradation or failure, GSV
will operate abnormally, and the consequence is very serious. The mission will be forced
to abort the launch. In addition, the personnel will be seriously injured, and components
of GSV will be damaged. As a result, consideration of reliability and safety risk for GSV
is very important prior to the operation process. For such complex equipment as GSV,
effective measures and practical methods must be taken into consideration to ensure high
availability of GSV, and having an automated procedure of safety management and health
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maintenance is very important. In order to comprehensively manage the operation of GSV,
researchers prefer to adopt the Prognostic and Health Management (PHM) structure to
ensure safety and reliability, and to provide solutions based on health management [1–4].
Based on diagnostics/prognostic information, available resources, and operational demand,
PHM is capable of making appropriate decisions about maintenance actions in its actual
life-cycle conditions. One of the important tasks involves continuous monitoring with
analysis using proven algorithms [5–8].

When it comes to GSV, the development of data collecting and processing technolo-
gies is introduced, a large number of multiple on-board sensors are deployed to perform
condition monitoring and health management of GSV, at the same time, a large amount
of data about the operation conditions of the GSV are recorded. In addition to data from
historical operation record, historical experiences from expert’s domain knowledge are also
maintained and stored. In this way, GSV stores a large amount of historical operational
knowledge about problems and solutions during the operation and maintenance cycle, this
information constitutes a case library for reasoning. How to make better use of the knowl-
edge as a reference to offer feasible solutions is the main topic. Based on the inference of
a large amount of knowledge retrieval and analysis, a quantitative or qualitative conclusion
about the health of the system can be derived.

In some practical cases, a rule-based reasoning model can be appropriate for knowl-
edge representation in PHM structure [9]. However, in this model, knowledge acquisition
and expression are based on expert experience and have a certain degree of subjectivity.
Therefore, it is difficult to express and acquire knowledge. Unlike other application areas,
for GSV, a large amount of historical operational knowledge about problems and solutions
were stored during the operation and maintenance cycle, and case-based reasoning (CBR)
methods can make better use of this knowledge to provide solutions and maintenance
suggestions for the diagnosis and health management of the system [10].

CBR is a kind of reasoning and machine learning method in the field of artificial
intelligence (AI). It is especially applicable to the fields with no accurate mathematical
models, but with much information of experience and historical knowledge. The basic
principle of the CBR method is to solve new problems by reusing solutions of the previous
similar problems accumulated in historical experiences [11,12]. The historical experiences
are combination of past operation cases that contain data records, semantic descriptions,
evaluation results, and solution references. CBR can imitate analogy human thinking,
and learns from experiences, which is in line with the human cognitive process of new
things. CBR has the characteristics of easy acquisition of knowledge, simplification of solv-
ing process, high quality of the solution, and incremental learning [13]. CBR has developed
rapidly in recent years. Several international case-based reasoning conferences have been
held in European and other CBR workshops [12,13]. CBR technology has been applied in
various fields, such as fault diagnosis, product design, pattern classification, regression
prediction, intelligent control, and has achieved remarkable application success [14–19].

The basic CBR is composed of 4R procedures, namely, case retrieval, case reuse, case
revision, and case retain. In the case of retrieval, the weight allocation of the case attribute
determines the similarity between cases, thus affecting the result of case retrieval [20,21].
Due to the different characteristics of practical fields, the specific case-based reasoning
model is not applicable to other application fields; moreover, the reasoning algorithm must
not only meet the application model requirements of the actual system, but also be able to
make it practical. Weight calculation for case similarity is a key issue of the CBR method.
Algorithms for weight allocation must be improved or re-considered according to the case
base of a certain field. It is necessary to set weights for the cases in these case libraries
through fast and effective algorithms. Simulated annealing (SA) algorithm is a kind of
optimization algorithm that converges to the optimal global solution with a probability
of 1 [22,23]. SA has the adaptability to deal with both discrete data and continuous
data. SA has the characteristics of universal, easy to achieve, and high quality, and is
widely used in engineering fields, such as fault diagnosis, circuit design, vehicle routing,
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and image processing [23–27]. It is of high practical value. To make GSV PHM structure
more suitable and practical, a CBR model containing a simulated annealing algorithm for
optimizing case attribute weights is developed. The model begins with case representation,
then, the optimization methods for attribute weights are established for case retrieval.
The proposed method is applied to subsystem health evaluation of GSV. Cross-validation
results show that the proposed method can reach the accuracy of case-based reasoning of
GSV PHM structure.

