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Abstract: A dual-gas photoacoustic spectroscopy (PAS) sensor based on wavelength modulation
spectroscopy (WMS) was developed and experimentally demonstrated. Distributed feedback (DFB)
laser diodes, emitting at 1512 and 1653 nm, were utilized as the excitation sources for the simultaneous
measurement of NH3 and CH4, respectively. The PAS signal was excited by modulating the DFB
laser at the first longitudinal resonant frequency of a cylindrical acoustic resonator. Absorption
lines for NH3 and CH4 were simultaneously recorded during one frequency scan of the DFB lasers
without using any optical switch. The interference of NH3 and CH4 on each other was investigated
for accurate detection. The limits of detection (LoDs) of the PAS sensor for NH3 and CH4 for an
integration time of 100 s were determined to be 0.1 and 0.3 ppm, respectively. The present PAS sensor
provides a new scheme for multi-gas analysis with the advantages of cost-effectiveness, a simple
structure and multi-wavelength operation.

Keywords: photoacoustic spectroscopy; absorption; multi-gas sensing; diode laser

1. Introduction

Multi-gas analysis sensors have attracted considerable attention in recent years due to
their significant applications in various fields of industry and science, such as environmen-
tal monitoring [1,2], atmospheric research [3], medical diagnosis [4,5] and industrial process
control [6]. Various types of optical absorption spectroscopy—including photoacoustic
spectroscopy [7,8], tunable diode laser-absorption spectroscopy (TDLAS) [9–13] (that could
also be combined with other hyperspectral imaging methods [14]) and cavity-enhanced
absorption spectroscopy (CEAS) [15]—are commonly used for trace gas analysis due to
their advantages of noninvasive direct measurement and high sensitivity.

Multi-gas analysis using optical absorption spectroscopy requires either a broadband
source (such as a light-emitting diode (LED)) [16], or widely tunable laser sources [17,18]
or a combined scheme using multi-laser sources for scanning the different absorption lines
of gas species. An LED as a broadband light source is usually used in cavity-enhanced
absorption spectroscopy for multi-species detection. Wu et al. reported a transportable
incoherent broadband CEAS instrument involving LED from 355 to 375 nm as a light
source to realize a continuous measurement of HONO and NO2 with an LoD of 0.6 and
2 ppbv, respectively [16]. Yu et al. used an external-cavity quantum-cascade laser in a
broadband range of 1225–1285 cm−1 for the simultaneous measurement of CH4, N2O,
HDO and H2O with an LoD of 2.2 ppbv, 1.43 ppbv, 3.92 ppbv and 1.77 ppmv, respectively,
based on wavelength modulation spectroscopy [19]. For coupling different narrow lasers
as light sources, Jiang et al. reported a multi-gas TDLAS sensor equipped with an optic
switch to alternatively measure methane, ethyne, ethene and ethane using four DFB
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lasers emitting at 1653.72, 1530.37, 1620.04 and 1679.06 nm [20]. For quartz-enhanced
photoacoustic spectroscopy (QEPAS), Wu et al. proposed a dual-gas QEPAS sensor based
on two distributed feedback (DFB) lasers emitting at 1528.59 and 1368.60 nm as excitation
sources, which are focused at two different positions between the quartz tuning fork
prongs to excite two resonant modes for realizing simultaneous measurement of C2H2 and
H2O [21]. However, each technique has its own limitations for field measurement. The
CEAS method is based on a high-finesse optical cavity that is composed of two relatively
expensive high-reflectivity dielectric mirrors. The effective wavelength band of the CEAS
method is limited by the spectrum band of the highly reflective dielectric mirrors [22].
In QEPAS, its measurement accuracy is easily affected by the beam quality [23]. The
instrument performance of TDLAS highly depends on the background signal (not a zero-
background approach) [24], and its measurement sensitivity is limited by the optical length
in the optical cell (typically as a multi-pass cell).

