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Abstract: Because smartphones support various functions, they are carried by users everywhere.
Whenever a user believes that a moment is interesting, important, or meaningful to them, they can
record a video to preserve such memories. The main problem with video recording an important
moment is the fact that the user needs to look at the scene through the mobile phone screen rather
than seeing the actual real-world event. This occurs owing to uncertainty the user might feel when
recording the video. For example, the user might not be sure if the recording is of high-quality
and might worry about missing the target object. To overcome this, we developed a new camera
application that utilizes two main algorithms, the minimum output sum of squared error and the
histograms of oriented gradient algorithms, to track the target object and recognize the direction of
the user’s head. We assumed that the functions of the new camera application can solve the user’s
anxiety while recording a video. To test the effectiveness of the proposed application, we conducted a
case study and measured the emotional responses of users and the error rates based on a comparison
with the use of a regular camera application. The results indicate that the new camera application
induces greater feelings of pleasure, excitement, and independence than a regular camera application.
Furthermore, it effectively reduces the error rates during video recording.

Keywords: smart cameras; HCI; affective design

1. Introduction

Since the first versions of Apple’s iPhone and Samsung’s Galaxy S series smartphones
were first released globally, they have become extremely popular and important devices
in daily life [1]. In 2009, smartphone penetration in the US was 25%, and 14% of the
mobile phones shipped worldwide were smartphones [2]. Furthermore, the number of
smartphones sold to end users worldwide has increased dramatically from 2007 to 2020,
expanding from 122 million to 1.56 billion devices sold [3]. Smartphone technologies
have been evolving through several device generations, and cameras have increased in
importance and are currently regarded as a marketing tool to attract customers [4]. Because
smartphones can achieve various functions, people use them frequently and carry them
almost everywhere. One of the important functions of a smartphone is photography. People
use their smartphones whenever they want to capture a moment that has an important
meaning to them. Thus, relevant camera technologies have evolved to record everyday
moments with high quality [2]. However, one significant problem when recording video of
an important event is the fact that the user generally views the scene recorded through the
mobile phone screen rather than the actual real life event itself (see Figure 1).

For example, when recording a dance performance, the user will likely focus on
the mobile phone screen rather than the actual live dancing owing to concerns with the
video recording. This occurs because the system cannot identify the user’s intention when
recording a video. As a result, when recording, the user should focus on the mobile phone
screen, and the user cannot perceive the real world directly. In addition, at that time, the
user may have an unpleasant or out-of-control feeling in terms of affection because the user
cannot see the real-world event and cannot be confident of the quality of the recording.
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Figure 1. People view events through the mobile phone screen rather than the real-world event itself.

Through a focus group discussion (FGD), we investigated the reasons why people feel
compelled to concentrate on the mobile phone screen when recording a video. The FGD
results indicate that there are several reasons why people focus on the scenes displayed
on the mobile phone screen rather than the actual event itself. First, users are concerned
regarding whether the target object will be properly recorded. Second, the users cannot be
sure whether the video recording contains what they are seeing in real life. If users do not
see the mobile phone screen while recording a video, the result of recording sometimes
cannot involve the exact scenes the user wants and the quality of recording cannot meet the
user’s standard. Third, they cannot be sure if the video recording is going well. Focusing
on recording the video results in a reduced level of emotion because the user cannot focus
on the actual event, and there has been a lack of studies dealing with this issue.

The technical and practical problems discussed here emerged from the experience of de-
veloping and deploying video recording capabilities as a part of research conducted through
Samsung’s Camera Improvement Project. In this study, we propose new camera functions
that support object tracking and head movement recognition. This helps record target
objects while tracking them and can record scenes based on the user’s head movements.