The rest of this paper is organized as follows. In Section 2, the application framework
using the CBR model for PHM is briefly introduced, as well as the topics regarding case
representation, case retrieval, and case reuse are described. In Section 3, the optimization
method of feature attribute weight allocation based on the SA algorithm is presented,
which is developed in Java. Section 4 is application validation and design of comparative
experiment in some data sets to evaluate the running performance of the application,
and the results and analysis are provided as well. In Section 5, some conclusions and future
outlooks are presented.

2. Framework Description
2.1. Data Construction and Module Development
2.1.1. Data Collection Process

In general, there are pressure detection unit, flow detection unit, temperature detection
unit, voltage detection unit, displacement detection unit, and switch detection unit in
the GSV. The data acquisition is as follows. Each detection unit collects information from
sensors, encodes the information according to transmission protocol, and then sends
the processed information to the central computer. Figure 1 shows the deployment of
the data acquisition system.
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Figure 1. Topology of the data acquisition system.

We take the hydraulic control subsystem as an example to illustrate how to use the in-
formation collected by sensors to construct data for case analysis. Figure 2 shows one
of the raw data acquisition deployments for the hydraulic control subsystem. Informa-
tion about pressure and flow is acquired from sensors—the information is collected by
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the pressure detection unit and flow detection unit deployed in the vehicle. Following that,
the information that contains raw data is received based on predefined format through
the field bus network. Figure 3 shows the received information format. The information
that contains raw data is decoded according to application protocol, and finally, processed
data is stored in the database. Having historical data in the database, the following proce-
dure is to create a case base using some function templates.
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Figure 2. Cylinder and pump in the hydraulic control system.

First, a class template is created. Table 1 shows an example of a class template for fault
case construction. In Table 1, a class template is used to construct the hydraulic control
subsystem data set. Feature name and feature value is used to construct attribute-value
pair. Table 2 shows one record from the hydraulic control subsystem—in this record,
eight attributes are extracted from the database, that is to say, cylinder forth movement
(YA1), cylinder back movement (YA2), digital relief valve 1 flow (BF1), digital relief valve 2
flow (BF2), main pump pressure (BP1), erect pump pressure (BP2), front support pressure
(YDL1) and back support pressure (YDL2), the corresponding value is (3, 0, 11,598, 11,088,
8320, 6491, 240, 240) for timestamp 33.947. Therefore, parameters of condition attributes
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are expressed as <YA1, YA2, BF1, BF2, BP1, BP2, YDL1, YDL2> = <3, 0, 11,598, 11,088,
8320, 6491, 240, 240>, these values are in the form of digital information and directly
collected from the field bus network. These values must be converted into an analog
quantity conversion according to the bus transmission protocol, so that the corresponding
pressure, flow, and displacement can be obtained. Other attribute-value pair is processed
in asimilar way. For each record, a conclusion is made to assess the operational behavior;
the conclusion corresponds to solution attributes, solution attribute is in the form of discrete
value or the probability in the range of (0,1). The discrete value indicates the positive or
negative—in other words, normal state or abnormal state, probability indicates the degree
of health performance of the system. In this way, condition attributes and solution attributes
are determined for a case.
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Table 1. Class template for fault case definition.

Class Member Definition and Description

id identify case
name The name of the failure case

symptom Description of the fault phenomenon
time time of the failure occurred

category Categorize failure cases
flist-fname Feature name
flist-ftype Feature type
flist-fvalue Feature value

flist-fweight Feature weight

Table 2. Example of case data from the hydraulic control subsystem.

