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Abstract: A steam generator serves as a power generation equipment that uses the expansive power
of steam to generate electricity. The startup process of a steam generator plays an important process
in a power plant to adjust its electricity generation in response to changes in load demand. As
renewable generation plants increase, the levels of variability in electricity production increase. Fast
startups become instrumental as they enable traditional power generation plants to provide the
quantity of electricity missing when variable renewable energies cannot satisfy the load demand.
The drum boiler is one of the main pieces of equipment involved in the startup process of a steam
generator. However, if the startup process is carried out too fast, excessive thermal stresses may
occur, thus provoking damage to the components of the drum boiler. This paper proposes a dynamic
optimization methodology to synthesize operating procedures that minimize the startup time of
the drum boiler while avoiding the excessive formation of thermal stresses. Since valve operations
influence the time-varying behavior of the steam, dynamic simulation is needed in order to evaluate
the operating procedure. The proposed algorithm is based on two important elements of two
metaheuristic algorithms: the acceptance probability of the simulated annealing algorithm and the
tabu search memory structures. A case study evaluates the proposed approach by comparing it
against results previously published in the literature.

Keywords: hybrid metaheuristic optimization; simulated annealing; tabu search; steam generation
process; thermal power plants; synthesis of operating procedures

1. Introduction

Conventional thermal power plants (CTPP) play a key role to deal with one of the
biggest challenges of the energy sector: the reliable and efficient supply of electricity.
The CTPP provides backup energy to the electric power system to balance the variable
electricity demand and the intermittent generation of non-conventional renewable energy
sources such as wind and solar energy. When coping with normal demand variations or
when variable renewable energies cannot meet the demand, CTTP generation has to be
adjusted employing lower or greater production of electricity (reduction or increase of load)
respectively. This adjustment is also applied by doing start-ups and shutdowns of equip-
ment in the power plants. In this context, rapid startups and shutdowns improve the opera-
tional flexibility of the power plant by adding to it competitive advantage [1–4]. Therefore,
the optimal design of operating profiles is a research area with high potential [5–8].

A thermal power plant often uses a steam generator to take advantage of the heat
obtained from its main electricity generation process. In a steam generator, water is heated
and then turned into steam that spins a turbine, which is connected to a generator that
produces electricity.
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To create high-temperature, high-pressure steam in the steam generator, fuel energy is
converted to heat, which is transferred to the drum boiler.

Figure 1 shows a typical drum boiler. As explained by Aström and Bell [9] the drum
boiler has a reservoir for water and steam with a water inlet and a steam outlet at the top.
The drum stores the steam generated in the water tubes and acts as a phase-separator for
the steam-water mixture. The difference in densities between hot and cold water along
with the gravity contributes to the accumulation of the “hotter” water and saturated steam
into the drum boiler.

Figure 1. Schematic representation of the drum boiler.

The drum boiler has the potential to improve the competitiveness of a thermal power
plant by reducing its startup time. The rate at which a boiler can be brought up to a normal
operating state depends on its size, and the length of time it has been shut down. In general,
the larger and colder a boiler, the longer it takes to startup.

The startup is carried out by operating the control valves in ways that the steam
flow rate and pressure increase up to their normal setpoints when the steam pressure and
combustion control system can be switched over to automatic.

Although fast startups improve the competitiveness in an open power market, if a
startup is carried out too fast, excessive thermal stress can occur in the drum boiler compo-
nents [10]. Therefore, feasible operating procedures must consider the physical constraints
of the drum boiler that ensure its integrity.

Operating procedure synthesis (OPS) can be described as a planning problem, where
actions and their sequence must be found in order to take the process from an initial state
to a goal state, such as in startups and shutdowns [11]. Additionally, transient operations
can take advantage of OPS in terms of both safety and cost [12].

Despite the focus on startup-time reduction, current approaches [9,13,14] fail shortly
because they can only obtain startup curves of the drum boiler state variables but cannot
identify the corresponding control actions (operations) and their sequence.

This paper is structured as follows: Section 2 contains the literature review. Section 3
the problem description. In Section 4 the proposed approach is presented. Next, the case
study is described in Section 5. Then, in Section 6 the experiments and results are presented.
Finally, Section 7 presents the conclusions and future work.

2. Literature Review

OPS can be considered as a search for a set of sequenced primitive operations that
transform a plant system from an initial state to a pre-specified goal state through a series
of intermediate states. These primitive operations must be carried out in such a way that
no violations are made of any relevant process or mechanical, safety, and environmen-
tal constraints.