Our aim is to help the camera user focus on the real-life event instead of viewing it
through the screen. In the aspect of user experience, this will create a better emotional
feeling for the user during the video recording. Thus, we proposed a new method to
see the real-world scenes while a video recording, which is our main contribution. In
addition, we contributed that we measured emotional responses after video recording
to verify the effectiveness of the proposed method in the aspect of user experience. In
the following sections of this paper, we describe a method proposed to solve the above-
mentioned problems. We then evaluate the new system to prove the effectiveness of the
proposed application. Although the proposed approach improves the user’s positive
emotion by allowing the real-world event to be viewed directly while recording a video,
further improvements of the application are required.

2. Related Studies
2.1. Object Tracking Technology: Minimum Output Sum of Squared Error (MOSSE)

Visual tracking has received a significant amount of attention in recent years. Visual
tracking technology can be regarded as important and has many practical applications in
video processing [5]. Bolme et al. insisted that if a target is located in one frame of a video,
it is recommended to track that object in subsequent frames [5]. If the target is successfully
tracked, it provides more information about the activity of the target. Because tracking is
easier than detection, tracking algorithms require fewer computational resources than an
object detector. Many types of tracking technologies have been suggested that can check
changes in the target appearance and track the complex motions of the target, including
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incremental visual tracking [6], robust fragment-based tracking [7], graph-based discrim-
inative learning [8], and multiple instance learning [9]. These tracking technologies are
effective [10]; however, they are not easy to apply and involve complex appearance models
and optimization algorithms. In addition, it is difficult to maintain the 25–30 fps produced
by many modern cameras. To address the above issues, Bolme et al. proposed a new type
of correlation filter (CF) called MOSSE [5]. This technology, when initialized, produces
stable correlation filters using a single frame. The research of Bolme et al. showed that
simpler MOSSE CFs can solve visual tracking problems more effectively than heavy weight
classifiers, complex appearance models, and stochastic search techniques [5]. MOSSE
provides an effective algorithm that is accurate, easy to implement, and much faster than
other technologies. The advantage of a MOSSE filter is its robustness when dealing with
variations in lighting, scale, pose, and non-rigid deformations during processing at 669 fps.
In addition, it supports tracker pausing when the object disappears and resumes where it
left off when the object reappears [5].

2.2. Face Detection Technology: Histograms of Oriented Gradients (HOG)

Object detection is considered an important step in high-level computer vision [11].
Pang et al. insisted that object detection is an essential function for video analysis and image
comprehension [11]. Among a variety of objects, human faces and bodies are regarded as
the most salient objects in images and videos [11]. Extensive research has indicated that
detecting humans in videos is difficult because of the diversity in appearance, illumination,
and background [12–14]. In the computer vision area, HOG combined with a support
vector machine (SVM) (HOG + SVM) is well-known and has been regarded as the most
successful human detection algorithm [15]. However, it has the disadvantage of being time-
consuming [11], which Pang et al. suggested can be solved in two ways: the first is to reuse
features in blocks to build the HOG features for intersecting the detection windows [11], and
the second is to utilize sub-cell-based interpolation to efficiently calculate the HOG features
for each block [11]. Pang et al. indicated that the combination of the two approaches results
in a significant increase in human detection [11]. The results indicate that the combination
of both approaches computes five times better than the HOG + SVM [11].

3. Methods

To view a real-world event rather than the mobile phone screen while video recording,
it is necessary to calculate the direction of the user’s face. The camera should record the
scene that the user is focused on. In addition, the camera should track the target object
continuously while video recording. To fulfill the above requirements, we adopted two
methods to obtain and capture information about the area of interest while recording the
video. First, we used the front camera to calculate the user face’s direction. Second, we
tracked the object using a rear camera. For the simulation, we used a Samsung Galaxy S20
Ultra phone and built our own simulator application operated on the Android system.

