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Abstract: The paper reports on the radio propagation characteristics of Massive MIMO. The realistic
measurements are conducted in typical outdoor LOS and NLOS scenarios with the bandwidth of
100 MHz at the carrier frequency of 1.4725 GHz. In this paper the channel propagation in spectrum
and space domains are investigated by employing the high-precision parameter estimation algorithm.
Based on big data technology, we propose the multipath clustering algorithm and subinterval
programming to bring deeper insight into the cluster evolution over the antenna array axis. The
works focus on the correlation, and the result is in accordance with the theory of the cluster’s visible
region. Furthermore, a non-WSSUS (non-wide sense stationary uncorrelated scattering) channel
analytical model is established. The whole research work aims to contribute the radio channel
modeling of the 5G Massive MIMO communication system.

Keywords: channel modeling; clustering algorithm; Massive MIMO; multipath cluster; non-WSSUS;
radio channel

1. Introduction

Massive multiple input and multiple output (Massive MIMO), as a key technique for
the 5th generation (5G) wireless communications systems, presents a highly promising
solution to meet the demanding requirements of spectrum efficiency and the energy
efficiency [1–3]. The full capacity gain is mostly based on the assumption that asymptotic
orthogonality of the subchannels, which requires that the channel fading coefficients satisfy
independent and identical distribution. However, huge numbers of element antennas have
proven to be double-edged, a great opportunity but also challenging the next generation
of communication systems. New propagation characteristics are inevitably brought into
wireless channel modeling due to the dense deployment of so many antenna elements. Both
element number and physical size of the antenna array lead to the sub-channel correlation,
which deeply influences the cooperative work of the Massive MIMO antenna element [4].

In recent years, research has spotlighted the state-of-the-art channel models. Among
them, non-stationary modelling draws more attention. Lund University conducted mea-
surements in 2.6 GHz, and the received power showed some discontinuous jump points
in the dimensions of the antenna array, indicating the inconsistency of the elements [5].
In the outdoor macro-cell, three-dimensional spatial parameters of azimuth angle and
elevation angle are extracted based on the realistic field data, and from the viewpoint of
scatterer clusters, the correlation between clusters is fully proven [6]. In high-speed railway
channel modeling, nonstationarity, as a significant requirement, is pointed out, and an
angular spread-dependent model is proposed to describe the relationship between the
angular dispersion and the spatial correlation [7,8]. Then, in the outdoor measurement
of 64-array antenna in 3.3 GHz, the results of the angle power spectrum and the power
delay profile show that the channel does not meet the stationary condition in the spatial
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domain nor in the frequency domain [9]. In another measurement, with 128 antenna arrays,
the non-stationary characteristic of the channel is further proven due to the influence of
multipath distribution [10]. Then, in a series of measurements at 2, 4 and 6 GHz band-
width, the non-stationary characteristic of the channel is also confirmed by the correlation
bandwidth [11]. Some works cast light on visible clusters and visible regions, based on
which a novel Massive MIMO model is proposed. Even more, the contribution of non-
stationarity to the sum and rate of upstream channels is proved by numerical analysis [12].
In these measurements most multipaths behave in clusters. Here, a cluster is considered
as a set of multipath components with similar power, delay and spatial characteristics. So
far, many traditional models have been based on clusters, such as Saleh-Valenzuela [13],
COST2100 [14], 3GPP SCM [15] and WINNER [16].

The traditional geometric model is mathematical based, which would go some way to
weaken the universality. The dependence of the channel parameters on the measurement
data result in that the channel model can only be applied to the cases with high statistical
similarity with the measurement environment. Once the changes happen, the original
model will degrade or even fail to work. Therefore, a multi-path clustering algorithm
based on big data technology is introduced into the Massive MIMO wireless channel
modeling with the development of information technology, which can help us to determine
the random channel parameters through model training, which means, based on the real
measurement data, we can quickly and effectively construct the channel model.