Appl. Sci. 2021, 11, 5085 3 of 19

Most attempts to solve OPS problems have relied on simplified process behavior
models [12]. In contrast to this, simulation-based planning approaches make use of detailed
dynamic behavior models of the process and a mathematical representation of quantitative
constraints embedded within a rigorous dynamic optimization framework.

Regarding drum boiler transient operations, a lot of work has been done regarding the
optimization of steam generation in a drum boiler from a procedural point of view. Aström
and Bell [9] developed a nonlinear physical model with a complexity that is suitable for
dynamic optimization and OPS. The model is based on physical parameters for the plant
and can be easily scaled to simulate any power plant drum boiler.

Franke et al. [15] developed a nonlinear dynamic model of a drum boiler based on
Aström’s physical model, using the Modelica language. Their model had three control
inputs in terms of feedwater flow rate, heat supply, and steam outlet. They solved a
dynamic optimization problem using a sequential quadratic programming (SQP) algorithm.
Using this approach, the startup time could be reduced by 30%.

Kruger et al. [16] proposed a quadratic programming optimization approach to de-
termine the optimal values of steam pressure and steam temperature in a startup process.
Their model considered hard constraints such as control bounds and stress levels for the
drum and header. They concluded that their optimization model could minimize both fuel
consumption and startup time.

Belkhir et al. [17] investigated the minimization of the startup time of a drum boiler.
Their proposed startup strategy defined the initial and goal states in terms of steam mass
flow rate and the internal pressure of the drum. The startup process was formulated as an
optimal control problem that minimized a quadratic objective function under physical and
operational constraints. The physical constraints were related to the structural integrity
of thick-walled components due to higher thermal stresses. The optimization problem
was solved by combining a framework developed on the JModelica environment and the
interior-point optimizer algorithm (IPOPT). Their results were compared with the optimal
start-up trajectories in Franke et al. [18], and the optimized profiles reached desired states
in a shorter time without violating the operational and physical constraints.

Zhang et al. [19] reported the dynamic analysis of the steam and water system of the
natural circulation boiler using the environment of MATLAB/Simulink. They proposed a
boiler model based on the work of Aström and Bell with specific parameters to simulate
the dynamic analysis of the steam water system. They solved the model using the ode45
algorithm, which is based on the fourth-order Runge–Kutta and Dormand–Prince methods.
The boiler startup aimed at saving water and fuel.

Nevertheless, these works have limited applicability since they were solutions to
specific problems. For instance, in many cases, the simulation model is embedded within
the optimization tool and it is not possible to scale them for more complex problems.
Other works propose approaches using commercial tools for the coupling of a simulation-
optimization system. The drawback is that these tools operate as black boxes, with limited
information about the modeling assumptions. A third group of contributions, despite
considering thermal stress evaluation, seek to minimize startup times regardless of how
the plant must be operated to achieve a given goal state.

To overcome the limitations of previous works, this paper proposes a scalable approach
for the synthesis of operating procedures that minimize the startup time of the drum boiler
while avoiding the excessive formation of thermal stresses. The proposed approach is
based on a dynamic optimization methodology with a hybrid-metaheuristic algorithm that
generates the optimal startup procedure of a drum boiler. The proposed algorithm is based
on two important elements of two metaheuristic algorithms. Namely, the search zone in the
cooling element from the simulated annealing algorithm and the efficient computational
performance provided from the tabu search algorithm memory structures. A case study
evaluates the proposed approach by comparing it against results previously published in
the literature.
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3. Problem Description

The problem consists of finding the control valve actions and their sequence to mini-
mize the time needed to take the system from an initial state to a goal state while satisfying
mechanical and process constraints. This problem is formulated as a dynamic optimization
problem, in which the objective function is stated in terms of the internal drum pressure
and the outlet steam flow rate. To ensure mechanical integrity, the thermal stress must be
kept within specified limits.

The drum boiler is a multi-input and multi-output system whose state variables that
change over time with a non-linear behavior [20]. The drum boiler system (DBS) can be
divided into two main subsystems, a water circulation loop, and a heat energy system [21].
The DBS is responsible for the production and regulation of saturated steam (main steam),
which is sent to the superheaters to produce superheated steam which drives the steam
turbine and generates electricity. The saturated steam amount and quality are controlled
by adjusting the steam generator water level, steam flow, feedwater flow, and heat supply.
The steam drum, mud drum, the downcomer water wall tubes, and the riser water wall
tubes are the main parts of the water circulation loop. Whereas the heat energy system
refers to a combustion process (furnace) for thermoelectric power plants or the gas turbine
flue exhaust gases for a combined cycle power plant. The steam drum has the function
of controlling the steam generator water level. Likewise, the mud drum has the function
of a settling point for solids in the boiler feedwater. The downcomer water wall is the
cooler water line that transfers water from the steam drum to the mud drum. The riser
water walls are the hotter water line that contains boiler feedwater that is heated by radiant
heat from the flue gas and boiled to produce steam that flows upward to the steam drum.
The heat supplies from the flue gases to the water flowing down the riser water wall tubes
to regulate the boiling process. A centrifugal pump supplies the feedwater to the steam
drum, and the saturated steam sent to the superheaters is regulated through a control valve.
The DBS structure based on the reported by Liu et al. [22] is shown in Figure 2.