3.1. Object Tracking

To track a target object during a video recording, we reviewed various algorithms
in OpenCV [16]. Grabner, Grabner, and Bischof proposed an object tracking algorithm
in 2006 called on-line AdaBoost [17]. Object tracking algorithms have subsequently been
developed and evolved over the past several years. For example, Babenko, Yang, and
Belongie suggested a new algorithm called multiple instance learning (MIL), which showed
a more robust performance in real-time than on-line AdaBoost [9]. Kalal, Mikolajczyk,
and Matas [18] proposed a new method for tracking a failure detection called a median
flow, which provides a better performance than MIL, despite certain drawbacks [19].
Varfolomieiev and Lysenko insisted that a median flow is not a suitable algorithm in the
context of embedded systems [19]. It should be noted that we often have to consider the
trade-offs among reliability, operational speed, power consumption, size, mass, and/or
cost of the entire system [19]. Based on extensive considerations regarding reliability,
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operational speed, and power consumption, we chose MOSSE, which, although it lacks
accuracy, supports high-speed processing, making it suitable for an embedded system. In
addition, it makes it possible to quickly find and track a missing target object.

The operation of the MOSSE algorithm can be described as follows: first, users utilize
their smartphones to record moving objects. At this time, the user records a video on a
widescreen at a distance from the target object. The camera then recognizes the direction of
the user’s face in real time, identifies moving objects in the recognized direction, and saves
the video of the selected areas around them (Figure 2).

Figure 2. Working example of MOOSE algorithm.

3.2. Camera Follows the Direction of the User’s Face

To calculate the direction of the user’s face, we adopted the HOG, which uses a face
detection algorithm in Dlib [20]. HOG provides a significantly increased performance in
human detection compared with traditional methods [8]. During the camera detection of
the user’s face, it recognizes 68 face characteristics. In addition, it utilizes the OpenCV
library to recognize the direction of the face using the front camera [16]. It then converts 2D
vision data into 3D data. To account for this formula, we defined the location of the user’s
face and the distance from the user’s face to the mobile phone (Figure 3). The calculation
results of these two variables are subsequently utilized to calculate the direction of the
object. To obtain the direction of the object, we can calculate θ2, as shown in Figure 4. At
this stage, Holzmann and Hochgatterer indicated that we can calculate the value of y2
using single-camera stereo vision while recording a video [21].
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Figure 3. Formula for calculating the location of the face and distance from the mobile phone to
the face.

Figure 4. Formula for calculating the direction of the object.
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3.3. Application Flow

We developed an application that employs object tracking and user face recognition
technologies (Figures 5 and 6). The application has two different modes. First, the user
checks the target object, and the camera then automatically tracks that object. This mode
helps the user feel confident of not missing the target object while recording the video.
Second, the user can choose the mode that identifies the direction of the head through face
detection. Hence, the angle of the camera moves automatically according to the direction
of the user’s head. This helps the user become more immersed in the real world because
the camera detects the direction of the head and records the user’s view.

Figure 5. New camera application: (a) first application mode, object tracking, and (b) second
application mode, face detection.

Figure 6. Application flow.
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4. Case Study
4.1. Hypothesis

As mentioned previously, the users generally record a video by looking at the mobile
phone screen to avoid missing the target object. The user may feel anxious about missing
the target object and lack confidence that the recording is progressing well unless viewing
the recording screen directly. Thus, we hypothesized that, by viewing the mobile phone
screen rather than the real-world scene, the users may have a low feeling of valence, arousal,
or dominance when recording a video. Thus, we compared two systems, including our
application: viewing the real-world scene versus viewing the screen of a regular mobile
phone camera. When comparing the two systems, we measured the affection scores and
compared them. In addition, we hypothesized that seeing a mobile phone camera screen
has disadvantages in object detection and tracking because the angle of the human eyes is
narrow when looking at the mobile phone screen when recording.

