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Abstract: To protect the copyright of the color image, a color image watermarking scheme based
on quaternion discrete Fourier transform (QDFT) and tensor decomposition (TD) is presented.
Specifically, the cover image is partitioned into non-overlapping blocks, and then QDFT is performed
on each image block. Then, the three imaginary frequency components of QDFT are used to construct
a third-order tensor. The third-order tensor is decomposed by Tucker decomposition and generates
a core tensor. Finally, an improved odd–even quantization technique is employed to embed a
watermark in the core tensor. Moreover, pseudo-Zernike moments and multiple output least squares
support vector regression (MLS–SVR) network model are used for geometric distortion correction in
the watermark extraction stage. The scheme utilizes the inherent correlations among the three RGB
channels of a color image, and spreads the watermark into the three channels. The experimental
results indicate that the proposed scheme has better fidelity and stronger robustness for common
image-processing and geometric attacks, can effectively resist each color channel exchange attack.
Compared with the existing schemes, the presented scheme achieves better performance.

Keywords: watermark; quaternion discrete Fourier transform (QDFT); tensor decomposition(TD);
pseudo-Zernike moments; MLS–SVR

1. Introduction

The modification of digital multimedia content has become easier, especially in terms
of images, and thus the issue of image copyright protection has attracted more attention.
Accordingly, image watermarking technology aims at providing a reliable way to alleviate
this problem related to the intellectual management. The robust watermarking method
can protect copyright of the image, and have two basic characteristics, namely, robustness
and fidelity. Since these two characteristics are contradictory, a good robust watermarking
method can balance the relationship between robustness and fidelity.

The robust watermarking technology is divided into the spatial and the frequency
domain. Compared with the spatial domain, the frequency domain watermarking-based
watermarking method can obtain much more watermarking robustness without a great
amount of image distortion. Therefore, the present study focuses on the image watermark-
ing schemes in the frequency domain.

Many frequency techniques have been presented for the robust watermarking, such as
discrete wavelet transform [1,2], discrete Fourier transform [3], discrete cosine transform [4,5],
quaternion discrete Fourier transform [6–8], and quaternion Hadamard transform [9].

Guan et al. [10] proposed a watermarking method that embedded a watermark into
the two-level DCT coefficients using a specified technology. Li et al. [11] developed
a robust watermarking scheme based on the wavelet domain. Due to the fact that the
above two methods are single transform that have deficiencies without using inherent
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correlations in the frequency domain, hybrid transform watermarking schemes achieve
better robustness and fidelity—many image-watermarking techniques combining several
transform methods have been proposed [12–14]. In [12], a new method was presented,
to hybrid SVD and integer wavelet transform to embed a watermark. Rastegar et al. [13]
proposed a mixed watermarking method based on SVD and FRAT. Lai and Tsai [14]
suggested a new image-watermarking method that blended a discrete wavelet transform
and singular value decomposition. The method embedded a watermark on singular value
of the host image’s DWT sub-bands.

From the above discussion, most image watermarking methods have been proposed
to embed a watermark in a gray image or a channel. With the wide application of color im-
ages, the watermarking schemes for color images can be proposed [2,6,8,15–21]. Chou and
Liu [2] proposed a new color-image watermarking algorithm based on wavelet transform
and significant difference, and embedded the maximum watermark information under
imperceptible distortion. Chen et al. [6] modulated at least one component of QDFT coeffi-
cients, and propagated the watermark to two or three RGB color channels. They used the
characteristics of QDFT to avoid watermark energy loss. A color image-watermarking algo-
rithm mingling with QDFT, LS-SVM and pseudo-Zernike moments has been proposed by
Wang et al. [8]. In [8], quaternion Fourier transform allows watermark information energy
to be propagated to all channels simultaneously to improve the robustness. Ma et al. [15]
developed a local quaternion Fourier transform for the color image-watermarking method.
The method used deeds of quaternion Fourier transform to improve watermark invisibility,
and considered an invariant feature transform to resist the geometric attacks of the image.
Kais Rouis et al. [16] proposed a method for image tampering detection, that has an
underlying hashing process based on estimation of image gradient, and the performance of
the method was compared to the use of QDFT method. Yang et al. [17] introduced a robust
digital watermarking algorithm for geometric correction using quaternion Exponential
moments. Li et al. [18] developed a color image-watermarking method based on QDFT
and quaternion QR. The host image was decomposed by QDFT and quaternion QR, and a
high-entropy block of the scalar part of the quaternion QR matrix was selected to embed
the watermark.

Over the last decade, various image-watermarking schemes based on tensor decompo-
sition have been proposed [19–21]. Tensor decomposition can maintain the internal struc-
ture of the digital image and avoids the loss of important image information. Xu et al. [19]
pointed out a new blind watermarking scheme for color images based on the tensor domain.
The scheme effectively considers the overall characteristics of color images, and propa-
gates the watermark information to the three channels of the color image through tensor
decomposition. Feng et al. [20] used Tucker decomposition to decompose the luminance
component, and then used adaptive dot matrix quantization index modulation to embed
the watermark in the tensor domain. Fang et al. [21] offered a watermarking scheme
based on Tucker decomposition, and this method transformed the multi-spectral image
and embedded the watermark into the element of the last frontal slice of the core tensor.

From the above methods, some embed a watermark in single transform
domain [6,8,15,17,19,20]. Besides, in [2], the methods did not take efficient account of
the correlation of frequency components. In [18], the scheme chose the high entropy block
to embed a watermark, the block is unstable, which makes the watermark more vulnerable
to attack. In a word, none of these methods takes full advantage of the three-dimensional
(3D) imaginary components of QDFT and the above methods suffer from watermark
energy loss [6].