Figure 2. Drum boiler system structure.

4. Problem Description

The proposed approach (Figure 3) integrates a simulator with an optimizer. The sim-
ulator uses a dynamic simulation model while the optimizer relies on a metaheuristic
optimization algorithm. The system architecture is designed in such a way that a sim-
ulation model can be replaced without having to modify the optimization component.
Similarly, the optimization algorithm can be replaced while keeping the same simulation
model in the simulator.
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Figure 3. System architecture.

4.1. Simulator

The dynamic behavior of the drum boiler is simulated by solving an ordinary-
differential-equation model. The simulation model represents the drum boiler in terms
of a water inlet, a heat supply, a water-level PI-controller, and a saturated steam outlet.
A schematic representation of the drum boiler is shown in Figure 4.

Figure 4. Schematic diagram of the drum boiler.

Water from the condenser enters the drum through the water inlet and the saturated
steam is extracted. The behavior of the boiler furnace in a coal-fired power plant or exhaust
gases of a gas turbine is modeled using a heat supply system to heat and evaporate the
water in the rising tubes. For simplicity, the model assumes thermodynamic equilibrium
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between water and steam inside the drum. The mass balance in the drum boiler can be
written as:

(
∂ρl
∂p

Vl(ll) +
∂ρv

∂p
Vv)

dp
dt

+ (ρl − ρv)
dVl(ll)

dt
= ql − qv (1)

where Vl is the water volume in the drum, Vv the steam volume in the drum, ρl and ρv the
density of water and steam, ll the water level inside the drum, p the pressure inside the
drum, ql feedwater flow and qv the steam flow rate extracted from the drum.

The energy balance in the drum boiler can be expressed as:

(Vv(hv
∂ρv

∂p
+ ρv

∂hv

∂p
) + Vl(hl

∂ρl
∂p

+ ρl
∂hv

∂p
)−V + mCp

∂Tv
∂p

)(
dp
dt

) + (ρlhl + ρvhv)
dVl
dt

= Q + (qlhl − qvhv)

(2)

where Q is the heat flow, V the water-steam volume in the drum, hl and hv are the water
and steam enthalpies, while Cp denotes the specific heat capacity of steam.

According to Franke et al. [18], thermal stresses occur in the thick-walled drum if there
are spatial temperature differences. Thus, thermal stress is determined proportionately to
the time derivative of the metal temperature, considering that the metal temperature is
equivalent to the water saturation temperature inside the drum, as given in equation three.

σD = k
dTD
dt

(3)

where σD is the thermal stress in the thick-walled drum, k the thermal conductivity of the
wall and TD = Tsat(p) the inner temperature in the drum.

For simplicity, bulk system flows, volumes, and masses are considered. Therefore,
the model ignores spatial variations in the process variables such as individual geometric
features and fin and pipes arrangements in the risers and downcomers. Moreover, this
model does not consider heat losses between the water inside the drum and the walls of
the drum and pipes. For that reason, the water and metal temperatures are assumed to
be in thermal equilibrium within the drum. Despite these simplifications, the resulting
lumped parameter model could capture the overall behavior of the drum boiler.

4.2. Optimizer

The optimizer generates an operating procedure given the initial and the goal states.
The optimizer starts by generating an initial feasible solution searching through the space
of solutions. Then, the optimization algorithm iteratively improves the initial solution
by making local changes until there is no better solution when applying such changes.
Metaheuristic optimization algorithms involve the encoding of solutions, the manipulation
of encoded solutions by operators, and a selection based on their objective function to find
an optimum or near-to-optimum solution.

4.2.1. Solution Encoding Scheme

A solution represents an operating procedure. However, the optimizer works on an
encoded solution represented as a finite sequence (A1, A2, A3, . . . , Am) where Ai = (< Oi,
Ti >, Ri). Oi is an operation, Ti denotes the length in time that Oi will be applied and Ri
denotes the number of times that the operation Oi with length in time Ti will be repeated.