It is an inevitable trend that statistics-based big data technology is widely accepted in
wireless channel modeling. With the enlargement of the antenna array scale, the improve-
ment in channel bandwidth, the subdivision of transmission scenarios and the expansion of
information scale, the in-field data volume shows an “exponential growth”. It is impossible
to mine huge amounts of channel measurement data solely by human labor. Big data
technology is a new technology that deals with massive and complex data and extracts
valuable information quickly. With the development of large data technology, the appli-
cation of mathematical algorithms on massive data to classify data types, analyze data
regularity, and extract data relationships can help people explore correlations in complex
data quickly and effectively. Machine learning, as a branch of artificial intelligence, is a key
method of large data clustering. In recent years, the theory of artificial intelligence has been
developed rapidly. The method of machine learning is helpful to enhance the adaptability
of the channel model. Suppose that we have the framework of the model, the only work
we need to do is to train the model with mass in-field data. Before that, we can develop the
training criteria, such as MMSE (minimum mean square error). Good performance and
practicability are important in channel modeling, which is meaningful to reduce the cost
of re-modeling.

Massive MIMO wireless channel modeling takes a step forward by applying the
methods of big data and machine learning. Compared with the logical ways, such as
deduction and reasoning, the method of big data pays more attention to interconnections
of data instead of causal analysis. It is also different from the traditional modeling method
using geometric statistics. The geometric mode is usually based on a certain physical
framework, then the model parameters are estimated using a large number of measurement
data. Big data technology is a serial operation of searching, comparison and clustering,
aiming to reveal the inner connections among massive data sets. It makes the model
more complex to take the spatial dimension into consideration during channel modeling.
However, if we catch the key item of the correlation, which is verified to exist in entries
of the channel matrix, it is possible to lower the dimensions. Usually we use statistical
and theoretical deduction methods to determine model parameters, while the big data
method estimates these variable parameters through model training. It means a large
number of in-field measurement data are employed to train the model based on a given
model framework. Then, the optimal parameter set can be calculated, and the model can
be determined. The innovative application of big data technology in channel modeling has
attracted wide attention in academia.
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The main contributions of this paper include realistic channel measurement, param-
eter estimate based on big data technology and state-of-the-art modelling. We focus on
correlation and non-stationary characteristics. First, an account is given to describe the
measurements campaign. The platform is equipped with a scalable virtual 128-element
antenna array, the raw measurement data are recorded, and the channel impulse response
(CIR) is illustrated. Next, a series of high-resolution estimation algorithms are employed.
We carry out the data analysis based on big data technology. Then, a state-of-the-art chan-
nel model is presented based on the antenna correlations over the array. Last, we draw
the conclusions.

The paper is organized as follows: in Section 2 the Massive MIMO channel mea-
surement campaign and primary signal processing are introduced. Then, in Section 3 the
clustering algorithm is outlined, and the channel parameters extracted from the measured
snapshots is demonstrated. We also establish the non-stationary Massive MIMO channel
model. Finally, in Section 5, we summarize our contributions and draw conclusions.

2. Channel Measurement
2.1. Measurement System Setup

The investigations were based on channel measurements in an open-air hall at Beijing
Jiaotong University. In the campaign we employed a 128-element virtual uniform linear
antenna array (ULA) and uniform cylindrical antenna array (UCA) at the base station (BS),
which was realized by moving an omni-directional antenna in 128 fixed positions of a
rail track. A 2-element virtual antenna array was employed at the MS (mobile station).
Element spacing was chosen to be a half of a wavelength in order to reduce the mutual
coupling effect, which deteriorates the performance of the angle of departure (AOD)
estimation algorithm.