Based on [18,19], the present paper proposes a hybrid transform color image water-
marking scheme based on QDFT and tensor decomposition. The scheme considers the
overall color image channels to improve attack resistance and decentralizes the distribution
of the watermark further, and then enhances robustness. Furthermore, an appropriate
strength is used to embed the watermark that satisfies the two conflicting factors, robustness
and fidelity. The main contributions of the paper are as follows:
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• This paper blends QDFT with tensor decomposition (TD) and implements overall
processing for a color image to embed a watermark.

• The scheme proposed in this paper synchronously spreads the watermark to three
RGB channels and enhances robustness performance.

• This paper proves the correlation of three imaginary components of QDFT, using the
QDFT’s components to structure a tensor.

The rest of this paper is arranged below. The relevant techniques are described in
Section 2. The embedding and extraction processes of watermarking are provided in
Section 3. The experimental part is provided in Section 4. Finally, the paper is summarized
in Section 5.

2. Relevant Techniques

In this section, tensor decomposition, quaternion discrete Fourier transform, pseudo-
Zernike moments, and multiple output LS-SVR are introduced.

2.1. Tensor Decomposition (TD)

Due to application requirements of high-order data, tensor decomposition (TD) is
used as a tool to analyse high-order data. TD is a high-order extension of matrix decom-
position in multi-linear algebra, and is an efficient technique used in many fields [22,23].
CANDECOMP/PARAFAC (CP) and Tucker decomposition are two particular ways to
implement tensor decomposition; the well-known Tucker decomposition is always selected
to implement TD.

Tucker decomposition can be considered to be higher-order extensions of the ma-
trix singular value decomposition (SVD). The Tucker decomposition was introduced by
Tucker [24] and has been successfully applied to data dimensional reduction, feature ex-
traction, tensor subspace learning, face image recognition [25], data compression, image
quality evaluation [26], noise reduction [27], and data analysis [28]. In the present paper,
Tucker decomposition is used to construct a watermark embedding domain.

A third-order tensor T ∈ RM×N×O is decomposed by Tucker decomposition, there
will be obtained three orthogonal factor matrices U1 ∈ RM×P, U2 ∈ RN×Q, U3 ∈ RO×R,
and a core tensor K ∈ RP×Q×R [24]. Figure 1 shows Tucker decomposition of a third-order
tensor T.

Figure 1. Tucker decomposition: a third-order tensor T decomposed by Tucker decomposition can obtain three orthogonal factor
matrices U1, U2, U3, and a core tensor K.

Each element in the core tensor K represents the degree of interaction between different
slices. The Tucker decomposition [22] is defined in Equation (1).

T ≈ K×1 U1 ×2 U2 ×3 U3 ≈ [[K; U1, U2, U3]]. (1)
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For each element of the original tensor T, the Tucker decomposition [22] is expressed
in Equation (2).

T ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

kpqru1
p ◦ u2

q ◦ u3
r . (2)

where P, Q, and R correspond to the number of column vectors of the factor matrices U1,
U2, and U3, respectively. P, Q, and R are generally less than or equal to M, N, and O,
respectively. The symbol ‘◦’ represents outer product between two vectors. where the
symbol ‘[[ ]]’ is a concise representation of Tucker decomposition given in [22]. The core
tensor K has the same dimension as tensor T, and it is expressed in Equation (3).

K ≈ T ×1 U1 ×2 U2 ×3 U3. (3)

K has full orthogonality, that is, any two slices of the core tensor K are orthogonal to each
other, and the inner product between the two slices are zero.

2.2. Quaternion Discrete Fourier Transform (QDFT)

Quaternion was introduced by Hamilton [29], and was a generalization of a complex
number. Quaternion [30] was regarded as a kind of hyper-complex, which can be repre-
sented by a four-dimensional complex number with one real part and three imaginary
parts, and is defined as follows:

φ = α + βi + γj + δk. (4)

where α, β, γ, and δ are real numbers, i, j, and k are imaginary operators with the
following properties:

i2 = j2 = k2 = i · j · k = −1. (5)

where the ‘·’ is the cross product, i · j = k, j · k = i, k · i = j, j · i = −k, k · j = −i, i · k = −j.
Sangwine [30] was the first to demonstrate formulations of quaternion discrete Fourier

transform (QDFT). Considering that QDFT does not satisfy the commutative law, QDFT
is divided into three types, namely, left-way transform FL, right-way transform FR [8],
and hybrid transform FLR [30]. The form of the left-way transform FL(λ, υ) is as follows:

FL(λ, υ) =
1√
X, Y

X−1

∑
x=0

Y−1

∑
y=0

e−θ2π( xλ
X +

yυ
Y ) f (x, y). (6)

where f (x, y) is a color image of size X×Y represented in the quaternion form as Equation (8).
The inverse QDFT (IQDFT) [8] is defined by,

f (x, y) =
1√
X, Y

X−1

∑
x=0

Y−1

∑
y=0

eθ2π( xλ
X +

yυ
Y )FL(λ, υ). (7)

In these definitions, the quaternion operator was generalized, and θ is any unit of pure
quaternion, where θ2 = −1. The operators i, j, and k are special cases of θ; in this paper,
θ = (i + j + k)/

√
3.

Color image pixels have three components, R, G, and B. Thus, they can be represented
in quaternion form using a pure quaternion. For example, the coordinates of a pixel is
(x, y) in a color-image can be represented as follows:

f (x, y) = R(x, y)i + G(x, y)j + B(x, y)k. (8)

where R(x, y) is the red component, and G(x, y) and B(x, y) are the green and blue compo-
nents of a color image, respectively.
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Using the Equations (6) and (8), we can obtain A(λ, υ) is a real component, C(λ, υ),
D(λ, υ), and E(λ, υ) are the three imaginary components in Equation (9).