Figure Type Parameter Values of Record

Id 11 Primary key 11
YA1 int Cylinder forth movement 3
YA2 int Cylinder back movement 0
BF1 int Digital relief valve 1 flow 11,598
BF2 int Digital relief valve 2 flow 11,088
BP1 int Main Pump Pressure 8320
BP2 int Erect Pump Pressure 6491

YDL1 int Front Support Pressure 240
YDL2 int Back Support Pressure 240
TU30 double Time (s) 33.947

FP Varchar(255) Fault mode Spool abrasion

2.1.2. Logical Structure and Module

The basic reasoning process for the application is shown in Figure 4. It is noted that in
the application, the database stores not only the raw data (unprocessed data from the data
acquisition network), but also contains a mirror of the case base for safety purposes. This is
based on the application requirement. After the case representation is completed, the case
is saved in the database and mapped into the case base, and the case base is updated
synchronously with the database. A basic routine for case reasoning is described as follows:
Firstly, all attributes that correspond to the case are extracted from the case base, which
is used to construct a field table. Secondly, a number of specific attributes are selected
according to problem-solving requirement, which is used for similarity calculation. Finally,
similarities between a source case and target case are calculated, and the most similar cases
are found. With the weight optimization method, the target the case, based on the results
of these similar cases, is reused or revised and saves it to the case base.

A software project named CBR Prosys is developed based on windows platform.
The software realizes main function modules using java; the main function module includes
attribute management, project management, case maintenance, case reasoning, and data
monitoring. Each module not only has relative independence, but also contacts each other.
This CBR system can be applied to different situations by the coordination among the four
function modules. There are 37 classes altogether in the application. The design method is
based on three-lay architecture, from top to bottom, it is GUI layer, logical business layer,
and data access layer. Figure 5 shows the outline of the class module. Figure 6 shows
a snapshot of the CBR process.
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2.2. Case Representation

In case-based reasoning, the problem that is to be solved is usually referred to as
the target case, the historical data or experience is called the source case, and each case
is collected and stored in the database to form a case library. How to describe cases in
a proper form is the premise of case-based reasoning. By using PHM structure, historical
operating conditions of fault and health maintenance solutions are stored in a database. It is
a raw knowledge base. The record in the knowledge base is either a text-based description
or a sensor value and in the form of discrete format or numerical format. In order to
establish the CBR model, the corresponding relationship between the operating conditions
of the health maintenance solution must be extracted and converted into a case for storage
to form a case base. That is to say, the method of case presentation is the premise. Some
methods of case presentation, such as frame representation, the semantic network method,
and the object-oriented method, can be found in the literature [28]. The simplest way to
represent a case is by using attribute-value pairs, which is the property characteristic value
description method. This way of representation is also beneficial for database storage.

In order to make the CBR method more practical and feasible for the mentioned
PHM structure, the key indexes in the raw knowledge base are extracted to form a case
attribute. In this paper, a single case contains condition attributes and solution attributes,
condition attributes correspond to operational behaviors (problem description of the op-
erational parameters), solution attributes correspond to health maintenance assessments
(normal/abnormal, the degree of health status).

The general structure for the case base can be represented as C = {C1, C2, . . . , Cn},
a single case Ci in the case base can be expressed in two-tuples:

Ci : 〈Xi, Yi〉, i = 1, 2, . . . , n (1)
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In the above representation, n is the total number of cases, Xi is condition attributes,
and Yi is solution attributes. The representation of Xi and Yi are expressed as follows:

Xi = (xi1, xi2, . . . , xim) (2)

Yi =
(
yi1, yi2, . . . , yip

)
(3)

where m and p is the total number of condition attributes for Xi and solution attributes for
Yi, respectively.

The value of the condition attribute is continuously varying real numbers, or the value
of attribute is discrete varying numbers. Therefore, different similarity calculation formulas
need to be used. The calculation method of similarity is given in Section 2.3. The solution
attribute can be a conclusion, which is used to indicate the positive (normal state) or
negative (abnormal state). It can also be a probability of occurrence, which is used to
describe the degree of health performance. As s result, the solution attribute will be
reduced to Yi = (yi1), namely, one attribute is defined for Yi.

2.3. Case Retrieval

Case retrieval is a key process in case reasoning. This step assures the right case is
collected with a proper retrieval approach. In this paper, the k-nearest neighbor method is
adopted to calculate case similarity between the source case and target case.