We placed the BS antenna array on the 6th floor platform, with a height about 30 m
from the ground, and set the receive equipment in the hall, at eight different MS positions.
Figure 1 shows the measurement scenario. In Figure 1a, TX means the BS, where the
antenna array lies in, and the RX1 to RX8 represent the eight spots of MS pointed out with
eight red stars. Figure 1b,c provides views of the measurement scenario in-field.
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The complex-valued Zad-Off Chu (ZC) sequence worked as the excitation signal,
which performs well in orthogonality and constant amplitude. A vector signal generator
(R&S SMBV100A) was used as the transmitter. A pair of bi-conical antennas worked as the
elements of the virtual antenna array at the BS and MS side. The antenna was assumed
to provide an ideally omnidirectional radiation pattern in the azimuth plane, so idealized
equal gain can be obtained in the H-plane. The data collector was composed of an RF
down-converter, a high-speed digitizer card and a data storage unit. The rubidium clock
trained by the GPS was used to maintain the time synchronism of the measurement system.
At remote end the accurate synchronization performance was promised by a fiber unit to
transmit the frequency standard. The measurement system is shown in Figure 2.

Figure 2. The measurement system setup.

The measurement environment was a typical outdoor micro-cell scenario. This config-
uration can represent a mobile station surrounded by large obstacles. Only a few operators
were allowed in field, so we can assume that the channel is time-invariant. The signal
bandwidth was 100 MHz, which was up-converted to radio frequency of 1.4725 GHz. The
measurement parameters are listed in Table 1.

Table 1. Measurement system specifications.

Parameter Quantity

Central frequency 1.4725 GHz
Bandwidth 100 MHz

Transmit power 25 dBm
Excitation signal Zad-Off Chu sequence

Code length 2047
Tx antenna number 128
Rx antenna number 2
Tx antenna height 30 m
Rx antenna height 2 m

2.2. Signal Model

Describing a wireless communication system, the received signal can be decomposed
into a large number of multipath signals. Furthermore, multipath can be classified and
merged to form clusters according to the correlation of parameters. For a given multipath,
the propagation can be characterized by power, delay, polarization, Doppler velocity,
departure angle, arrival angle and so on. Considering a 3D (3 dimension) model, the angle
of elevation should also be included. Therefore, we can treat the cluster as a multipath set
that the multipath parameters in the set are similar.



Appl. Sci. 2021, 11, 5083 5 of 15

The different locations of the antenna element determine the inconsistency of the
scattering environment. As a result, the observed incident waves were different from the
antennas, whether in quantity, in energy, or in angle of radio waves, as shown in Figure 3.
In this case, the correlation coefficient between different antenna elements in the correlation
matrix will be inconsistent [17].

Figure 3. Nonstationary of Multipath over the Antenna Array.

Although the Massive MIMO system’s complexity and difficulty will be increased
because of the non-stationarity in the array domain, some methods still can be employed
to reduce the complexity. In the far-field conditions, we can divide the antenna elements
into several adjacent subsets according to their spatial positions, so that the antenna arrays
in each subset are compact enough; that is, we can assume that the large-scale fading of all
elements in the subset is the same as that of the target user [18]. With this assumption, the
channel in each subset satisfies the generalized stationary non-correlation. In this way, we
can use the traditional modeling theory to carry out channel modeling based on stationary
characteristics in a subset window, which satisfies the stationary modeling conditions.
Then the subset combines to the whole channel model, which can accurately reflect the
characteristics of Massive MIMO channel.

Considering a system with transmit antennas of M and single antenna at the receiver,
for the traditional MIMO channel, the small-scale propagation matrix can be expressed as

H =


h11 h12 · · · h1M
h21 h22 · · · h2M

...
...

...
hK1 hK2 · · · hKM

 (1)

where hkm presents the sub-channel impulse response between the m-th antenna element
and the k-th user.

Given the transmit signal xm(t) = a0 ejωtδ(t), then we have

hkm(t) =
Lkm

∑
l=1

al ej[ω(t−τl)] (2)

where al is the amplitude of the l-th incident signals, and Lkm is the total number of
multipath. τl is the time-delay. Here, we assume that the antenna has a uniform radiation
pattern and ignore the influence of Doppler shift.
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Usually, we introduce correlation matrix R to research the correlation, which can be
obtained by the long-term observations of channel matrix H.