FL(λ, υ) = A(λ, υ) + C(λ, υ)i + D(λ, υ)j + E(λ, υ)k. (9)

the inverse QDFT (IQDFT) can be represented as follows:

f (x, y) = F−L = AIQDFT + CIQDFT + DIQDFT + EIQDFT . (10)

where PIQDFT is the real inverse quaternion discrete Fourier transform of array P, and F−L
is the IQDFT.

2.3. Pseudo-Zernike Moment

Pseudo-Zernike moments [31] are very effective orthogonal rotation invariant mo-
ments and pseudo-Zernike moments are robust image feature descriptors. The moments
have several characteristics: (1) Redundancy of information expression is small. Since
the basis of the Zernike moment is orthogonal polynomial, the extracted features can
be guaranteed to have small correlation and redundancy. (2) Effectiveness of informa-
tion expression. It has been proven that the set of pseudo-Zernike moments can provide
a compact, fixed-length and computation effective representation of the image content,
and only a small fixed number of compact pseudo-Zernike moments need to be stored to
effectively characterize the image content. (3) Multilevel representation of information.
Pseudo-Zernike Moments effectively represent the contour of an image. The low-order mo-
ments and middle-order moments of pseudo-Zernike moments describe the overall shape
of an image, while the high-order moments describe the details of an image. The pseudo-
Zernike moments [32] of order n with repetition m for a 2-d continuous function f (x, y)
are expressed as follows:

Pnm = n+1
π

∫∫
x2+y2≤1 f (x, y)V∗nm(x, y)dxdy

= n+1
π

∫ 2π
0

∫ 1
0 f (p, µ)V∗nm(x, y)dpdµ.

(11)

where V∗nm(x, y) is a complex conjugate of Vnm(x, y) and n is any positive, m is any positive
and negative integer such that |m| < n. The variables x and y are such that x2 + y2 ≤ 1,
p =

√
x2 + y2, µ = tan−1( y

x ). Pseudo-Zernike polynomials [32] Vnm(x, y) of order n with
repetitions m are expressed as follows:

Vnm(x, y) = Rnm(x, y)ejmµ. (12)

where j =
√
−1. The pseudo-Zernike radial polynomial [32] Rnm(x, y) is defined as follows:

Rnm(x, y) =
(n−|m|)/2

∑
s=0

(−1)s (n− s)!(x2 + y2)(n−2s)/2

s!( n+|m|
2 − s)!( n−|m|

2 − s)!
. (13)

When f (x, y) is an image size of N× N, the pseudo-Zernike moments [33] are defined
as follows:

Pnm =
n + 1

λ

N−1

∑
x=0

N−1

∑
y=0

f (x, y)Rnm(x, y)e−jmµ

=
n + 1

λ

M−1

∑
x=0

N−1

∑
y=0

f (x, y)V∗nm(p, µ).

(14)
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where λ is the number of pixels in an image that are mapped into the unit circle.

p =

√
(2x− N + 1)2 + (N − 1− 2y)2

N
. (15)

µ = tan−1(
N − 1− 2y
2x− N + 1

). (16)

Figure 2 shows the information expression of pseudo-Zernike moments for an image.
It can be seen from the figure that the low-order moments of pseudo-Zernike moments can
be used to construct the contour of the image.

(a) ˆ(a) (b) ˆ(b)

(c) ˆ(c) (d) ˆ(d)

Figure 2. Information expression of pseudo-Zernike moments for images. (a–d) are the original
images. (̂a–d̂) are reconstructed images of (a–d) using pseudo-Zernike moments, respectively.

Considering global geometric distortions, we select six low-order pseudo-Zernike mo-
ments Zn,m, including Z0,0, Z2,2, Z4,4, Z8,8, Z9,9, and Z11,11 to reflect the global information
of a digital image. The pseudo-Zernike moments are calculated as parameters to correct
the geometric attack in the process of watermark extraction.

2.4. Multiple Output LS-SVR

Xu et al. [34] proposed the MLS–SVR network. Multiple output regression aims
to learn the mapping from a multiple input feature space to a multiple output space.
Although the standard formula of least squares support vector regression (LS-SVR) has
potential practicality, it cannot handle multiple output situations. Multiple independent
LS-SVRs are usually trained, thereby ignoring the potential (potentially nonlinear) cross-
correlation between different outputs. To solve this problem, Xu et al. [34] used the
multi-task learning method to propose a new machine learning network. The multiple
outputs function Ψ(χ) is

Ψ(χ) = Φ(
m

∑
i=1

l

∑
j=1

τ∗i,jK(χ, χj), 1, m) +
m
λ

l

∑
j=1

τ j∗K(χ, χj) + b∗T . (17)

where χ is the sample, τ is Lagrange multiplier, K(χ, χj) is the kernel function, b is param-
eter of the model, and b ∈ R, m is the number of output parameters, l is the number of
b, λ is positive real regularized parameter, λ ∈ R+, Φ(∗) is the replicate matrix function
(repmat), B = repmat (A,n) returns an array containing n copies of A in the row and column
dimensions. The size of B is size(A)*n when A is a matrix.