Let Ci and Cj denote ith case and jth case, respectively, then the similarity between
the two cases can be calculated by using the similarity of their condition attributes, which
can be described as below:

sim
(
Ci, Cj

)
=

{
m

∑
q=1

wq × sim
(
xiq, xjq

)}1/2

(4)

Equation (4) is a modified weight Euclidean formula. wq is the weight of qth attribute.
Attribute values that correspond to the feature are normalized to reduce the influence of
different dimensions. Minimization-maximization is selected as the normalization method.
The weight represents the importance of a condition attribute. The sum of each weight is 1,
as below:

m

∑
q=1

wq = 1 (5)

The greater the sim
〈
Ci, Cj

〉
value, the higher the similarity between case Ci and case

Cj. The method of similarity calculation is dependent on the types of condition attribute
format. If condition attribute format is continuously varying real numbers, the similarity is
calculated as below:

sim
(
xiq, xjq

)
= 1−

∣∣xiq − xjq
∣∣, q = 1, 2, . . . , m (6)

If condition attribute format is a discrete number, the similarity is calculated as below:

sim
(
xiq, xjq

)
=

{
1; xiq = xjq
0; xiq 6= xjq

(7)

where m is the total number of attributes, 1 ≤ q ≤ m. Through case retrieval, some of
the source cases that are most similar to the target case can be selected. Then, the process
of case reuse uses these selected similar cases to solve the target case. It uses the so-
lutionattribute value of these selected cases to calculate the solution attribute value of
the target case.
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2.4. Case Reuse Model

After the case retrieval process is done, similar cases are selected. Case reuse is
a process to solve target case based on these similar cases. This paper designs the rules of
case reuse in two types of problems as below.

2.4.1. Solution Attribute with Two States

This is to determine the operation behavior of the vehicle. The solution attributes have
only two states of “positive (normal)” and “negative (abnormal)”. The reuse of the case is
described as follows:

The threshold value δ of the case similarity is determined, and the source cases whose
similarities exceed the threshold value δ are selected. Suppose the total number of selected
source cases is K, Remark the source cases whose solution attribute is ‘normal’ as positive
cases, suppose the total number of positive cases is k. Finally, the solution attribute for
target base is determined as below:

η =
∑k

i=1 sim+
i

∑K
j=1 simj

(8)

In Equation (8), the numerator represents the sum of case similarities between each
positive case and the target case. The denominator is the sum of case similarity between
each selected case and the target case. If η > 0.5, solution attribute of the target case is
positive, which indicates a normal state (no fault). Otherwise, the solution attribute of
the target case is negative, which indicates an abnormal state; further operation of fault
detection and diagnosis is recommended.

2.4.2. Solution Attribute with Probability Value

This is to describe the degree of health status, and is defined as a health predication
problem. As mentioned above, the k-nearest neighbor method is used for case reuse.
Suppose k source cases with the highest similarity to the target case are selected, and re-
mark these selected case similarities as sim1, sim2, . . . , simk, respectively. The solution
attributes values of k selected source cases are marked as y1, y2, . . . , yk. Finally, the solution
attribute of the target case is determined as below.

y =
k

∑
j=1

simj

∑k
i=1 simi

× yj (9)

where simj denotes the similarity between the jth case and the target case, and yj denotes

the solution attribute value of the jth case. ∑k
i=1 simi denotes the sum of similarity between

each selected case and the target case.

3. Module of Weight Optimization

In the process of case retrieval, the weights should be allocated, so that importance for
each attribute value reaches the optimized result. There are two kinds of weight allocation
methods: The subjective method and objective method. The subjective method includes ex-
pert consultation method; factor paired comparison method, the minimum sum of squares
method, and analytic hierarchy process, etc. [29]. Such weight allocation methods rely on
human experience, which is subjective and uncertain. In order to overcome the subjective
influence, some objective methods have been put forward. There are artificial neural
network method, water injection theory method, and genetic algorithm method [30–34].
But these methods also have some shortcomings. The artificial neural network method
calculates the feature weights according to the training model and its connection weight
value, which is poor to explain, and hard to be transplanted [35,36]. The principle of
the water injection method is based on data correlation, which is strict to the types of data.
It would make a poor performance in some discrete data sets. The genetic algorithm tends
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to converge prematurely. The population size, cross-rate, and mutation rate of the genetic
algorithm have a great influence on the solution, but the setting of parameter is neither
uniform enough nor simple enough. From the viewpoint of practical purpose, simulated
annealing algorithm has the characteristics of universal, easy to achieve. It is also easy to
code and can generate better solutions. This is an attractive option for optimization prob-
lems where complex algorithms are not feasible, especially for application development of
practical fields. In this paper, the SA method is employed and coded to optimize weight.