R = ivec
(

E
(

vec(H) · vec(H)H
))

(3)

where vec(·) presents the operator of converting Matrix to Vector, and ivec(·) presents the
inverse operation.

According to Kronecker’s channel model, we have

H = R1/2
Rx ·W · R

1/2
Tx (4)

where W presents the matrix that the entry obeys independent identical distribution
complex Gaussian distribution with zero-mean. RRx and RTx are the correlation matrixes
on BS and MS, respectively. We only consider the correlation characteristic on the base
station; thus, we have the correlation matrix on user ends as RRx = IN×N . Here IN×N
represents the unit diagonal array. Thus, the K×M-dimensional channel matrix can be
expressed as

H = W · R1/2
Tx (5)

Assuming that the system model of Massive MIMO is frequency-flat and slow fading,
the channel matrix H is usually modelled as independent and identically distributed with
mean value of zero and variance of one. According to the Marchenko–Pastur Law, each
row of the Nrx × Ntx dimensional channel matrix H is zero mean, the variance is 1/Nrx,
and the eigenvalue distribution of the matrix HH H and the matrix HHH is a deterministic
distribution of convergence. At that time, the channel gradually “hardened”, and the
channel information was mainly concentrated on the main diagonal. That is to say, the
value of the diagonal elements tends to one gradually, while the value of the non-diagonal
elements tends to zero gradually. The phenomenon of channel hardening comes from the
fact that the variance of the mutual information grows very slowly relative to its mean, or
even shrinks as the number of antennas grows, which has been proven true [19,20] and
illustrated in Figure 4.

Figure 4. Power distribution of channel correlation matrix.

Based on the above analysis, the correlation matrix RTx can be expressed in the form
of local stationary autocorrelation. As an example, we assumed that the base station had
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32 antenna array elements. If the channel is stationary, the correlation matrix can be shown
in Figure 5a. If the channel is non-stationary, the correlation matrix can be divided into
several stationary regions. The Massive MIMO non-stationary channel can be composed
by several stationary sub-channels. As shown in Figure 5b.

Figure 5. Stationary and nonstationary channel correlation matrix. (a) The WSSUS correlation matrix; (b) the non-WSSUS
correlation matrix.

3. Channel Model

The following sections demonstrate the results of data measured on Massive MIMO
radio channels. These investigations aim to unfold the critical correlation features from the
experimental data.

According to the measured results, the correlation fading characteristics of antenna
elements were different. Therefore, it was globally non-stationary on the Massive MIMO
antenna array. As to the closely placed elements, it is easily understood that the fadings
were similar due to the same shadow regions they were located in. Thus, the sub-channel
can be considered as stationary covered by the same shadow regions.

Generally, there are two methods to map out the stationary intervals. The first is the
averaging method. According to the empirical model, the antenna elements can be divided
into several subsets. Here, every subset is composed of a fixed number of elements. This
method operates easily, which ignores the impact of specific propagation scenarios, but as a
trade-off, it’s at low accuracy. The second is the method of inspection. That is to say, we can
estimate the parameters of the multi-path cluster according to the measurement results [21],
then we extract the visible region of the multi-path cluster, furthermore grouping the
antenna into a subset to ensure the channels are stationary within the groups. Here, a
group of antenna elements is covered by a visible region in sight of radio propagation.
As a result, the boundaries of the visible region are formed, and we should note that
groups are irregularly divided. The method of inspection is based on the division of the
antenna stationary subinterval, which greatly depends on the operator’s observation and
judgement. In addition, the larger the physical size of the array is, the more difficult the
actual operation.