In our paper, the above-mentioned machine learning model is used for geometric
correction. The inputs of this model are six low-order features of Zernike moments [31],
and the outputs of this model are parameters of geometric distortion.
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3. Watermarking in Tensor Domain

To enhance the robustness for the color image watermarking scheme, this paper blends
QDFT and TD to embed a watermark. QDFT considers the correlation among color image
channels. Tensor decomposition fully utilizes the correlation among frequency components,
and watermark is scattering on frequency components further by the decomposition, so
tensor decomposition improves the robustness of the watermarking scheme. The scheme
utilizes the overall characteristics of RGB three channels that provides better embedding
performance than single-channel or each channel of a color image, the scheme is more
appropriate for color image watermarking.

QDFT can process the three channels of the color image as a whole instead of pro-
cessing them individually, thus avoiding unnecessary distortion and utilizing the inherent
correlations among the three channels of the color image. The three imaginary compo-
nents C, D, and E also have a strong correlation. Hence, three components can be used to
construct a tensor T. Figure 9 shows three imaginary components C, D, and E.

Tucker decomposition can maintain the internal structural relationship of an image.
The core tensor obtained by Tucker decomposition represents the main properties of
each slice of the original tensor and reflects the correlation among the slices. The core
tensor K is a compressed version of the original tensor T. Figure 3 shows the Tucker
decomposition flowchart.

Figure 3. Flowchart for Tucker decomposition.

We can use the method in the article [19] to embed the watermark in the core tensor K,
the maximum value of the core tensor is located in the upper-left corner, in the K(1, 1, 1)
position, as shown in Figure 3. The position is robust when the image has experienced
various attacks. Therefore, we modify the K(1, 1, 1) coefficient to embed the watermark.
Then, we show the three slices of the core tensor K, which is shown in Figure 4. The brighter
part in Figure 4 corresponds to a larger value of magnitude. It can be clearly seen that
K(1, 1, 1) is larger than the other position.

The above content briefly introduces the proposed watermarking scheme in this
paper. The rest of this section is arranged as below. This section introduces three contents,
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including correlation analysis among three imaginary components of QDFT, procedures of
watermark embedding, and procedures of watermark extraction.

Version May 18, 2021 submitted to Journal Not Specified 8 of 21

Frontal slices First slice map

Second slice map Third slice map

Figure 4. Tensor’s slices map

E. The imaginary three-dimensional frequency components have a strong correlation.184

The part proves the correlation among the imaginary three-dimensional frequency185

components of QDFT.186

Based on the analysis of its theory, the relationship of the three-dimensional fre-
quency components is proved. Most images have close correlation among the three
channels in RGB color space. The color channels are derived from the same physical
model, which determines that images not only have similarity among adjacent pixels,
but also have close correlation among the color channels of each pixel [33,34]. Then any
channels of the color image, red, green, and blue replaces another channel, such as red,
green, and green. We find the reconstructed image is still clear, and no blur distortion
occurs. Thus, the research fully shows that color image similarities among adjacent
pixels, and the three channels of each pixel have a close correlation. Furthermore, the
difference between the two color-channels are almost the same or very close, the results
are shown in Figure 5. C, D, and E all have red, green, and blue channels, these are

Figure 5. RGB channels combination and the difference between channels

Figure 4. Tensor’s slices map.

3.1. Correlation Analysis among Components of QDFT

A color-image is decomposed by QDFT to obtain four-dimensional frequency com-
ponents, including a real component A and three imaginary components C, D, and E.
The imaginary three-dimensional frequency components have a strong correlation. The part
proves the correlation among the imaginary three-dimensional frequency components
of QDFT.

Based on the analysis of its theory, the relationship of the three-dimensional frequency
components is proved. Most images have close correlation among the three channels
in the RGB color space. The color channels are derived from the same physical model,
which determines that images not only have similarity among adjacent pixels, but also
have close correlation among the color channels of each pixel [35,36]. Then, any channels
of the color image, red, green, and blue, replaces another channel, such as red, green,
and green. We find the reconstructed image is still clear, and no blur distortion occurs.
Thus, the research fully shows that color image similarities among adjacent pixels, and the
three channels of each pixel have a close correlation. Furthermore, the difference between
the two color-channels are almost the same or very close, the results are shown in Figure 5.
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Figure 5. RGB channels combination and the difference between channels.

C, D, and E all have red, green, and blue channels, these are combined by different
coefficients. We substitute Equation (8) into Equation (6) as follows:

FL(λ, υ) = i 1√
X,Y ∑X−1

x=0 ∑Y−1
y=0 e−θ2π( xλ

X +
yυ
Υ )R(x, y) +j 1√

X,Y ∑X−1
x=0 ∑Y−1

y=0 e−θ2π( xλ
X +

yυ
Υ )G(x, y)

+k 1√
X,Y ∑X−1

x=0 ∑Y−1
y=0 e−θ2π( xλ

X +
yυ
Υ )B(x, y).

(18)

FL(λ, υ) = i[Θ(Fr(λ, υ)) + θ • I(Fr(λ, υ))] + j[Θ(Fg(λ, υ)) + θ • I(Fg(λ, υ))]

+k[Θ(Fb(λ, υ)) + θ • I(Fb(λ, υ))]

= A(λ, υ) + C(λ, υ)i + D(λ, υ)j + E(λ, υ)k.

(19)

A(λ, υ) =
1√
3

sin(2π(
xλ

X
+

yυ

Y
)(R(x,y) + G(x,y) + B(x,y)). (20)

C(λ, υ) = i(R(x, y)cos(2π(
xλ

X
+

yυ

Y
) +

1√
3

G(x, y)sin(2π(
xλ

X
+

yυ

Y
)

+
1√
3

B(x, y)sin(2π(
xλ

X
+

yυ

Y
)).