Photoacoustic spectroscopy (PAS) using a microphone is a well-established method
for trace gas analysis because of its simplicity and wide dynamic range [25]. Photoacoustic
spectroscopy relies on the generation of the acoustic wave by converting light energy into
thermal energy [26]. The thermal wave variation results in an acoustic signal. An acoustic
resonator is usually used to amplify the acoustic signal that is conventionally measured by
a microphone [8,27]. Photoacoustic spectroscopy is a zero-background approach [28]. It is
suitable for all broadband light sources. For realizing multi-gas analysis, several acoustic
resonators or a mid-infrared broadband source are used in the PAS approach. Besson
et al. developed a multi-gas PA sensor based on three longitudinal acoustic resonators
for the measurement of three trace gases of H2O at 1368.6 nm, CH4 at 1651.0 nm and
HCl at 1737.9 nm [7]. Chen et al. reported a multi-gas PA analyzer using a mid-infrared
broadband source and an optical wheel, installing several optical filters for selecting
different absorption lines of several gases for detecting CO, CO2, CH4, C2H6, C2H4 and
H2O gas [3].

In this paper, we present a compact wavelength modulation photoacoustic spec-
troscopy for the simultaneous measurement of CH4 and NH3 based on a single acoustic
resonator using two DFB lasers emitting at 1512 and 1653 nm. Normally, multi-gas detec-
tion using several DFB lasers in the PAS approach is achieved by using several acoustic
resonators [7], broadband source sensors [18] and an optical switch [7,20]. The motivation
of our work is to simplify the system structure of optical absorption spectroscopy for
multi-gas analysis. The developed compact PA spectroscopy has the advantage of simple
structure (one resonator without using any optical switch) and broadband characteris-
tics when combining two DFB lasers at different wavelengths. The performance of the
developed instrument was evaluated for simultaneous detection of CH4 and NH3.

2. Materials and Methods
2.1. Measurement Principle

In a wavelength modulation photoacoustic spectroscopy (WMPAS) system, the mod-
ulation of the injection current in a DFB laser results in the simultaneous modulation of
optical power (intensity modulation) and laser frequency (wavelength modulation). The
laser wavelength is scanned through the absorption line using a slow current ramp [29].
The laser intensity is modulated using a sine signal at frequency fmod, which is the nth
resonant frequency in the PA cell. The modulated laser wavelength and intensity are
expressed as follows [29,30]:

v(t) = vc(t) + ∆v · cos(ωt) (1)

I0(t) = Ic(t) + ∆I · cos(ωt − ∆ϕ) (2)

where υ(t) is the laser frequency, υc(t) is the central frequency of modulation, ∆υ is the
frequency modulation amplitude, I0(t) is the light intensity, Ic(t) is the light intensity at
the central frequency, ∆I is the intensity modulation amplitude, ω is the modulation angle
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frequency ω = 2πfmod and ∆ϕ is the phase difference between the laser intensity and the
optical frequency.

Photoacoustic spectroscopy is based on the absorption of light by the molecules of
the target species. The fundamental theory governing absorption spectroscopy is based
on the well-known Beer–Lambert law. Upon Fourier expansion of the Beer–Lambert law,
the following first harmonic signal of the PA signal is used for determining the target gas
concentration, expressed as follows [30]:

S1 f (v, v0) = M · C · F · I0 · cos(ψ)× H1(v, v0) (3)

where M is the microphone sensitivity, C is the gas concentration, F is the response constant
of the PAS cell, Ψ is the phase difference between the driving signal and the laser amplitude
modulation and H1(υ, υ0) is the first harmonic magnitude derived from the Fourier cosine
series expansion of the gas absorption. The photoacoustic signal is proportional to the
excitation optical power [31], and thus, the PA signal using the first harmonic (intensity
modulation frequency) signal is higher than that using the second harmonic signal.