4.2. Case Study Design

We recruited 20 participants (16 males and 4 females) from among Samsung Electronics
employees who were not otherwise involved in this project (mean age = 38.5 years).
Parkkola and Saariluoma asserted that 8–10 participants are sufficient to generate the
majority of action types [22]. We subsequently conducted a case study to measure the
affection of the user and the error rate during the object detection and tracking between
two situations: recording the video while looking at the mobile phone screen and recording
the video while viewing the real-world event. First, in regard to measuring the affection
scores, it is not easy to express affections verbally while using a product [23]. Therefore,
Desmet asserted that a tool for measuring nonverbal emotions is needed to measure the
affective responses in a satisfactory manner [24]. The author outlined [24] the advantages
and disadvantages of five methods that can measure emotions: self-assessment manikin
(SAM), emocards, expressing experiences and emotions (3E), feedback application, and
experience clip. Among these affection measurement methods, SAM is an effective method
for measuring subjective emotions using three axes: pleasure, arousal, and dominance [2].
Through the SAM approach, it is possible to collect quantitative data with a simple image
of the three axes. Therefore, we used SAM as a tool to collect quantitative affective data to
compare viewing the camera screen with viewing the real-world event. We also measured
the object detection and tracking error rates to compare the two situations.

4.3. Metrics
4.3.1. SAM

SAM was initially developed by Lang [25] to suggest a solution to the problems that
correspond to measuring emotional responses to advertising. SAM consists of pleasure,
arousal, and dominance (PAD) dimensions. It was designed as an alternative to the
sometimes cumbersome verbal self-reporting measures [25]. SAM measures each PAD
dimension with a graphical character on a nine-point scale [26] (Figure 7). We measured
the emotional responses after recording a video because we hypothesized that there is a
statistically significant difference between seeing the mobile phone screen and seeing the
real-world scene.

4.3.2. Measuring Error Rates

We measured error rates during object detection and tracking using two different
materials, as shown in Figure 8. We used a TV as a medium to present the object virtually.
For the purpose of object tracking, a target image shaped like a child moved quickly across
the TV screen for 15 s. For the material speed, we adopted and used the moving speed of
Microsoft PowerPoint’s animation function. The project was started under the assumption
that the user might miss the target object when recording while looking at the mobile phone
screen; hence, the error rate was measured during object tracking. In addition, we measured
the object detection error rates. During the object tracking session, the participants were
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asked to track the target object as soon as possible. For object detection, we designed a
simulated fireworks environment, and the target object appeared randomly for 1.5 s and
then disappeared. During object detection, the participants were asked to find the location
of the target object and record it.

Figure 7. Self-assessment manikin (SAM) [26]: (a) valence, (b) arousal (c) dominance.

Figure 8. Materials used for measuring error rates: (a) object tracking, (b) object detection.

4.3.3. Case Study Procedure

Figure 9 shows the case study procedure. At the instruction stage, the participants
were given a description of the purpose and procedures of the case study. They were then
asked to follow the child’s movements and record a video for 10 s using two types of mobile
phone: a regular mobile phone requiring the participants to look at the phone screen during
video recording; and a mobile phone equipped with the new camera application, where
the participants were asked to look at the real-world event while recording the video.
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Figure 9. Case study procedure.

Subsequently, the researchers asked the participants about their emotional responses
when using the mobile phone while recording the video. The participants were then asked
to conduct an object detection using a regular mobile phone and a mobile phone with
the new camera application. Four fireworks appeared successively for 1.5 s in the corner
of the screen, and the participants were instructed to find and record them. To avoid
the order having an effect on the outcome, the order of the videos was randomized for
both approaches: looking at the mobile phone screen and looking at the real-world event.
Finally, all participants were asked about their age and gender, and then dismissed.

5. Results

The results of the case study were analyzed from two perspectives: emotional re-
sponses and error rates (Figures 10–12).

Figure 10. SAM result during object tracking: (a) valence score, (b) arousal score, (c) dominance score.
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Figure 11. SAM result during object detection: (a) valence score, (b) arousal score, (c) domi-
nance score.