(21)

D(λ, υ) = j(
1√
3

R(x, y)sin(2π(
xλ

X
+

yυ

Y
) + G(λ, υ)cos(2π(

xλ

X
+

yυ

Y
)

− 1√
3

B(x, y)sin(2π(
xλ

X
+

yυ

Y
)).

(22)

E(x, y) = k(
1√
3

R(x, y)sin(2π(
xλ

X
+

yυ

Y
) +

1√
3

G(x, y)sin(2π(
xλ

X
+

yυ

Y
)

+B(x, y)cos(2π(
xλ

X
+

yυ

Y
)).

(23)

where Θ(a + bi) = a, I(a + bi) = b, and i, j, and k are all orthogonal to each other.
On the other hand, the correlation of the three-dimensional imaginary components

is proved by data distribution characteristics. We randomly select image block Ir of size
16 × 16 in Lena, Table 1 shows the statistical characteristics of the RGB color space and
QDFT frequency space for Ir. Then, QDFT transformation operates on the image block Ir.
The distribution of C, D, and E are similar, the results are shown in Figure 6. The C(:, r) is
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the r column value of C component, D(:, r) is r column value of D component, and E(:, r)
is r column value of E component, where 1 ≤ r ≤ 16. It can be found from Table 1 that the
max value of C is 57,738, as shown in Figure 6a, the max value of first column is also 57,738.
So similarly, we can analyse D, and E from Table 1. Furthermore, the results point that the
correlation among C, D, and E does not change with the different sizes of the image.

From all the above proof, it appears that the three imaginary components C, D, and E
have a strong correlation. So, we can construct a tensor using C, D, and E.

(a) (b)

(c)

Figure 6. Distribution of three imaginary components. (a) The C′s value distribution of the image block Ir size is 16× 16. (b) The D′s
value distribution of the image block size Ir is 16× 16. (c) The E′s value distribution of the image block size Ir is 16× 16.

3.2. Procedures of Watermark Embedding

This part mainly introduces the specific process of embedding. Figure 7 shows a
flowchart of watermark embedding. The embedding process of watermark information is
as follows.
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Table 1. Distribution of different space components.

Different Space Components Images Max Value Min Value Standard Deviation Mean Value

Red 230 221 1.8845 225.5391

RGB color space
Green 141 119 3.9441 132.3320

Blue 133 94 8.4950 113.4961

C 57,738 −308.2789 3608.9 226

QDFT frequency
space D 33,877 −303.9132 2118.4 137

E 29,055 −190.0051 1817.4 125

Figure 7. Flowchart for watermark embedding.

Step1 : Obtain a color-image Io with dimensions of X×Y× 3, and divide the Io into
non-overlapping blocks of size 8× 8× 3. The numbers of the blocks are X×Y

8×8 .
Step2 : Construct a pure quaternion Fourier f (x, y) = R(x, y)i + G(x, y)j + B(x, y)k

using RGB channels of the color image block size of 8× 8× 3, and perform QDFT on the
each block to obtain A(λ, υ), C(λ, υ), D(λ, υ), and E(λ, υ) by Equation (6).
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Step3 : Use the three Fourier frequency components C(λ, υ), D(λ, υ), and E(λ, υ) of
each block to construct a third-order tensor T.

Step4 : Operate Tucker decomposition on each tensor T to obtain core tensor K,
and the numbers of K are X×Y

8×8 .
Step5 : Perform logistic mapping on all the core tensor K blocks, a bit of the water-

mark wo is embedded in K(1, 1, 1) of each core tensor, and the odd–even quantization
embedding technique is defined as follows:
if K(1, 1, 1) > 0, η = round(K(1, 1, 1)/Q)

K(1, 1, 1) =

{
K(1, 1, 1) i f w 6= mod (η, 2),

η ×Q + 0.6×Q i f w = mod (η, 2).
(24)

else K(1, 1, 1) = −1× K(1, 1, 1), η = round(K(1, 1, 1)/Q)

K(1, 1, 1) =

{
− K(1, 1, 1) i f w 6= mod (η, 2),

− (η ×Q− 0.6×Q)i f w = mod (η, 2).
(25)

where Q is the quantization step, that is, the watermark embedding strength, round(∗) is
the rounding operation, and mod(∗) is the modulo operation.

The value of K(1, 1, 1) is made up of positive and negative numbers. If the traditional
odd–even quantization watermarking rule is used, the error rate is relatively high. When
K(1, 1, 1) < 0, the traditional rule is K(1, 1, 1) = −1× (η ×Q− 0.5×Q), an error occurs
when extracting the watermark. For example, K(1, 1, 1) = −1000, Q = 23, w = 1,
mod (1000/23) = 43, and K′(1, 1, 1) = −1 × (43 × 23 − 0.5 × 23) = −977.5. When
extracting the watermark, η = 43, mod(η, 2) = 1, and w = 0. This result is inconsistent
with w = 1 when embedding. Hence, the paper replaces 0.5 with 0.6 to avoid this error.

Step6 : Perform inverse logistic mapping on all the core tensor K′ blocks with the
watermark, and then obtain tensor T′ using Equation (1).

Step7 : Obtain the three imaginary components C
′
(λ, υ), D

′
(λ, υ), and E

′
(λ, υ) from

T′ using frontal slice way in Figure 7, and then construct F
′
(λ, υ) = A(λ, υ) + C

′
(λ, υ)i +

D
′
(λ, υ)j + E

′
(λ, υ)k .

Step8 : Perform inverse QDFT transformation on F′(λ, υ) by using Equation (7)
to obtain f ′(x, y) = R′(x, y)i + G′(x, y)j + B′(x, y)k. Finally, construct a watermarked
color image using R′(x, y), G′(x, y), and B′(x, y), that is, the three RGB channels with
the watermark.