An operation Oi is defined as an element of the set O = (Ij, Pjkl) where Ij is a unique
integer number that serves as an identifier of the operation, and Pjkl is a numeric value
of parameter k assigned to remotely-operable equipment l. A control valve is an example
of remotely operable equipment. The implementation is done with three arrays: the first
array contains the operation indices; the second array contains the values of length in time
and the third array contains the number of times that each operation is repeated.

To simulate a given solution, the solution has to be decoded to an operating procedure
described in terms of physical values such as valve positions and time.
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4.2.2. Optimization Algorithm

The proposed optimization algorithm is a metaheuristic hybrid algorithm that com-
bines two well-known metaheuristic algorithms: simulated annealing [23] and tabu
search [24].

Simulated annealing allows the selection of worse solutions at the early stages of the
iterative process in order to avoid local optima. The algorithm reduces the probability
of selecting worse solutions, increasingly accepting better solutions. Tabu search stores
information of previously evaluated solutions in a memory data structure called tabu
list. As a result, tabu search avoids revisiting solutions that have already been evaluated,
improving the computational efficiency by avoiding unnecessary simulation runs.

The flow chart of the metaheuristic hybrid algorithm is shown in Figure 5, the follow-
ing is a detailed explanation of each of the steps in the metaheuristic hybrid algorithm.

Figure 5. Flow diagram of the Hybrid metaheuristic algorithm.

The metaheuristic hybrid algorithm starts by generating a random solution in a codi-
fied form making local changes until there is no better solution. The proposed algorithm
for the generation of a feasible initial solution that will function as the starting point for the
optimization algorithm to find the optimal solution is shown in Figure 6.

Figure 6. Flow diagram of the initial solution generation algorithm.
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The initial solution is then fed to the simulator and the plant model is run. The results
of the simulation are sent to the optimizer, which evaluates the feasibility of the solution.
The feasibility function f (x) determines the difference between the left-hand side and the
right-hand side of the constraints. If the generated solution x is feasible, f (x) becomes zero.
A solution is considered feasible if it reaches the goal state determined by the problem
without violating any of the constraints.

If f (x) > 0, a new solution y is generated based on the current solution x. Until feasi-
bility is guaranteed, a solution may suffer many changes by the application of multiple
neighborhood operators. This is an exploration feature of the algorithm.

Subsequently, the feasibility of solution y is evaluated. If f (y) > f (x) solution x
remains as the current solution, and a new solution y is generated, restarting the loop.
If f (y) < f (x), solution y becomes the new current solution (x = y), and the procedure is
repeated. If f (y) equals zero, solution y becomes the initial solution and it moves on to the
next step.

Afterwards, the algorithm uses this initial feasible solution to produce a neighbor
solution in which the local search algorithm explores the space of candidate solutions (the
search space) by applying local changes by means of a neighborhood operator (NOP).
The NOP can be defined in terms of local rearrangements, such as swapping, moving,
or changing one or more elements from the current solution sequence. A neighborhood
operator can be applied multiple times to make significant changes in the solution to
improve the diversification of solutions through the optimization process.

After selecting and evaluating the neighbor solution, that neighbor solution is added
to the tabu list. From this point on, each new solution is tested against the tabu list.

The tabu list contains information of previously evaluated solutions, to avoid searching
the same region and avoid repeated simulations. The tabu list works as long-term memory
for the algorithm.

If a solution appears in the tabu list, then it will be avoided. When the neighbor
solution is feasible, and the objective function of the neighbor solution is better than the
objective function of the current solution the neighbor solution will be selected as the
current solution. If the total operation time is set as the objective function, a better neighbor
solution is the operating procedure that takes less time to reach the goal state.

When the neighbor solution is feasible, and the objective function of the neighbor
solution is worse than the objective function of the current solution, then the neighbor
solution is accepted as the current solution based on the acceptance probability. The ac-
ceptance probability P depends on the values of the objective function of the current and
the neighbor solutions, and on a global time-varying parameter T. A typical probability
function is a Boltzmann distribution (Equation (4)).

P = e−
E(y)−E(x)

T (4)

where P is the probability of selecting a worse neighbor solution, T is the temperature of
the algorithm, E(y) is the objective function of the neighbor solution, and E(x) the objective
function of the current solution.

If the objective function of the neighbor solution is better than the best solution found
so far, the neighbor solution becomes the best solution. From this point on, a new current
solution is already in place and the iterative process starts again. Throughout the search,
better results will be found, while new search areas are evaluated. Once the stopping
condition is met, the algorithm delivers the best solution.