Figure 12. Error rate results during object detection: (a) object tracking error rates, (b) object detection
error rates.
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Emotional responses: We measured the emotional responses when conducting two
different experiments (object tracking and object detection) and compared them under two
conditions (using a regular camera app and using the new camera app). As described
in Figure 7, each emotional dimension consists of a nine-point scale [27]. On the valence
scale, the closer the participant response was to 1, the more pleasant the participant felt. In
addition, the closer the participant response was to 9 on the scale, the more unpleasant the
participant felt. On the arousal score scale, the closer the participant response is to 1, the
more excitement the participant expressed. By contrast, the closer the participant response
is to 9 on the scale, the more calm the participant felt. By contrast, on the dominance
score scale, the points are reversed. The closer the participant response is to 1, the more
dependency the participant expressed. In addition, the closer the participant’s response is
to 9, the more independent the participant felt. We statistically analyzed the SAM results.
First, for the object tracking valence score, the mean score when using the new camera
application was 1.5, as compared to a mean score of 8.0 for the regular camera application
(F = 304.20; p < 0.01). The object tracking arousal scores were 2.4 when using the new camera
application, as compared with a mean score of 7.4 when using a regular camera application
(F = 52.57; p < 0.01). For the dominance score, the mean when using a new camera
application was 8.5, compared to a mean of 1.9 when using a regular camera application
(F = 292.57; p < 0.01). The object tracking results indicate that the participants felt a sense of
pleasance, excitement, and independence when using the new camera application.

During the object detection experiment, for the arousal dimension, the mean score
when using the new camera application was 2.1, as compared to a mean score of 8.5 when
using a regular camera application (F = 157.54; p < 0.01). For the arousal dimension, the
mean score when using the new camera application was 2.6, as compared to a mean score
of 8.4 when using a regular camera application (F = 82.27; p < 0.01). For the dominance
dimension, the mean score when using the new camera application was 2.6, compared to a
mean score of 8.4 when using a regular camera application (F = 82.27; p < 0.01).

Error rates: For object tracking, the total duration of the child’s movement was 10 s.
We measured the time up to which the participants missed the target object during video
recording. In addition, for object detection, four firework images appeared, and we
measured the number of missed target objects during the video recording. The results
indicate that the mean amount of time the target object was missed when using a regular
camera application was 6.6, compared to a mean time of 0 when using the new camera
application (F = 272.25; p < 0.01). It turns out that it is extremely difficult to track the
movement of the target object. Obviously, the new camera application automatically tracks
the target object, and hence the missed time is 0. It can be assumed that the result is
associated with the SAM result. The participants did not feel pleasure, excitement, or
independence when using a regular camera application because they could not track the
target object well. The object detection error rate indicates that the mean number of missed
target objects using a regular camera application was 2.1, compared to the 0.9 mean number
of missed targets for the new camera application (F = 4.35; p = 0.05).

6. Discussion

Although many people record a video to memorize important moments, it is difficult
to see the entire real-world scene because they need to focus on the recording. We hypothe-
sized that people produce negative emotional responses when seeing the scene through the
mobile phone screen and concentrate on recording rather than fully enjoying the moments.
In general, the results indicate that there is a significant difference in emotional responses
between using a regular camera application and using the new camera application that
applied our novel technology.

Object Tracking: Most participants felt greater pleasure, more excitement, and more
independence when using the new camera application. This is associated with the error
rate results. In object tracking, the error rates of using a regular camera application were
significantly higher than those of using the new camera application. Recording a video
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using a regular camera application led the participants to focus on the video recording
itself rather than on watching the actual scene, and induced them to feel negative emotions.
By contrast, while video recording using the new camera application, the participants saw
the entire real-world scene and were confident that the new camera application tracked the
target object automatically, which induced more pleasurable, exciting, and independent
emotional responses for the participants.

Object Detection: The error rate results indicate that the error rate of using the regular
camera application was higher than that of using the new camera application, although the
difference was not statistically significant. In object detection, the participants felt more
pleasure, excitement, and independence when using the new camera application than
when using the regular camera application. Using the new camera application helped the
participants see the entire real-world scene. This indicates that the participants can use
a wider field of view when using the new camera application, which induced emotional
responses of greater pleasure, excitement, and independence. When the participants used
the regular camera application, they felt more negative emotions. It was assumed that
generating negative emotions from looking at the mobile phone screen might further shrink
the field of view. The research of Que et al. asserted that the field of view can be shrunk by
negative emotions [28]. Thus, although there was no significant effect in object detection
between the two situations, there was a significant difference in the emotional response.