3.3. Procedures of Watermark Extraction

This part mainly introduces the specific procedures of watermark extraction, as shown
in Figure 8. The extracting process of the watermark is as follows. The watermarked image
is geometrically rectified before the watermark is extracted. The technique of geometric
correction can improve the watermark correct extraction rate, as shown in Table 8.

Step1 : Obtain the Zernike moment of the watermarked image Iw with size X×Y× 3,
the six-order features of Zernike moments as the input of trained machine learning net-
work MLS–SVR to correct geometric distortion, and the corrected watermarked image I

′
w

is obtained.
Step2 : Divide the corrected watermarking image I

′
w into blocks, with a block size of

8× 8× 3, the numbers of the blocks are X×Y
8×8 .

Step3 : Construct a pure quaternion fw(x, y) = Rw(x, y)i + Gw(x, y)j + Bw(x, y)k
using the three RGB channels of the color image block. We can obtain a real component
Aw(λ, υ) and three imaginary components Cw(λ, υ), Dw(λ, υ), and Ew(λ, υ) of each color
block by QDFT.
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Figure 8. Flowchart for extracting watermark.

Step4 : Construct a third-order tensor Tw with dimensions of 8× 8× 3 using Cw(λ, υ),
Dw(λ, υ), and Ew(λ, υ) of each color block.

Step5 : Operate Tucker decomposition on Tw and then the core tensor Kw is obtained.
Step6 : Perform logistic mapping for all core tensor Kw blocks, and then, the odd–even

quantization technique is used to extract a bit watermark in position Kw(1, 1, 1) of each Kw,
the specific extraction rules are as follows:

K(1, 1, 1)=|(K(1, 1, 1)|, η = round(K(1, 1, 1)/Q),

K(1, 1, 1) =

{
w = 1 i f mod (η, 2) = 0,

w = 0 i f mod (η, 2) = 1.
(26)

where ‘| ∗ |’ is the functions abs.
Step7 : Obtain complete watermark we through the odd–even quantization rule.

4. Experimental Results and Discussions

This paper uses the peak signal to noise ratio (PSNR) [37], normalized correlation
coefficient (NC) [9], and bit error rate (BER) [19] to evaluate the visibility and robustness
of the watermarking scheme. PSNR is used to describe the fidelity performance, and NC
is used to describe the watermarking robustness. MSE [19] is the mean square error of the
data, which is expressed below:

MSE =
1

X×Y

X−1

∑
x=0

Y−1

∑
y=0

(Io(x, y)− Iw(x, y))2. (27)

The PSNR is defined as follows:

PSNR = 10 log10
2552

MSE
. (28)
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where Io(x, y) is the host image, Iw(x, y) is the watermarked image. In addition, the bit
error rate (BER) and normalized correlation (NC) are used to evaluate the performance in
terms of the watermark’s robustness, BER and NC are defined as follows:

BER =
∑H

h=1 ∑G
g=1 we(h, g)− wo(h, g)

H × G.
(29)

NC =
∑H

h=1 ∑G
g=1 we(h, g)× wo(h, g)√

(∑H
h=1 ∑G

g=1(we)2)
√
(∑H

h=1 ∑G
g=1(wo)2)

(30)

where w0(h, g) is the original watermark, we(h, g) is the extraction watermark. w(h, g) is a
watermark of size H × G.

This section illustrates the performance of the scheme through a series of experiments,
and only representative experimental results are given herein. The five parts include the
QDFT transform and inverse QDFT transform, the geometric expression of pseudo-Zernike,
optimal watermark strength, comparing the scheme with the existing schemes, and the
forecasting performance of the MLS–SVR network.

4.1. QDFT Analysis

A color image can be transformed into four real numbers A, C, D, and E using a
QDFT real transform. Figure 9 shows the 24bit color image and its red, green, and blue
channels. The results of the 24bit color image that was operated by quanternion discrete
Fourier transform are shown in Figure 10.

Original image Red channel

Green channel Blue channel
Figure 9. The color image Lena and its red channel, green channel, and blue channel.

A C D E
Figure 10. The QDFT results of the real component A, the imaginary component C, the imaginary
component D, and the imaginary component E.

After inverse QDFT transform using Equation (7), AIQDFT is negligible and can be
approximately regarded as 0, this result also conforms to Equation (8). When the input
is a pure quaternion, the result of IQDFT can also be approximately regarded as a pure
quaternion. When reconstructing the image, CIQDFT , DIQDFT , and EIQDFT are as red R

′
,

green G
′
, and blue B

′
channels, respectively. The experiment verifies that the difference

between the reconstructed image and original image is approximately 10−10. The difference
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is very small, thus allowing the image to be almost completely restored. The reconstituting
red channel R

′
, green channel G

′
, and blue channel B

′
are shown in Figure 11.

AIQDFT R
′

G
′

B
′

Figure 11. The IQDFT results of the real component AIQDFT , red channel R
′
, green channel G

′
,

and blue channel B
′
.

4.2. Geometric Characteristics of Pseudo-Zernike Moments

An image I with size 512× 512 is selected to obtain the Zernike moment feature [31].
The two parameters n and m of pseudo-Zernike moments, are in the order of an orthogonal
polynomial. The values of (n, m) are (0, 0), (2, 2), (4, 4), (8, 8), (9, 9), and (11, 11). Three
kinds of attacks are performed on the image I, including translation, scaling, and rotation.
Specifically, five pseudo-Zernike moment features of images are shown in Figure 12,
including the original image Io, the image shift twenty pixels to the left I20, a two-times
magnified image I2, rotating the image thirty degrees counter-clockwise I−30, and rotating
the image thirty degrees clockwise I30.