In order to overcome the limitations of these methods, we introduce the automatic clus-
tering algorithm, named ECD (element channel distance) algorithm based on the traditional
MCD (multipath component distance) algorithm applied in mathematics [22–24] and clus-
tering algorithm applied in pattern recognition [25,26]. Clustering is to classify data objects
into multiple subsets according to certain rules. Considering the special characteristics
of radio channels, we develop the traditional algorithms by introducing the continuous
coverage of the visible area of the cluster on the dimension of the extended antenna array.
Objects in the same subset have higher similarity, while objects in different subsets have
lower coupling. Distance algorithm is the most popular criterion in multi-path clustering
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to model the radio channel. The multi-path with similar distances is divided into the same
cluster. In practice, the distance refers to the compound distance of multi-path parameters,
at the same time, the contributions of those parameters are fully considered in the way of
the weighting coefficient. This is a scientific and highly efficient clustering method based
on machine learning and artificial intelligence.

First of all, we should understand that the goal of clustering is to divide all mea-
surement data into several subsets, which required high correlation within them and
low coupling between them. As a result, subsets or so-called clusters are composed of
multipaths, which have similar elements, including energy, delay, angle, etc.

Secondly, we should make clear that the foundation of clustering has a rich supply of
data, which is not only raw data in the measurement but also the channel parameters of
each antenna estimated from certain algorithms, SAGE algorithm as example, and the pa-
rameters including power, delay, angle and others. All these are called preprocessed data.

Finally, the stationary subinterval programming is carried out, which is to divide the
original set of preprocessed data into some classes with similar attributes by using certain
criteria. During this process, the traditional observation by a human is replaced by the
machine searching. Then, some potential links between data are now uncovered with the
aid of the precise algorithm.

The steps of the programming algorithm are shown in Figure 6.

Figure 6. Flow chart of clustering and subinterval programming algorithm.
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In the first step, KPowerMeans algorithm is used to cluster the multipath in the sub-
channel of the antenna array. This algorithm is one of the most commonly used clustering
algorithms in the field of machine learning. It belongs to the iterative clustering algorithm,
which is simple and scalable.

The algorithm takes the PDP of the multipath as the initial object, searches for the
peaks on the curve as the initial cluster core, and determines the number of clusters
{ρi|i = 1, · · · , k}. Then the MCD can be calculated as

dMCD(i, j) =
∣∣ρi −mj

∣∣ (6)

where {mi|i = 1, · · · L} is the parameter set of multipath components. The parameters of
multipath components and cluster cores include power, relative delay, departure angle,
arrival angle, etc. Considering three-dimensional space, the angle information should
include azimuth angle and elevation angle, so we have

ρi ∈ [τi, ϕAOA,i, θAOA,i, Pi] (7)

Then, the distance in the time-delay domain can be expressed as

MCDτ,ij = ς

∣∣τi − τj
∣∣

∆τmax
(8)

where ∆τmax = maxij
{∣∣τi − τj

∣∣}, and ς means the weight coefficient of time-delay. τi and τj
are the delay of the current cluster core and the current multipath component, respectively.

The distance in the angle domain is

MCDθ,ij =
1
2

∣∣∣∣∣∣
 sin φi cos ϕi

sin φi sin ϕi
cos φi

−
 sin φj cos ϕj

sin φj sin ϕj
cos φj

∣∣∣∣∣∣. (9)

In order to reduce the complexity, (9) can be simplified as

MCDθ,ij =
1
2

∣∣∣∣( sin φi
cos φi

)
−
(

sin φj
cos φj

)∣∣∣∣ (10)

It should be noted that the distance in the angle domain should be calculated for the
departure angle and arrival angle, respectively.