Limitations and Future Studies: Although our new camera application can help
people see the real-world scene rather than through the mobile phone screen, there are
some limitations and a need remains for additional future studies. First, it is not necessary
to look at the mobile phone screen during video recording; however, the users must hold
the mobile phone at the same height as when using a regular camera app. The camera
requires a field-of-view expansion, especially in the up and down areas. In this research,
we could not consider the method to correct the user’s posture when using the new video
recording application even if their posture is wrong. Future works should include the
study of a user’s posture whilst holding a mobile phone during a video recording. Second,
it is difficult to recognize the user’s intentions indoors based only on the movement of
the head pose. We believe that the movement of the head pose might be acceptable
in object detection in outdoor situations such as concerts or musicals. There are some
limitations in this study. First, our case study was limited to an indoor experimental
laboratory. The indoor experiment indicated that there was no significant difference in
object detection between conditions. This is because the field of view was narrow in the
indoor activity. Second, the algorithms applied in the application should be improved. The
MOSSE algorithm is related to the filtering algorithm, and it cannot support a long-term
scene. Hence, we believe that eye-tracking technology can be applied in our new camera
application to avoid the above issues. In addition, the free-viewpoint video can be applied
in future work to improve the quality of recording a video [29]. This is because eye-tracking
technology and the free-viewpoint video help the system to recognize the users’ intention—
where they want to record. It can be assumed that it can supplement the weakness of
movement of the head pose and can easily detect the user’s intention. In addition, the
improved algorithms for object tracking suggested by the studies of Wang et al. [30] and
Voigtlaender et al. [31] can be applied in the application, and we expect those algorithms
to increase the velocity and stability of the application. Third, an “egocentric video” can
be applied in the system to monitor daily living through a user wearing the camera. Ortis
et al. and Funari et al. suggested that applying egocentric videos can observe the scene
flow from the user’s perspective and improve the system, allowing the user’s behaviors
and intentions to be understood [32,33]. Last, regarding metrics, we used SAM to measure
emotional responses by self-assessment. In order to measure the user’s responses correctly,
it requires a facial emotional response to detect the emotional change in real-time by using
a real-time machine learning algorithm [34,35].
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7. Conclusions

A smartphone supports various functions, and video recording using a camera ap-
plication has become one of its most important functions. The user saves memories and
moments by recording them on video. However, when the user records a video using a
smartphone, the problem is that they need to look at the scene through the mobile phone
screen rather than seeing the real-world scene. This is because the user feels the uncertainty
of recording a video. For example, they are not sure if the recording is good, and worry
about missing the target object. To overcome this, we developed a new camera applica-
tion that utilizes two main algorithms, MOSSE and HOG, to track the target object and
recognize the direction of the user’s head. It was assumed that the functions of the new
camera application will solve the anxiety of the users during video recording. In addition,
we believe that the approach provides more effective and positive emotion in the aspect
of a new user experience to the users while recording a video. To test the effectiveness of
the application from an affection standpoint, we conducted a case study and measured the
emotional responses and error rates as a comparison between using a regular and the new
camera applications. The results indicate that the new camera application induced feelings
of greater pleasure, excitement, and independence compared with the regular camera
application. Furthermore, it effectively reduces the error rates during video recording. In a
future study, it will be necessary to expand the up and down sides of the field of view and
apply eye-tracking technology to the new camera application.