When the image is subjected to different geometric attacks, the differences in pseudo-
Zernike moments are relatively obvious. Hence, pseudo-Zernike moments can remarkably
represent the global geometric features of the image.

Version May 18, 2021 submitted to Journal Not Specified 14 of 21

After inverse QDFT transform using Equation (7), AIQDFT is very small and can268

be approximately regarded as 0, this result also conforms to Equation (8). When the269

input is a pure quaternion, the result of IQDFT can also be approximately regarded270

as a pure quaternion. When reconstructing image, CIQDFT , DIQDFT , and EIQDFT are271

as red R
′
, green G

′
, and blue B

′
channels, respectively. The experiment verifies that272

the difference between the reconstructed image and original image is approximately273

10−10. The difference is very small, thus allowing the image to be restored nearly. The274

reconstituting red channel R
′
, green channel G

′
, and blue channel B

′
are shown in Figure275

11.276

4.2. Geometric Characteristics of Pseudo-Zernike Moments277

An image I with size 512× 512 is selected to obtain the Zernike moment feature278

[32]. The two parameters n and m of pseudo-Zernike moments, are in the order of an279

orthogonal polynomial. The values of (n, m) are (0, 0), (2, 2), (4, 4), (8, 8), (9, 9), and (11,280

11). Three kinds of attacks are performed on the image I, including translation, scaling,281

and rotation. Specifically, five pseudo-Zernike moment features of images are shown in282

Figure 12, including original the image Io, the image shift twenty pixels to the left I20,283

magnifying images two times I2, rotating the image thirty degrees counter-clockwise284

I−30, and rotating the image thirty degrees clockwise I30.

Test image Distribution of pseudo-Zernike moments

Figure 12. Pseudo-Zernike moments expression
285

When the image is subjected to different geometric attacks, the difference of pseudo-286

Zernike moments are relatively obvious. Hence, pseudo-Zernike moments can remark-287

ably represent the global geometric features of the image.288

4.3. Choose Watermark Embedding Strength289

To balance the robustness and fidelity, the part discusses the embedding strength Q.290

We set the watermark embedding strength Q ∈ (10, 1, 500).291

Figure 13 shows that the value of Q is increasing, PSNR is decreasing, and NC292

is increasing, indicating that the robustness of the watermark is improved, whereas293

the image quality is deteriorated. When the value of Q reaches 410, NC is close to 1,294

and the watermark can be completely extracted without being attacked. To balance295

robustness and fidelity, Q = 1,160, PSNR = 40.413. Figure 14 shows the PSNR of the eight296

watermarked images, consisting of "Lena", "Castle", "Baboon", "Barbara", "Boats", "Fruit",297

"Airplane", "Houses", and a watermark w0.298

It can be seen from the Figure 14 that PSNR is larger than 40, that indicates our299

scheme has better fidelity.300

Figure 12. Pseudo-Zernike moments expression.

4.3. Choose Watermark Embedding Strength

To balance the robustness and fidelity, the part discusses the embedding strength Q.
We set the watermark embedding strength Q ∈ (10, 1, 500).

Figure 13 shows that the value of Q is increasing, PSNR is decreasing, and NC is
increasing, indicating that the robustness of the watermark is improved, whereas the
image quality is deteriorated. When the value of Q reaches 410, NC is close to 1, and the
watermark can be completely extracted without being attacked. To balance robustness and
fidelity, Q = 1160 and PSNR = 40.413. Figure 14 shows the PSNR of the eight watermarked
images, consisting of “Lena”, “Castle”, “Baboon”, “Barbara”, “Boats”, “Fruit”, “Airplane”,
“Houses”, and a watermark w0.
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It can be seen from the Figure 14 that PSNR is larger than 40, which indicates our
scheme has better fidelity.

Figure 13. Distribution of PSNR and NC.
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Figure 14. PSNR of watermarked images.

4.4. Comparison with Existing Schemes

To further describe the performance of the proposed color image watermarking
scheme, we compare the proposed with exiting schemes [2,6,8,18,19]. The results are
shown in Tables 2–4. Considering that the QDFT and TD hybrid transform allow the
watermark energy to propagate synchronously in the three color image channels, when
a channel is replaced by another channel of a color image, the watermark can still be
extracted. Hence, we test the effect of re-composition for RGB channels, which is regarded
as a special attack in this paper. The specific experimental results are shown in Table 5.
Beyond that, this part also conducts an attack experiment, attack types including noise,
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filter, geometric, compression processing, and blur attack. Our scheme has many types of
anti-attack and has strong anti-attack ability. The proposed scheme is very robust against
noise, filtering, compression processing, blurring, and geometric attacks, and effectively
resists each color channel exchange attack.

Table 2. Comparison of proposed scheme with existing schemes in the field of imperceptibility.

Schemes DWT [2] QDFT [6] QDFT [8] QDFT + QQR [18] Tensor [19] QDFT+ Tensor
PSNR 40.02 37.717 40.24 40 39 40.413

Table 3. BER under the image processing attacks and geometric attacks.