5. Case Study

The evaluation of the proposed methodology is carried out by means of a case study
on the generation of the optimum operating procedure of a drum boiler. The problem
consists of finding an operating procedure that takes the system from a given pressure
and steam-flowrate values to the desired pressure and steam mass-flowrate values in the
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shortest time possible while avoiding excessive thermal stresses in the metal of the wall of
the drum boiler. The simulator component was developed using the OpenModelica envi-
ronment [25,26]. OpenModelica has algorithms for solving differential equation systems,
making it possible to observe changes in variables over time. The drum boiler simulation
model in OpenModelica is based on the model reported by Rosado et al. [10].

The integration between the OpenModelica simulator and the optimization algorithm
was carried out by implementing a two-way interface. First, the interface receives the
operating procedure generated by the optimization algorithm. Then, it translates this
procedure to a set of parameters for the simulation model. Finally, it evaluates and executes
the simulation model. Conversely, the interface receives the results of the simulation and
translates them into a format suited to the optimization algorithm.

The optimization problem is formulated based on the work by Belkhir et al. [17].
The goal is to reach given values of pressure and steam outlet flowrate by manipulating
the heat inlet valve and the steam outlet valve. Accordingly, the optimization problem is
formulated as:

Min((A ∗ S) + α(Psat − Pgoal)
2 + β(qs − qgoal)

2) (5)

where

S =

t f

∑
t0

dt (6)

Subject to:
0 ≤ Vpos ≤ 1 (7)

0
MW
min

≤ dQ
dt
≤ 25

MW
min

(8)

0 ≤ Q ≤ 500 MW (9)

− 10 MPa ≤ σD ≤ 10 MPa (10)

Equation (5) seeks to minimize the time it takes for the drum boiler to reach the goal.
The parameters α and β from Equation (5) are the ones specified by Belkhir et al. [17].
When A = 0 the problem is reduced to finding a sequence of operations that is feasible
but not necessarily optimal [9]. A feasible solution is a solution that reaches the goal state
without violating any of the constraints. In this optimization problem Pgoal is the desired
internal pressure, qgoal is the desired steam mass-flow rate, α and β are weights, Psat is the
steam pressure at the drum boiler, and qs is the steam flow rate at the drum boiler outlet.
Equation (6) represents the time that the system takes to get from the initial state to the
final state.

Equation (7) constrains the opening of the steam outlet valve (Vpos) to values between
0 (totally closed) and 1 (fully open). Equation (8) ensures that the heat rate does not exceed
25 MW/min. It is a nonlinear constraint because it implies that there could be different
heat ramp rates during the process. Equation (9) is a constraint of the accumulated heat
limit of the drum boiler which must not exceed 500 MW and Equation (10) is a constraint
that avoids excessive thermal stress in the drum boiler that must be less than 10 MPa.
The water is supplied by a control system and the steam flow is controlled by a valve.
The interaction between the opening of the steam outlet valve and the heat rate in the
drum boiler generates steam at pressure Psat which exits at flow rate qs. The steam can later
be sent to a superheater or directly to a steam turbine [9]. For this problem, the goal was
set to Pgoal = 9 MPa, qgoal = 180 kg/s. The weights were set to α = 10−4 and β = 10−4.
Parameter A is set to 0 during the initial solution generation and then changed to A = 1
for the rest of the algorithm. The nonlinearity of Equations (7) and (8) add complexity to
the problem, which justifies the use of metaheuristic methods to find a solution.

To ensure that the optimization algorithm converges, the stopping condition of the
algorithm is met when 1000 iterations are performed. It is worth mentioning that several
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tests with more iteration limits were performed, but the algorithm always converged before
1000 iterations.

Each operating procedure is represented according to the encoding scheme explained
in Section 4.2.1, in which each operation is formed by combining discrete values of the heat
flow and the valve position of the steam outlet valve. This results in the nine operations
shown in Table 1.

Table 1. Operations table.

Operation Heat Flow dQ/dt Vpos

1 8 0.0
2 8 0.6
3 8 1.0
4 16 0.0
5 16 0.6
6 16 1.0
7 24 0.0
8 24 0.6
9 24 1.0

The execution time per operation is set to 60, 120, or 180 s. The repetition parameter is
set to vary between 0 to 9. The length of the sequence is fixed to nine elements.

Figure 7 shows an example of an operating procedure. The first element in the
sequence represents operation 8 (dQ/dt = 24 MW/min, Vpos = 0.6) being executed for
60 s and repeated three times.

Figure 7. Solution representation of an operating procedure for the drum boiler optimization problem.