Author Contributions: Conceptualization, D.P. and C.L.; methodology, D.P. and C.L.; software, C.L.;
validation, D.P.; formal analysis, C.L.; investigation, D.P.; resources, C.L.; data curation, D.P. and
C.L.; writing—original draft preparation, D.P.; writing—review and editing, D.P.; visualization, D.P.;
supervision, C.L.; project administration, C.L. funding acquisition, D.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I would like to record my appreciation to all people that involve in writing
this conference paper. First of all, my appreciation goes to my team, Think Tank Team in Samsung
Research. Especially, Leo Jun and Sajid Sadi supporting me until I complete this paper successfully.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, R.; Yu, C.; Yang, X.; He, W.; Shi, Y. EarTouch: Facilitating smartphone use for visually impaired people in mobile and public

scenarios. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019.
2. Nguyen, D.; Marcu, G.; Hayes, G.; Truong, K.; Scott, J.; Langheinrich, M.; Roduner, C. Encountering SenseCam: Personal

recording technologies in everyday life. In Proceedings of the 11th International Conference on Ubiquitous Computing, Orlando,
FL, USA, 30 September–3 October 2009.

3. O’Dea, S. Global Smartphone Sales to End Users 2007–2021. Available online: https://www.statista.com/statistics/263437
/global-smartphone-sales-to-end-users-since-2007 (accessed on 7 September 2020).

4. DCW Team. The Best Camera Phone in 2020: Which Is the Best Smartphone for Photography? Available online: https:
//www.digitalcameraworld.com/uk/buying-guides/best-camera-phone (accessed on 7 September 2020).

5. Bolme, D.; Beveridge, J.; Draper, B.; Lui, Y. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010.

6. Ross, D.; Lim, J.; Lin, R.; Yang, M. Incremental learning for robust visual tracking. IJCV 2008, 77, 125–141. [CrossRef]
7. Adam, A.; Rivlin, E.; Shimshoni, I. Robust fragments based tracking using the integral histogram. In Proceedings of the 2006

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006.
8. Zhang, X.; Hu, W.; Maybank, S.; Li, X. Graph based discriminative learning for robust and efficient object tracking. In Proceedings

of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007.
9. Babenko, B.; Yang, M.; Belongie, S. Visual Tracking with Online Multiple Instance Learning. In Proceedings of the 2009 IEEE

Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007
https://www.digitalcameraworld.com/uk/buying-guides/best-camera-phone
https://www.digitalcameraworld.com/uk/buying-guides/best-camera-phone
http://doi.org/10.1007/s11263-007-0075-7


Appl. Sci. 2021, 11, 4617 14 of 14

10. Han, K. Image object tracking based on temporal context and MOSSE. Clust. Comput. 2017, 20, 1259–1269. [CrossRef]
11. Pang, Y.; Yuan, Y.; Li, X.; Pan, J. Efficient HOG human detection. Signal Process. 2011, 91, 773–781. [CrossRef]
12. Chen, Y.; Chen, C. Fast human detection using a novel boosted cascading structure with meta stages. In IEEE Transactions on

Image Processing; IEEE: Piscataway Township, NJ, USA, 2008; Volume 17, pp. 1452–1464.
13. Xie, S.; Shan, S.; Chen, X.; Meng, X.; Gao, W. Learned local Gabor patterns for face representation and recognition. Signal Process.

2009, 89, 2333–2344. [CrossRef]
14. Jin, Z.; Lo, Z.; Yang, J.; Sun, Q. Face detection using template matching and skin-color information. Neurocomputing 2007, 70,

794–800. [CrossRef]
15. Lian, G. Pedestrian detection using quaternion histograms of oriented gradients. In Proceedings of the 2020 IEEE International

Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020.
16. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Newton, MA, USA, 2008.
17. Grabner, H.; Grabner, M.; Bischof, H. Real-time tracking via on-line boosting. In Proceedings of the British Machine Vision

Conference 2006, Edinburgh, UK, 4–7 September 2006; Volume 1, p. 6.
18. Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-backward error: Automatic detection of tracking failures. In Proceedings of the 2010

20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2756–2759.
19. Varfolomieiev, A.; Lysenko, O. An improved algorithm of median flow for visual object tracking and its implementation on ARM

platform. J. Real-Time Image Process. 2016, 11, 527–534. [CrossRef]
20. King, D. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758.
21. Holzmann, C.; Hochgatterer, M. Measuring Distance with Mobile Phones Using Single-Camera Stereo Vision. In Proceedings of

the 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012; pp. 88–93.
22. Parkkola, H.; Saariluoma, P. Would Ten Participants Be Enough for Design of New Services? In Quality and Impact of Qualitative