3.1. Basic Steps for Algorithm

The basic steps of the SA algorithm are developed as a function module, so the main
procedure can call the module whenever necessary. The basic steps are given as follows.

Step 1. Initialize parameters: Temperature T, Temperature decreasing factor ∆t, current
solution W = (w1, w2, . . . , wm), wi ∈ (0, 1), i = 1, 2, . . . , m., repeat number L,
minimum temperature Tmin.

Step 2. For temperature T, repeat Step 3 to Step 5 for L times.

Step 3. Generate the new solution W ′ (Namely, the new weight vector in the feasible
solution space is obtained based on the initial weight vector).

Step 4. Substitute the new solution W ′ into the case-based reasoning process, and cal-
culate the increment ∆F = F(W ′) − F(W). Where, F(W) denotes the objective
function of the SA algorithm. The calculation detail of the objective function is
explained in Section 3.2.

Step 5. If the increment of objective function is less than zero, the new solution is di-
rectly accepted as the current solution. Otherwise, the new solution is accepted as
the current solution with probability exp

(
−∆F

F

)
.

Step 6. If some termination condition is satisfied, the algorithm will stop, and the ap-
proximation of the optimal solution is output. Otherwise, go to Step 7.

Step 7. Decreasing temperature T = T × ∆t. If T is less than Tmin, the algorithm will
stop. Otherwise go to Step 2, and continue the cycle.

3.2. Performance Index for Objective Function

In this application, a case library is established using the historical data record set.
In order to improve the optimization effect of weights, a cross-validation method is adopted.
The procedure is described as below.

At first, select n case from case library, and divide the selected n cases into five subsets,
and the subsets are marked as S1,S2,S3, S4 and S5, respectively. The total number of cases
in each subset is equal. Mark one subset as the target case, and the remaining four subsets
are combined to form the source case. The source case is the training set, and the target
case is the test set. Following that, case retrieval and case reuse are implemented according
to description in Section 2.4. Finally, the solution attribute value of each target case is
obtained. Each subset in S =

{
S1, S2, S3 , S4, S5 } will be taken as the target case in turn,

and the remaining four subsets will form the source case base. This process repeats five
times until the cross-validation is completed, the objective function is described as below.

(1) The selected case in the case library is expressed as Equations (1)–(3); for each
case, there is more than one condition attribute and only one solutions attribute,
and the value of the solution attribute can only be a normal state or abnormal state.
The subsets from source cases are organized, as below.

Si
j :
〈

Xi
j, Yi

j

〉
(10)

Xi
j = (xi

j1, xi
j2, . . . , xi

jm) (11)
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Yi
j = yi

j1 (12)

In Equations (10)–(12), i = 1, 2, 3, 4, 5.j = 1, 2, . . . , G. xi
jm denotes jth case has

condition attribute of m in subset Si, yi
j denotes jth case has 1 solution attribute of y1 in

subset Si. yi
j can only be normal state or abnormal state. According to the description in

Section 2.4.1, suppose the number of cases with correct state classification in the target case
set is Gc, and the number of target cases is G, the state classification accuracy and state
classification error is computed, as follows.

∆i =
Gc

G
× 100% (13)

ei = 1− ∆i (14)

where ei denotes the percentage of misclassified cases in the target case set. The smaller
the state classification error rate, the better the state classification accuracy. The objective
function is setup by averaging the state classification error rate.

F(W) =
1
5

5

∑
i=1

ei (15)

(2) The selected case in the case library is expressed as Equations (1)–(3); for each
case, there are more than one condition attribute and only one solutions attribute,
and the value of the solution attribute is the probability value in the range of (0,1).
The subsets from source cases are organized as the same in Equations (10)–(12), but
the root mean square error is taken, as below.

(rmse)i =

{
1
G ∑ G

i=1

(
yi

j − yi
j

)2
}1/2

(16)

In the formula, yi
j represents the inference value of the solution attribute of the jth

target case in subset Si, and yi
j represents its actual value. The smaller the RMSE, the better

the result. Similarly, the objective function is setup by averaging the root mean square error.

F(W) =
1
5

5

∑
i=1

(rmse)i (17)

It can be seen from Equation (17) that the smaller the objective function, the bet-
ter the attribute weight vector. Therefore, in the step of using the simulated annealing
algorithm to obtain the feature attribute weight, the objective function can determine the op-
timized weight. If the objective function of the new solution becomes smaller, the new
solution is directly accepted. Otherwise, the new solution is accepted with metropolis
probability to jump out of the local optimum.