The feasibility function f (x) is calculated with Equation (11). An extra penalty can be
applied to f (x) in case the total time of the generated sequence is less than 1200 s, a value
too low to be feasible.

i f {(t < 1200, f (x) = V1 + 100; t > 1200, f (x) = V1)}
V1 = (400−Q) + fs + G

G = α(Psat − Pgoal)
2 + β(qs − qgoal)

2

(11)

where Q is the accumulated heat that must reach 400 MW, fs represents the number of
times the thermal stress exceeded the 10 MPa limit throughout the process and G represents
how far is the sequence of approaching the steam pressure and steam outflow goal.

During the optimization process, new solutions are generated using the NOP. The NOP
takes an existing solution and makes a mutation by randomly change one of the sequence
elements (operation, time, and repetition). A neighborhood operator can be applied
multiple times as a solution-diversification strategy. Figure 8 shows an example of NOP
applied four times.
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Figure 8. Mutation process from one to four mutations.

The number of times that NOP is applied is set based on the value of f (x) as shown
in Table 2. The number of times NOP is applied depends on the length of the solution for
the given problem. In this case study, the maximum number of mutations is four because it
changes half the values of the previous solution in the worst scenario for f (x).

Table 2. Number of mutations according to the feasibility function of the operating procedure.

f (x) Number of Mutations

>400 4
>300 3
>50 2
<50 1
≈0 0

For the metaheuristic hybrid algorithm and the simulated annealing algorithm, it is
necessary to specify the acceptance probability function. This function is represented by
Equation (12):

P = e−
((t(y)−t(x))∗γ)

T (12)

where P is the probability of selecting a worse neighbor solution, T is a parameter that
gradually decreases as the algorithm proceeds (T is also known as the annealing temper-
ature), t(y) is the final time of the neighbor solution and t(x) the final time of the actual
solution because the time is the value that is sought to optimize in this problem. γ is a
parameter that magnifies the difference between two solutions.

To select the value of γ, the value of the Boltzman distribution was analyzed with a
difference of 50 s between two solutions, varying the value of γ between 1 and 15. The value
of γ = 10 was selected as it starts with a probability slightly larger than 50% but steadily
decreasing through the iterations. Figure 9 shows the probability of selecting a worse
solution (50 s worse) using different γ values in a run of 1000 iterations.
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Figure 9. Probability of selecting a better or a worse solution (50 s worse), using different γ values,
depending on the progress of a run of 1000 iterations.

6. Experiments and Results

To evaluate the proposed approach, two experiments were carried out:

• Experiment A, which uses a randomly generated operating procedure as the initial
solution for the metaheuristic hybrid algorithm. The results were then compared
against a benchmark solution [17] and a solution obtained with the micro genetic
algorithm described in [10].

• Experiment B, which compares the metaheuristic hybrid algorithm, the simulated
annealing algorithm, and the tabu search algorithm. The comparison considers two
different initial solutions: a randomly generated solution; and a feasible solution
generated by the procedure explained in Figure 6.

6.1. Experiment A

The benchmark solution is a representative startup profile reported by Belkhir et al. [17].
In this solution, the operating procedure consists of keeping the heat input at a constant
value of 8 MW/min and the steam output valve fully open since the very beginning. Af-
ter executing the operating procedure with the OpenModelica simulation model, the startup
completed in 3000 s.

Figure 10 shows the plot of function f (Psat, qs) = α(Psteam(t)− Pgoal)
2 + β(qsteam −

qgoal)
2 which measures the distance to the goal state over time.
The Belkhir operating procedure was a feasible solution as it never exceeded the limits

imposed by the thermal stress constraint, maintaining a stress value between −10 MPa and
10 MPa. The goal state was reached after 3000 s. The stress profile is shown in Figure 11.

The micro genetic algorithm (mGA) implemented the same encoding scheme of this
paper. The probabilities used in all the experiments were 10% for mutation and 20% for
crossover. The population of the mGA consisted of 5 individuals, and the termination
criteria were set to a maximum of 40 generations and 20 epochs, respectively.

The metaheuristic hybrid algorithm was initiated with a randomly generated solution
and stopped after 1000 iterations. Table 3 shows the solution obtained as a result of the
optimization. Table 4 shows the decoded operating procedure based on the operations
shown in Table 1. After reaching the desired goal, the heat inlet valve and the steam outlet
valve took the values of 0 MW/min and full open respectively.
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Figure 10. Change of the distance to the goal state over time with the benchmark solution.

Figure 11. Changes of thermal stress in the drum boiler over time with the benchmark solution.