The final MCD distance is the RMS model of the weighted sum of time-delay and
angle domain distance as follows:

dMCD(i, j) = Pj

√
||MCDAOA,ij ||2 + ||MCDAOD,ij ||2 + ||MCDτ,ij ||2 (11)

At the same time, we can calculate the matrix of distance as

Dk×L =


d(1, 1) d(1, 2) . . . d(1, L)
d(2, 1) d(2, 2) . . . d(2, L)

. . . . . . . . . . . .
d(k, 1) d(k, 2) . . . d(k, L)

 (12)

The minimum distance method is used to search for a most optimal group. The
process can be summed up as a linear programming problem expressed as

D = min
k
∑

i=1

L
∑

j=1
pijd(i, j)

s.t.
k
∑

i=1
pij = 1,

L
∑

j=1
pij = 1

(13)
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where
{

pij
}

k×L is a two-dimensional power matrix.
According to the programming results, the multipath is assigned to the nearest cluster,

and the cluster cores are recalculated again. An iteration procedure is used to make sure
that all the multipath components are divided into corresponding clusters.

Taking the outdoor LOS scenario as an example, the measured PDP of the antenna
sub-channel is plotted as shown in the curve in Figure 7a. The average noise power
and signal threshold are counted according to the estimation algorithm of bottom noise,
which is identified by the horizontal real line segment in the figure. The signal implicates
fluctuating nature. Peaks and valleys can be seen on the curve. According to the theory
of radio wave propagation, the top points represent the arrival of multipath components
with strong energy. Among all the multipath components, due to spatial scattering, we
assume that the LOS path exists. It is obvious that the time-delay is the smallest and
the power is the strongest as to the LOS component. Therefore, based on the traditional
multi-path peak search algorithm, we can reasonably set the number of clusters as the
number of peak points on the PDP, and we define the cluster core as the corresponding
multipath component of the peak points. Please refer the marked points in Figure 7a for
the core location.

Figure 7. Cluster distribution of antenna element channel. (a) The PDP of the channel between No. 1 transmit and No. 1
receive element; (b) multipath spatial distribution.

The inherent flaw of KPowerMeans algorithm is that the random hypothesis of the
initial cluster core might cause the classification result to converge to the local optima rather
than the global optimal solution. This problem can be overcome by using the method of
peak searching on PDP. Determining the number of clusters and the initial cluster core
by measurement data can greatly improve the effectiveness and reliability of the results.
However, the peak search algorithm only considers the distribution of multipath in the
time-delay domain, so the classification result is necessary rather than sufficient. On the
other hand, the best advantage of the KpowerMeans algorithm is that the contributions of
the spatial parameters are fully considered. By analyzing the results of multipath in the
spatial domain, the AOA and AOD parameter pairs are obtained, and the MCD distance in
the delay domain and angle domain are calculated synthetically to cluster the multipath.

Taking the outdoor LOS scenario as example, the results of the final multipath cluster-
ing are shown in Figure 7b. In the figure, the blue solid dot represents the spatial distribu-
tion of multipath in the sub-channel of array element, and the red solid dot represents the
clustering result, namely the statistical distribution of cluster core. The implementation of
the MCD algorithm is simple, and the clustering performance is optimized compared with
the traditional algorithm.
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In the second step, the ECD algorithm is used to program the stationary subinterval of
the antenna array based on the cluster visible region theory. Because of obstacles, the radio
reaches only several elements of the antenna array; that is, only some elements of the array
are covered by some scatterer. It can be assumed that the radio wave coming from the same
scatterer is coincident. Therefore, the stationary region can be defined. In the process of
programming the stationary subinterval in the array dimension, it is key to determine the
similarity. The distance criterion is still used here, and the distance of the correlation matrix
is introduced to the work. The accuracy of measurements directly impacts the model. The
matrix of distance is the metric to the similarity between two correlation matrices. The
expression of the distance formula of the correlation matrix is [18]

dcorr(Θ1, Θ2) = 1− tr{Θ1Θ2}∣∣∣∣∣∣Θ1

∣∣∣∣∣∣ f

∣∣∣∣∣∣Θ2

∣∣∣∣∣∣ f

(14)

Here {Θi|i = 1, 2, . . .} is the autocorrelation expression of sub-channel matrix. tr{·} is
the trace of matrix, and ||· || f is the Frobenius norm.