Schemes Cropping Low-Pass Filtering Noise Adding Median Filtering
DWT [2] 0.0687 0.041 0.2895 0.0592

QDFT +Tensor 0.04 0.0148 0.2307 0.0546

Schemes Histogram
Equalization Average Filtering Gaussian Noise Median Filtering Salt Peppers JPEG (50) Gaussian Filtering

QDFT [8] 0.0103 0.0237 0.0522 0.0134 0.0146 0.0283 0
QDFT +Tensor 0.01015 0.0208 0.0515 0.0122 0.011 0.06 0.0113

Schemes Motion Blur Average Filtering Gaussian Noise Median Filtering Salt Peppers JPEG (70) Gaussian Blur
Tensor [19] 0.103 0.0945 0.1912 0.0122 0.2532 0.2021 0.0557

QDFT +Tensor 0.0376 0.0934 0.0386 0.0549 0.011 0.0596 0.0098

Table 4. NC under the image processing attacks.

Schemes Gaussian Filter Motion Blur Average Filtering Gaussian Noise Median Filtering Salt Peppers JPEG(60)
QDFT [6] 0.963 0.986 0.94 0.948 0.955 0.916 0.932

QDFT +Tensor 0.8487 0.9865 0.9443 0.9555 0.9552 0.9187 0.9412
Schemes Gaussian Filter Average Filtering Gaussian Noise Median Filtering Salt Peppers JPEG(90)

QDFT+QQR [18] 0.9473 0.9766 0.8789 0.8811 0.9396 0.99955
QDFT +Tensor 0.9487 0.9843 0.9535 0.9052 0.9487 0.9806

Table 5. Attack performance.

Attacks NC Extraction Watermark

Median filter(3× 3) 0.9831

Salt pepers (0.01) 0.8187

Jpeg (90) 0.9806

Motion blur (0.01) 0.9805

Gaussian noise (0.01) 0.9522

Gaussian filter(3× 3) 0.8487

Average filter(3× 3) 0.9443
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Table 5. Cont.

Channel Combination NC Extraction Watermark

0.9531

0.9687

0.9692

0.9499

0.9427

0.9478

4.5. Forecasting Performance of MLS–SVR

To train the MLS–SVR model, we use the six-order features of pseudo-Zernike mo-
ments as the input parameters [38,39], and the scaling, rotation, and translation parameters
of the image subjected to geometric attack as output parameters. This experiment in-
cludes 114 training and 30 test samples. The training prediction errors of scaling, rotation,
and translation are 0.0069, 0.0052, and 0.0066, respectively. Table 6 shows pseudo-Zernike
moments of five random images from training samples. The forecasting results of MLS–SVR
are shown in Table 7.

Table 6. The low-order pseudo-Zernike moments among different images.

Images (0,0) (2,2) (4,4) (8,8) (9,9) (11,11)

118.470609 10.63005807 6.520395 10.98115 9.578474 7.771317

108.780323 3.04755966 5.046498 19.59498 10.36659 6.043941

108.975487 4.159313509 5.991258 19.21224 11.81801 5.619767

112.288917 4.159313509 5.991258 11.92792 11.70199 5.490806

83.8989961 23.28029947 8.259456 7.213874 8.284153 1.593389

The experimental results show that the prediction accuracy of the MLS–SVR network
remains relatively high. The corrected watermark image can improve the accuracy of
watermark extraction. When the watermarked image is subjected to rotation, translation,
and scaling attacks with correction, the watermark extraction bit error rate is shown in
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Table 8. It can be seen from Table 8 that BER is very small, which indicates the watermark
can be be almost completely extracted after correction.

Table 7. The MLS–SVR prediction performance for test image.

Rotation 11 16 21 24 25 33 38 45
prediction 12.9 16.09 21.87 24.65 24.44 32.36 38.82 45.16
Translation 15 16 17 18 24 27 46 56
prediction 13.39 16.45 16.22 17.43 24.28 28.01 44.71 55.95

Scaling 0.2 0.5 0.9 1.2 1.5 1.6 1.8 2
prediction 0.18 0.51 1.11 1.31 1.42 1.49 1.77 1.89

Table 8. The BER under geometric transformation correction.

Geometric Attacks Rotation Translation Scaling
Average BER after correction 0.0902 0.01221 0.0364

5. Conclusions

In this paper, we propose a color image watermarking scheme based on QDFT and
TD. In our scheme, the watermark is not embedded directly on the QDFT coefficients
but rather on the element of the TD domain. The scheme fully considers the overall
characteristics of a color image, and fully utilizes the correlation of QDFT components to
the structure tensor. The hybrid QDFT and TD transform provides better performance
than a single transform, has better fidelity, and is more appropriate for color images.
The hybrid transform allows the watermark energy to propagate synchronously to the
three RGB channels rather than one channel. Hence, the robustness of the watermarking
scheme can be greatly improved, and higher-precision color image information can be
maintained. Beyond that, this paper uses the MLS–SVR network and pesudo-Zernike
moment features to rectify geometric attacks for improving the accuracy of extraction.
Moreover, after analyzing the characteristics of the rounding operation, this paper provides
an improved odd–even quantization embedding rule, which improves the accuracy of
watermark extraction. Our scheme is resistant to a specific attack—when a channel is
substituted by other channels, the watermark can be almost completely extracted. However,
the paper divides RGB channels into 8× 8× 3 blocks, which cannot resist a cropping attack.
Image processing [40,41] could affect the accuracy of watermark extraction.

In future work, we hope that the scheme can be resistant to cropping attack and use
fuzzy image preproccessing to further improve accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

QDFT Quaternion discrete Fourier transform
TD Tensor decomposition
MLS–SVR Multiple output least squares support vector regression
DCT Discrete cosine transform
SVD Singular value decomposition
DWT Discrete Wavelet transformation
FRAT Finite radon transform
PSNR Peak signal to noise ratio
NC Normalized correlation coefficient
BER Bit error rate
QR Quadrature rectangle decomposition
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