2.2. System Setup

Figure 1 shows the schematic of our PAS instrument. The PAS instrument consists of
two power-modulated light sources, an in-house-developed resonant PA cell to convert
the light absorbed by trace gases to an acoustic signal, and a signal processing module.
Two intensity-modulated DFB laser diodes emitting at around 1512 (SWLD-151220S22-02,
Sichuan Tengzhong Light Technology, Chengdu, China) and 1653 nm (SWLD-165317S22-02,
Sichuan Zhiguang Photonics Technology, Chengdu, China) were utilized as light sources
for the simultaneous detection of ammonia and methane, respectively. The two lasers were
fiber-coupled with SM fiber pigtail and mounted on butterfly clamp mountings (BF14-S,
Sichuan Tengzhong Light Technology, Chengdu, China). Two fiber collimators (F280APC,
Thorlabs, Newton, MA, USA) with a focal length of 18.75 mm were used to reshape the laser
beam for passing through the PA cell. The two laser beams were coupled together with a
dichroic filter (3007010677, Union Optic, Wuhan, China). The DFB laser was powered by a
laser controller (LDC202C, Thorlabs, Newton, MA, USA) with a current from 90 to 150 mA
and a temperature of 22 ◦C. The wavelength of DFB laser 1 (around 1512 nm) was tuned
from 1511.9 to 1512.3 nm when varying the current from 90 to 130 mA (center current:
110 mA; current scan amplitude: −20 to 20 mA), and the wavelength of DFB laser 2 (around
1653 nm) was tuned from 1653.6 to 1654.3 nm when varying the current 110 to 150 mA
(center current: 130 mA; current scan amplitude: −20 to 20 mA), as shown in Figure 2a.
The wavelength tuning of the DFB lasers with varying currents was measured by an
optical spectrum analyzer (AQ6317, ANDO Electric, Tokyo, Japan). To ensure that the main
absorption features were free from spectral interference, the scanning ranges were enlarged.
The selected absorption lines of NH3 and CH4 at 1512.24 and 1653.72 nm were located at
two sides of a period of the current scan, as shown in Figure 2. After the frequency scan of
DFB 2 for the absorption line of CH4 as shown in Figure 2b, the absorption line of NH3 in
Figure 2c was recorded. Therefore, through one simultaneous scan of the wavelengths of
the two DFB lasers, the PAS signals of NH3 and CH4 were obtained (as shown in Figure 2d)
without using any optical switch or time delay device. The driving current signal of the
excitation laser was composed of a sawtooth wave signal and a high-frequency sine signal,
which were added and programmed in a LabVIEW-controlled data acquisition (DAQ)
card (USB 6211, Austin, NI, USA). The sawtooth wave signal was utilized to scan the
wavelength for covering the absorption peak, while the sine signal was used to modulate
the lasers for the lock-in amplifier. To simplify the system structure, only one DAQ card
was used to control the DFB lasers. Without any optical switch or time delay device, two
gases were detected simultaneously. The sampling rate of DAQ was 50 kHz. A longer
integration time of the lock-in amplifier was required to enlarge the SNR of the PA signals.
Therefore, the scan frequency was 0.05 Hz. The modulation frequency of the sine signal
was identical to the resonant frequency of the PA cell for amplifying the acoustic signal.
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A reference square with the same frequency of the sine signal was also generated by the
DAQ card for the lock-in amplifier (7270DSP, AMETEK, Berwyn, IL, USA) to demodulate
the PA signal. The modulation amplitude was 160 mV. Mass flow controllers (MFCs) were
used to configure different concentrations of gases.
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Figure 1. Schematic of the PA instrument. FC: fiber collimator. BS: beam splitter. CW1, CW2: CaF2 window. DFB:
distributed feedback laser diode. Mic: electret microphone. DAQ card: data acquisition card.

The PA cell consisted of a cylindrical resonator and two buffer volumes. The PA cell
was made of stainless steel 304, without coatings. The resonant cylinder was used as an
acoustic resonator with a first longitudinal acoustic resonant frequency of 6800 Hz. The two
buffer volumes at each extreme side of the PA cell were able to minimize the noise resulting
from sample flow [32]. The PA cell was sealed by two CaF2 windows with a high optical
transmission of >90% from 180 nm to 8 µm. Eight electret microphones (FG-2332-P07,
Knowles, Itasca, IL, USA) were placed in the middle of the acoustic resonator to detect the
PA signal. PA signals from the eight microphones were first summed up and then filtered
by a homemade noise-reduction band-pass filter. After pre-amplification, the PA signal was
connected to the lock-in amplifier and sampled with an NI data acquisition card. A laptop
was used to perform the data processing and display the results via LabVIEW software.
The properties of the PA cell were reflected by measuring its first longitudinal resonance.
Before the acquisition of PAS, it was imperative to confirm the value of the fundamental
vibration frequency of the PA cell. A certified 500 ppm NH3/N2 gas mixture was used to
select the best frequency. Figure 3 shows the normalized frequency response curves of the
PA cell, indicating the first longitudinal resonance of the PA cell at the resonance frequency
of f0 = 6800 Hz. Hence, the modulation frequency of the sine signal was 6800 Hz.
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2.3. Selection of Absorption Lines