The search process of the stationary subinterval is actually the process of extracting the
similarity of the correlation matrix. The algorithm assumes that there is no overlap between
different stationary subintervals. We mainly focus on the influence of local scatterers on
the link from the user to the base station. In this way, the signals from the user arrive at
some or all elements of the antenna array after scattering. For the case where only some
elements are under the coverage of the scatterer, the visible region of the scatterer only
covers some elements, as shown in the above Figure 3.

According to Cauchy Schwartz inequality, as to matrices A and B, we have

|〈A, B〉|2 ≤ ||A ||2||B ||2 (15)

Here A = cB is the necessary and sufficient condition for the equation to hold. A, B
means the inner product, which can be decomposed by the singular value as below:

Θ1Θ2 = U1Λ1UH
1 U2Λ2UH

2 (16)

Ui and Λi represent the eigenvector matrix and the eigenvalue diagonal matrix of Θi,
respectively. The value tr{Θ1Θ2} tends to zero, which means that there is only one module
factor difference between matrices. Contrarily, if the value tends to 1, this means that the
matrices are independent, that is, the matrices are extremely different.

Equation (14) can be rewritten as the following deformation forms

dcorr(Θ1, Θ2) = 1− 〈vec{Θ1}, vec{Θ2 }〉
||vec{Θ1}||2||vec{Θ2}||2

(17)

Therefore, it can be assumed that the fading of radio clusters from the same scatterer is
stationary, so that the stationary region q can be defined, including the number of antenna
elements rq. Here, the threshold of the correlation coefficient is 0.75. It is considered that the
two correlation matrices are nonstationary if dcorr(Θ1, Θ2) > 0.75. Note that we suppose
there is no overlap between regions, so there are

Q

∑
q=1

rq = M (18)
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Then, the non-stationary Kronecker correlation matrix is

RTx = bdiag
[
Θ1, Θ2, · · · , ΘQ

]
=


Θ1 0

Θ2
. . .

0 ΘQ


M×M

(19)

Where bdiag[·] is the operator of matrix diagonalization, which is realized by arrang-
ing the vector element to the diagonal position of the target matrix. Θq is the rq × rq square
matrix.

The cluster correlation distance can be calculated by a stepping rate of 1 on the array,
and the M-element distance vector can be obtained.

dEMD = [dcorr,1, dcorr,2, · · · , dcorr,M] (20)

If dcorr,k is larger than the preset threshold, and there are (q− 1) values within
k = 1, 2, . . . , M, then the correlation matrix is divided into matrix blocks with number q. In
each matrix block with dimension rq, the cluster correlation distance is recalculated with
stepping rate of 2, and a

(
rq−3

)
element vector is obtained. The entry of matrix block

larger than the threshold is searched, and the block is further split. This is repeated until
the matrix dimension is smaller than the stepping rate. Finally, every splitting block is the
stationary subinterval of the correlation matrix.

In fact, the ECD algorithm is a linear projection algorithm, which aims to reduce
dimensions in high-dimensional data space, such as a vector set of power, delay and
angle in our application. By summarizing the linear weighted channel parameters, the
parameters are converted to a one-dimensional object. Then, employing classification and
clustering methods, to maximize the distance between classes, the correlation matrix is
constructed. At the same time, the transformation can easily be performed forward and
backward. In the mapping space, the algorithm will maximize the variance of the object,
so that the projection of all samples can be separated as much as possible to complete the
subset programing. Therefore, the ECD algorithm inherits the good performance of every
parameter and simplifies the calculation. This method indicates that we can make up the
whole through parts.

In the above example, the multipath distribution on the array domain is shown in
Figure 8a. By employing the ECD algorithm, the visible regions mapped on the array
domain are shown in Figure 8b.