4. Application Validation and Analysis
4.1. Applicaiton Experiment Test

With the development of the application, function, and performance of the CBR
reason model and optimization process must be evaluated to check if practical engineering
requirement is satisfied. In this section, the application experiment is carried out by
adopting historical data from GSV. Stored cases have been checked to reduce redundancy
and to verify data validation. In the paper, the optimization method of even weight
allocation CBR model (EW-CBR) and correlation coefficient weight allocation CBR model
(CW-CBR) is also employed to make a comparison with the developed SA weight allocation
CBR model (SA-CBR), and to check if the module functions properly.
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In Table 3, Ai(i = 1, 2, 3, 4, 5) represents a subsystem or a combination of the subsys-
tems, and the feature attribute includes the numerical value from the sensor (including
eight pressure parameters, four temperature parameters, eight flow parameters, four volt-
age parameters, and four current parameters) and Discrete quantities (relay open/closed
state, valve closed/closed state, communication identification state, gear switch, status
indicator). For example, if the health status is judged from the hydraulic subsystem, only
the feature attributes corresponding to the hydraulic subsystem are used. If the health
status is comprehensively considered from the hydraulic subsystem and the temperature
control subsystem, the corresponding feature attributes of both the hydraulic subsys-
tem and the temperature control subsystem are used, the reasoning result will show if
the system is normal or abnormal. Accordingly, in Table 4, the reasoning result will show
the degree of health performance in the probability of (0, 1). The subset Bi(i = 1, 2, 3, 4, 5)
has the same meaning as in Table 3. The case name denotes the subsystem or combination
of the subsystem, in which H denotes hydraulic subsystem, T denotes temperature control
subsystem, F denotes fixed aiming subsystem, P denotes power supply and distribution
subsystem, Fc denotes fuel control subsystem, E denotes electric control subsystem, C
denotes communication subsystem.

Table 3. Data set for a normal and abnormal state.

Subset Case Produced * Number of Sample Number of Attribute

A1 H 768 8
A2 H + F 267 22
A3 E 1372 4
A4 E + H 1000 12
A5 H + E + T 569 30

* H denotes hydraulic subsystem, T denotes temperature control subsystem, F denotes fixed aiming subsystem, P
denotes power supply and distribution subsystem, Fc denotes fuel control subsystem, E denotes electric control
subsystem, C denotes communication subsystem.

Table 4. Data set for the degree of health performance.

Subset Case Produced * Number of Sample Number of Attribute

B1 H 1030 8
B2 E 302 8
B3 F 103 9
B4 H + T 760 8
B5 P 1503 5

* H denotes hydraulic subsystem, T denotes temperature control subsystem, F denotes fixed aiming subsystem, P
denotes power supply and distribution subsystem, Fc denotes fuel control subsystem, E denotes electric control
subsystem, C denotes communication subsystem.

The basic process is as follows:

Step 1. Given initial weights, take one of the 5 subsets as the target case and the remaining
four subsets as the source case, and calculate the similarity in turn.

Step 2. Determine the number of matching cases according to the similarity threshold
and k-nearest neighbor. If it is met, go to step 3, if it does not match, go to step 4.

Step 3. Verify the case reuse result. If it meets the requirements, and the result is correct,
go to Step 5. Otherwise, continue to step 4.

Step 4. Use SA-CBR, EW-CBR, and CW-CBR to optimize weight distribution as described
in Sections 4.1.1–4.1.3, and return to step 3.

Step 5. Save the case, output the result, return to step 1, repeat five times.

4.1.1. Threshold of Case Similarity Determination

For the problem of normal/abnormal state determination, the case similarity threshold
δ mentioned in Section 2.4.1 will affect the number of cases selected in the case retrieval,
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thus affect the final inference result. Therefore, for each data set, the threshold value δ

is set to 0.75, 0.80, 0.85, 0.90, and 0.95, respectively. The case-based reasoning method
with EW-CBR is used to obtain the state classification accuracy under adifferent threshold.
The threshold δ with the minimum state classification error of each data set is selected.
The better threshold value δ of each data set is shown in Table 5. The threshold listed in
Table 5 is also used to compare the state classification problem in Section 4.1.3.