Research; Institute for Integrated and Intelligent Systems, Griffith University: Queensland, Australia, 2006; p. 86.
23. Park, H.; Lee, J.; Bae, S.; Park, D.; Lee, Y. A Proposal for an Affective Design and User-Friendly Voice Agent. In Interna-

tional Conference on Human Systems Engineering and Design: Future Trends and Applications; Springer: Cham, Switzerland, 2018;
pp. 249–255.

24. Desmet, P.; Overbeeke, K.; Tax, X. Designing products with added emotional value: Development and application of an approach
for research through design. Des. J. 2001, 4, 32–47. [CrossRef]

25. Lang, P. The Cognitive Psychophysiology of Emotion: Fear and Anxiety; Routledge: London, UK, 1985.
26. Bradley, M.M.; Lang, P.J. Measuring emotion: The self assessment manikin and the semantic differential. J. Behav. Ther. Exp.

Psychiatry 1994, 25, 49–59. [CrossRef]
27. Morris, J. Observations: SAM: The Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response. J.

Advert. Res. 1995, 35, 63–68.
28. Que, W.; Hakoda, Y.; Onuma, N.; Morikawa, S. The effect of negative emotion on eyewitness functional field of view. Shinrigaku

Kenkyu Jpn. J. Psychol. 2001, 72, 361–368.
29. Meyer, B.; Lipski, C.; Scolz, B.; Magnor, M. Real-time free-viewpoint navigation from compressed multi-video recordings. In

Proceedings of the 3D Data Processing, Visualization and Transmission (3DPVT), Padova, Italy, 19–21 June 2010; pp. 1–6.
30. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P. Fast online object tracking and segmentation: A unifying approach. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
31. Voigtlaender, P.; Krause, M.; Osep, A.; Luiten, J.; Sekar, B.; Geiger, A.; Leibe, B. MOTS: Multi-object tracking and segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
32. Ortis, A.; Farinella, G.; D’Amico, V.; Addesso, L.; Torrisi, G.; Battiato, S. Organizing egocentric videos of daily living activities.

Pattern Recognit. 2017, 72, 207–218. [CrossRef]
33. Furnari, A.; Farinella, G.; Battiato, S. Temporal segmentation of egocentric videos to highlight personal locations of interest. In

European Conference on Computer Vision; ECCV: Amsterdam, The Netherlands, 2016.
34. Mehendale, N. Facial emotion recognition using convolutional neural networks (FERC). SN Appl. Sci. 2020, 2, 446. [CrossRef]
35. Dashtipour, K.; Gogate, M.; Cambria, E.; Hussain, A. A novel context-aware multimodal framework for persian sentiment

analysis. arXiv 2021, arXiv:2103.02636 2021.

http://doi.org/10.1007/s10586-017-0800-0
http://doi.org/10.1016/j.sigpro.2010.08.010
http://doi.org/10.1016/j.sigpro.2009.02.016
http://doi.org/10.1016/j.neucom.2006.10.043
http://doi.org/10.1007/s11554-013-0354-1
http://doi.org/10.2752/146069201789378496
http://doi.org/10.1016/0005-7916(94)90063-9
http://doi.org/10.1016/j.patcog.2017.07.010
http://doi.org/10.1007/s42452-020-2234-1

	Introduction 
	Related Studies 
	Object Tracking Technology: Minimum Output Sum of Squared Error (MOSSE) 
	Face Detection Technology: Histograms of Oriented Gradients (HOG) 

	Methods 
	Object Tracking 
	Camera Follows the Direction of the User’s Face 
	Application Flow 

	Case Study 
	Hypothesis 
	Case Study Design 
	Metrics 
	SAM 
	Measuring Error Rates 
	Case Study Procedure 


	Results 
	Discussion 
	Conclusions 
	References