In measurements, there are many multipaths within a cluster, and the processing of
clustering will consume computing resources. As to the channel matrix, these correlated
multipath components in the cluster will consume array degrees of freedom in some degree.
Due to the high correlation of multipaths in a cluster, the harm to the channel gain caused
by the clustering method is limited and acceptable. Therefore, modeling the Massive
MIMO channel, we can consider the multi-path within a cluster as a single path to simplify
the process. Here, the statistical method is replaced by searching technology to initialize
the cluster core, ignoring the influence of dispersion. This method greatly simplifies the
extraction of channel parameters, and it does not lose the accuracy of the model. The
most important thing is that it greatly improves the efficiency of modeling. Although the
correlation-based channel model ignores the small-scale dispersion characteristics of the
channel in time, space and frequency domain, it can help us grasp the key items in the
process of modeling. In practical applications, such as wireless communication system
simulations at both the link level and system level, the Monte Carlo method is used to
randomly generate multiple groups of model parameter samples on the user end. The
randomness of the sample distribution can be used to simulate the small-scale dispersion
characteristics and overcome the shortcomings.
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Figure 8. Cluster distribution over the antenna array axis. (a) The PDP over the antenna array; (b) multipath cluster
distribution over the antenna array.

We also take the outdoor LOS scenario as an example. According to the above steps,
we can extract the multipath cluster parameters to model the channel. The finished channel
correlation matrix is shown in Figure 9. In the graph, the block effect of correlation matrix
can be clearly observed.

Figure 9. Channel correlation matrix modelling.

In the above analysis process, we only consider the situation that the transmitter is
equipped with multi-antenna and the receiver holds a single antenna. Thus, we can only
obtain the correlation matrix of the transmitter. However, because of the independence of
the transmitter and the receiver, the correlation matrix of the receiver can also be obtained
by the same method. Finally, according to the Kronecher modeling method, we can obtain
the system matrix of Massive MIMO wireless channel as H = R1/2

Rx ·WR1/2
Tx

4. Discussion

Compared with the mostly traditional model, the channel model based on the antenna
stationary subinterval has the following advantages:

(1) The channel satisfies the linear characteristic. The clusters have a linear superposition
characteristic just the same as the multipath components.
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(2) The cluster parameters are independent. Time delay, power and angle of different
clusters can be described by random distribution.

(3) The intra-cluster multipath components can be simplified as a single synthetic signal.

Then, what are the basic conditions? Firstly, the channel is non-stationary. This lies in
the non-point source radiation, and so sub-channel parameters of the antenna elements are
random. The extraction of channel parameters discussed earlier has fully proven it.

Secondly, theories prove that similar elements of the multi-antenna system are correla-
tive and shift invariantly in far-field propagation [27]. The condition of far-field is quite
easy to satisfy, due to the similar fading, and then the stationary interval in the antenna
array domain is supposed to be held.

5. Conclusions

In this paper, the correlation effects of antenna elements on a Massive MIMO system
in 3-D space are investigated. The measurement is conducted in an outdoor scenario,
and a ULA and UCA antenna topology are employed with bandwidth of 100 MHz at
1.4725 GHz. We focus on the in-field data analysis and modeling method of Massive MIMO
non-stationary channel. In the method, KPowerMeans algorithm is used to achieve efficient
clustering of sub-channels. The ECD distance measure algorithm is used to program the
stationary interval of clusters in an antenna array. Note that the KPowerMeans algorithm is
a primary clustering of multipath components in the antenna channel, and the ECD distance
measure algorithm is a secondary clustering based on the distance matrix, which increases
the constraint requirements of continuous distribution in some or all antenna intervals.

All in all, it is of great significance to accurately recognize the channel propagation
characteristics and to properly establish the channel propagation model as to the framework
design of 5G and the future large-scale multiantenna system. As we know, propagation
characteristics of typical scenarios can be obtained by channel measurements, which
helps in the establishment of the channel model in the given scenario. On the contrary,
once we have a good grasp of the channel model, this can guide the construction of
wireless communication systems, such as antenna layout design, transmit power allocation
and network optimization. Therefore, it is necessary to measure and study the Massive
MIMO communication system to establish the channel model in typical scenarios. It is
important to research and develop communication systems to meet the requirements of
5G communication.
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