Table 5. Threshold of case similarity.

Data Set A1 A2 A3 A4 A5

δ 0.9 0.85 0.9 0.85 0.9

4.1.2. k Value Determination

For the problem of degree of health performance determination, the k-nearest neigh-
bor method is adopted as described in Section 2.3, and the k value has an influence on
the inference of results. Therefore, for each regression data set, k is set to 1, 3, 5, 7, and 9,
respectively, with EW-CBR is employed. For each data set, calculate the RMSE for all
candidate k values to determine the optimized k value for each data set. The obtained
optimized k value is used as the comparison in Section 4.2. The optimized k value using
the k-nearest neighbor method for each regression data set is shown in Table 6.

Table 6. Value of k for each data set.

Data Set B1 B2 B3 B4 B5

k 7 1 1 5 1

4.1.3. CBR Method for Comparison

Comparative analysis of weight allocation methods is carried to investigate the avail-
ability of the developed module using the CBR method for PHM structure. In order to
further compare the proposed reasoning methods, CW-CBR is employed for comparison.
The basic CW-CBR method taken in the paper is described as following.

(1) For the problem of normal/abnormal state determination, the solution attribute of
the data set is processed to “1” and “0”, which represent the positive type and negative
type. Then attribute weight is calculated according to the following formula.

wi = SRi/ ∑ m
i=1SRi (18)

where SRi denotes the correlation degree between the ith condition attribute and the so-
lution attribute Y.

(2) For the problem of degree of health performance determination, the absolute value of
the correlation coefficient between each condition attribute Xi and solution attribute
Y is calculated as below.

Ri =

∣∣∣∣∣ Cov(Xi, Y)√
Var(Xi)×Var(Y)

∣∣∣∣∣ (19)

where Cov(Xi, Y) denotes the covariance of the ith condition attribute with solution
attribute, Var denotes variance value. Suppose the number of attributes is m, then
a attribute weight is calculated according to the following formula.

wi = Ri/ ∑ m
i=1Ri (20)

For SA-CBR, the parameter settings are as follows: Starting temperature TStart = 100,
temperature attenuation factor TWeak = 0.92, attribute weight disturbance step factor
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Step = 0.21, Termination temperature TMin = 0.001, number of repetitions L = 2. If the
current temperature is less than the minimum temperature, the algorithm will exit. For EW-
CBR, the weight is the same value for all attribute, and the sum of weight equal to 1.

4.2. Results and Analysis

Based on the experimental application design mentioned above, the results are com-
pared and analyzed. For each CBR method, a source case is constructed, and the source case
is divided into five subsets. Cross-validation is carried out as described in Section 3. Using
EW-CBR, CW-CBR, and SA-CBR methods to obtain attribute weights, respectively, and then
the test cases are reasoned. For the problem of normal/abnormal state determination,
the state classification accuracy is set as the evaluation index, and for the problem of degree
of health performance, the root mean square error is set as the evaluation index. Finally,
the inference results of the test cases are analyzed, as shown in Sections 4.2.1 and 4.2.2.

4.2.1. Analysis on Result of Normal/Abnormal State Determination

In this case, Table 7 shows state classification accuracy for three CBR methods. It can
be seen from the results that the state classification accuracy of the SA-CBR method is
the highest, indicating that the SA-CBR method has the highest weight optimization ability.
For data sets A1, A4, and A5, the state classification accuracy of CW-CBR is higher than that
of EW-CBR, and it has certain weight optimization capabilities. For data sets A2 and A3,
the state classification accuracy of CW-CBR are lower than that of EW-CBR. Therefore,
the weighting method based on data correlation is not effective for state classification
problems. Especially in the condition that the correlation of the data is not significant. Also,
the result indicates that although for the same data set, the state classification accuracy
of SA-CBR is as low as 74%, it is still higher than the accuracy obtained by the other
two methods. Thus, SA-CBR is the first choice. Based on the engineering practice of
the application, when the state classification accuracy is less than 70%, the result can only
be used as a reference for operators. As we know, a single method is not always good
for all circumstances, so we need to consider combining other optimization algorithms to
develop more accurate models in the next step.

Table 7. State classification accuracy rate (%).