Table 3. Best solution obtained with the metaheuristic hybrid algorithm and a randomly gener-
ated initial-solution.

Operation 8 3 9 9 7 2 8 1 3
Time 60 120 180 120 120 60 120 120 60

Repetitions 1 7 8 3 8 5 1 9 5

Table 4. Operating procedure decoded from the solution shown in Table 3.

Time Heat Inlet Valve Steam Outlet Valve Accumulated Time

60 24 0.6 60
840 8 1 900
660 24 1 1560

- 0 1 -

With this operation procedure, the drum boiler arrived at the goal state in 1560 s.
Figure 12 shows the change of the distance to the goal state over time over time for the
metaheuristic hybrid algorithm, the benchmark solution, and the micro genetic algorithm.
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Figure 12. Change of the distance to the goal state over time over time for the benchmark solution
(red line), the micro genetic algorithm (black line) and the proposed metaheuristic hybrid algorithm
(green line).

The operating procedure obtained with the metaheuristic hybrid algorithm produced
a feasible thermal stress profile of the thick-walled component. This thermal stress profile
had a similar shape pattern and magnitude as the one obtained with either the benchmark
solution or the solution obtained with the micro genetic algorithm, which means that the
drum boiler integrity was not affected. Figure 13 shows the behavior of the thermal stress,
which is related to the structural integrity of the drum boiler.

Figure 13. Comparison of the the thick-walled thermal stresses generated with the benchmark
solution (red line), the micro genetic algorithm solution (black line) and the metaheuristic hybrid
algorithm solution (green line).

The feed water flow had to be controlled so that the water level inside the drum was
kept at its set point. A PI controller was used for this purpose. Figure 14 shows the behavior
of the water level during the entire drum boiler startup process, where the metaheuristic
hybrid algorithm achieved a more stable pattern compared to the micro genetic algorithm
and the benchmark solution.
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Figure 14. Changes of water level obtained with the benchmark solution (red line), the micro genetic
algorithm solution (black line) and the metaheuristic hybrid algorithm solution (green line).

Figure 14 shows that the water level changed abruptly during the drum boiler startup
process. The instability of the liquid level could be reduced with the use of a non-linear
controller that can adapt to the non-linearity of the model or the use of the gain scheduling
approach which involved the application of different controller tuning parameters as a
process transitions from one operating range to another [27]. However, the magnitude of
the changes in water level was considered tolerable for this experiment.

The best result was obtained at the 654th iteration. Due to the memory strategy,
the simulation of 396 previously simulated solutions was avoided. The experiment took
216 min on a computer with 4.00 GHz Intel Xeon W-2125 CPU and 32 GB of RAM, running
Windows 10 Pro. In summary, the proposed approach could synthesize a startup operat-
ing procedure that reached the goal state in 48% less time than the benchmark solution,
without sacrificing feasibility.

6.2. Experiment B

Experiment B compares the proposed metaheuristic hybrid algorithm against two
well-known metaheuristic algorithms: simulated annealing and tabu search.

To prove if the difference in the startup time of each algorithm is significant, a hy-
pothesis test was conducted. To do this test, experiments were carried out for a randomly
generated initial solution and a feasible solution that was generated according to the pro-
cedure shown in Figure 6. A total of 10 experiments were performed for each algorithm
as shown in Table 5. In either algorithm, each experiment was run with 1000 iterations as
stopping condition, which was shown to guarantee convergence in all cases.

Table 5. Experiment design for experiment B.

Initial Solution Hybrid Algorithm Simulated Annealing Tabu Search

Randomly Solution 10 experiments 10 experiments 10 experiments
Feasible Solution 10 experiments 10 experiments 10 experiments

The test aimed at proving whether there was a significant difference in the average
startup time obtained by each of the algorithms. To prove that, we used the t-test and the
mean start up time of 10 experiments. The start-up time means were considered signif-
icantly different when p ≤ 0.05. Conversely, start-up times means were not considered
significantly different if p > 0.05. In all the experiments, the result was p < 0.01, indicating
that in all the experiments the start-up times means were considered significantly different.
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For the time to complete the start-up, the following hypothesis test was carried
out, which sought to verify or refute if there was a significant difference between the
solution generated by the metaheuristic hybrid algorithm and the tabu search algorithm;
and between the metaheuristic hybrid algorithm and the simulated annealing algorithm:

h0 : µx − µy = 0 versus h1 : µx − µy 6= 0 (13)

where µx is the average of the startup time obtained with the metaheuristic hybrid algo-
rithm and µy is the average of the startup time obtained with either simulated annealing or
tabu search.

Tables 6 and 7 show the mean and standard deviation of the 10 experiments for
each method. Table 8 shows the results obtained with the application of the t-test in
experiment B.

Table 6. Comparison of mean and standard deviation values with a randomly generated solution as
an initial solution.

Hybrid Tabu Simmulated Micro Genetic
Algorithm Search Annealing Algorithm

Best CPU Best CPU Best CPU Best CPU

Mean 1626 181 1606 607.2 1636 313.5 1800 156
Stand.
Dev. 59.67 37.76 59.67 137.92 60.96 5.17 60.01 39.48

Table 7. Comparison of mean and standard deviation values with a feasible solution as an initial solution.

Hybrid Tabu Simmulated Micro Genetic
Algorithm Search Annealing Algorithm

Best CPU Best CPU Best CPU Best CPU

Mean 1608 227.2 1590 640.5 1598 318.9 1800 160
Stand.
Dev. 41.31 21.81 45.46 88.41 50.29 0.32 30.98 23.01

In Tables 6 and 7, the “best” result was the best start-up time measured in seconds
and the “CPU” result was the required time for the CPU to achieve it measured in minutes.

Table 8. p-values for the comparison of the minimum startup time of the metaheuristic Hybrid
Algorithm (HA) vs. Tabu Search (TS), Simmulated Annealing (SA) and the micro Genetic Algor-
tihm (mGA).

Initial Solution HA vs. TS HA vs. SA mGA

Randomly generated solution 0.463 0.715 0.0001
Feasible solution 0.374 0.633 0.0001

For the case of minimum drum boiler startup time, the t-test shows that there was
no significant difference in the result obtained with the metaheuristic hybrid algorithm
compared to the result obtained with the tabu search algorithm and simulated annealing.
However, this test shows that there was a significant difference compared to the micro
genetic algorithm.

In the case of computational time, as shown in the box plots of Figure 15, the results
indicate that the computational time of the metaheuristic hybrid algorithm was better than
the computational time of either the tabu search algorithm, simulated annealing, and micro
genetic algorithm. As shown in Figure 16 the computational time of the metaheuristic
hybrid algorithm was better than the computational time of both simulated annealing
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and tabu search algorithm, but it was not better than the computational time of the micro
genetic algorithm. However, in any case, the solutions proposed by the micro genetic
algorithm were better than the proposed by the metaheuristic hybrid algorithm in terms of
the start-up time.

Figure 15. Box plot comparing the computation time for all four algorithms using a randomly
generated solution as the initial solution.

Figure 16. Box plot comparing the computation time for all four algorithms using a feasible solution
as the initial solution.

7. Conclusions and Future Work

This paper presents an approach for the synthesis of the operating procedures of a
plant system. Specifically, a metaheuristic optimization algorithm was developed that
combines two characteristics of other metaheuristic algorithms, namely the cooling el-
ement from the simulated annealing algorithm and the memory structure of the tabu
search algorithm.

From the results of the experiments, it can be concluded that the proposed methodol-
ogy can synthesize an operating procedure for the startup of a drum boiler of a thermal
power plant that takes 48% less time to reach its goal state than a representative startup
profile found in the literature.

From the results of the experiments, it is evident that the metaheuristic hybrid al-
gorithm performs better than the individual algorithms in terms of computational time.
However, results from the t-test indicate that there is no significant difference in the drum
boiler startup time result using the metaheuristic hybrid algorithm against the simulated an-
nealing or tabu search algorithms. Despite the advantage in computational time, this result
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of the metaheuristic hybrid algorithm can still be improved by modifying the exploration
strategy of the hybrid algorithm.

Additionally, the results reveal that the metaheuristic hybrid algorithm can find a
better solution than the one found with the micro genetic algorithm. The hybrid algorithm
tends to find better solutions by cooling element and the tabu list. The “cooling” element
allows the selection of new “worse” solutions at the early stages of the iterative process in
order to avoid local optima. Then the algorithm “cools” as it converges, so the probability
of selecting “worse” solutions decreases, accepting only better solutions. On the other hand,
the tabu list is a memory structure that stores information of previously evaluated solutions.
As a result, the algorithm avoids visiting again solutions that have already been evaluated,
improving the computational efficiency by avoiding unnecessary simulation runs.

As future work, different optimization algorithms can be studied while keeping the
same simulation model. On the other hand, more complex simulation models for the drum
boiler can be used to increase fidelity in the results or eliminate disturbances in the model
caused by the controller. Finally, the proposed approach for the synthesis of operating
procedures could be used in processes other than the drum boiler startup.
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