Subset EW-CBR CW-CBR SA-CBR

A1 73.16 76.56 77.40
A2 69.65 68.16 74.57
A3 97.96 92.78 98.91
A4 70.89 72.90 75.20
A5 93.32 94.18 94.89

Furthermore, ROC diagrams of three weight allocation methods are given, which
are especially suitable for the description and analysis of two-class problems [37,38], as
shown in Figure 7a–e, respectively. In the above figures, the horizontal coordinate denotes
the false positive rate (FPR), and the vertical coordinate denotes the true positive rate (TPR).
FPR and TPR are calculations as follows.

TPR = TP/(TP + FN) (21)

FPR = FP/(TN + FP) (22)

where TP denotes the number of target cases whose result attribute is “positive” and are
classified as “positive”. TN denotes the number of target cases whose result attribute is
“negative” and are classified as “negative”. FP denotes the number of target cases whose
result attribute is “negative” and are classified as “positive”. FN denotes the number of
target cases whose result attribute is “positive” and are classified as “negative”.
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Each point in the ROC graph represents a classifier, and the classifier reflects the pros
and cons of classification performance. The closer the point is to the upper left corner (0, 1),
the better the performance of the corresponding classifier, and the (0, 1) point represents
the perfect classifier. It is easy to see from the ROC graphs of five data sets that SA-CBR
has the best classification performance.
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4.2.2. Analysis on Result of Degree of Health Performance Determination

In this case, the results obtained by the three methods are shown in Table 7, and the re-
sults are plotted in Figure 8. For the five data sets, the SA-CBR method is the smallest,
indicating that the SA-CBR method has the strongest weight optimization ability. At
the same time, except for data set B5, the RMSE value of the CW-CBR method is smaller
than that of the EW-CBR method. CW-CBR has a certain weight optimization ability for
numerical prediction problems, while EW-CBR has the worst reasoning effect.

From a comprehensive analysis, SA-CBR shows the best reasoning performance for
both normal/abnormal state classification problem and health performance determination.
In the problem of normal/abnormal state classification on data set A1 to A5, the state
classification accuracy of this method increases by 4.24%, 4.92%, 0.95%, 4.31%, and 1.57%,
respectively, compared to EW-CBR. In the problem of degree of health performance deter-
mination on data set B1 to B5, the root mean square error also decreases by 1.953, 1.559,
1.431, 0.328, and 0.328, respectively.
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In summary, it can be seen from experimental results that for the allocation of feature
attribute weights; SA-CBR is superior to the CW-CBR, while the CW-CBR is superior to EW-
CBR. SA-CBR has the strongest weight optimization ability and can adapt to various types
of data sets. SA-CBR has the highest reasoning accuracy in both normal/abnormal state
determination and degree of health performance determination in the study. Although
the CW-CBR has some capability of feature attribute weight optimization, it has some
limitations on data set requirements. In some cases, it is not even as good as the EW-CBR
method. Therefore, it can be inferred that the water injection principle method for weight
distribution based on data correlation also has limitations.

5. Conclusions

Through using data-driven health management processing and risk safety analysis in
the PHM structure, this paper describes application development and establishes a CBR
model to solve the normal/abnormal state determination and degree of health performance
determination for practical purposes. In addition, the rules for case retrieval and case reuse
have been established for state classification problems and health determination prob-
lems. In the weight distribution method, a feature attribute weight optimization method
based on the simulated annealing algorithm is proposed. The proposed method combines
case-based reasoning with machine learning and is a data-driven method. The devel-
oped SA-CBR module within the application uses historical cases to train feature attribute
weights. The richer the historical data is collected, the more accurate the inference re-
sults will be. SA-CBR algorithm is simple and easy to understand, as well as parameter
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configuration is convenient; it is, therefore, practical for PHM structure. Three methods
of EW-CBR, CW-CBR, and SA-CBR are investigated based on the actual historical data
set, and experimental application results are shown and analyzed. The results indicate
that validation of the developed SA-CBR module is simple to realize, and the practical
requirement is satisfied.

Although the proposed method shows outstanding advantages, there are still many
problems to be dealt with. At present, the established CBR model is specifically developed
for the PHM structure of the launch vehicle system. In the future, it should be considered
to be applied to more engineering fields. In addition, other methods can be introduced in
the reasoning method to improve the reasoning performance. As the amount of historical
data becomes larger and larger over time, simplifying redundant cases before reasoning is
also a problem that needs to be considered.
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