Infrared bands including mid-infrared and near-infrared are commonly used for gas
sensing. Near-infrared laser sources are more widely used in gas sensing due to their ad-
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vantages of low cost and increased reliability and operation at room temperature compared
with mid-infrared laser sources. However, trace gases in the mid-infrared spectrum have
stronger absorption than those in the near-infrared band. DFB lasers emitting at 1512.24
and 1653.72 nm were selected in this compact PA instrument for measuring NH3 and CH4.
For accurate NH3 and CH4 detection, potential spectral interference from other abundant
atmospheric species (such as H2O and CO2) was also taken into account. Figure 4a shows
the simulation of absorption of 400 ppm CO2, 20,000 ppm H2O, 10 ppm NH3 and 10 ppm
CH4 around 1512 nm with a temperature of 300 K, air pressure of 1 atm and absorption
path length of 100 cm. Figure 4b shows the simulation of absorption of 400 ppm CO2,
20,000 ppm H2O and 1 ppm CH4 around 1653 nm, where the absorbance of NH3 is zero.
According to the HITRAN database, NH3 and CH4 have almost no interference with each
other’s absorption in the tuning wavelength regions of the DFB lasers [33].
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3. Results
3.1. Calibration of CH4 and NH3

The PA instrument’s response to different NH3 and CH4 concentrations was evaluated.
CH4 and NH3 concentrations ranging from 20 to 500 ppm were generated by diluting a
reference concentration of CH4 (100 ppm) and NH3 (500 ppm) with nitrogen for calibration.
Amounts of 20–100 ppm CH4 were used for the calibration of CH4, and 100–500 ppm NH3
was used for the calibration of NH3.

For CH4 detection, the DFB laser was tuned to the center of the CH4 absorption line
at approximately 1653.8 nm (120 mA, 20 ◦C). A sawtooth signal (20 s in period, 800 mV
in amplitude) was used to carry out the DFB wavelength scan. A 6.8-kilohertz sinusoidal
signal (160 mV in amplitude) was added with the sawtooth signal to modulate the light
amplitude for generating the PA signal. The value of 800 mV for the sawtooth signal was
chosen to ensure that the scanning wavelengths of the two lasers covered the absorption
peaks of both gases. A sinusoidal signal of 160 mV was chosen by investigating the
dependence of the PA signals on the amplitude of the sinusoidal signal, as shown in
Figure 5a. Figure 5a shows that the PA signal improved little with a modulation amplitude
ranging from 160 to 250 mV, and that laser lifetime can benefit from the low modulation
amplitude of 160 mV. Figure 5b shows the first harmonic photoacoustic signal of 20, 40, 60,
80 and 100 ppm CH4 in nitrogen in the left region. Figure 6a shows the linear dependence
of peak–peak PA signals on different CH4 concentrations with a regression coefficient
R2 = 0.99.
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Regarding the NH3 measurement, the DFB laser was tuned to the center of the NH3
absorption line at around 1511.7 nm (120 mA, 20 ◦C) with a sawtooth signal of 800 mV
in amplitude and a modulation sine signal of 160 mV in amplitude. The first harmonic
PA signal of NH3 at 500 ppm was recorded in the right region in Figure 5b. A good linear
correlation of the peak–peak PA signals on different NH3 concentrations was obtained with
R2 = 0.99, as shown in Figure 6b.

Figure 7a shows the two spectra of CH4 and NH3, which indicate that NH3 affected
the measurement of CH4 in the first half of the PA spectrum. In contrast, methane had no
influence on the NH3 signal. In order to eliminate this interference, the overlapped signal
needed to be calibrated to obtain the average signal value of different NH3 concentrations.
As shown in Figure 7b, the PA signals brought in by NH3 at different concentrations were
plotted. The R-squared value obtained by linear fitting reached 0.997, which indicates
that the interference signal is linearly related to the NH3 concentration. Therefore, by first
demodulating the concentration of NH3, the interference signal that affects the CH4 PA
signal was obtained by calculation, and this part of the methane signal was subtracted in
order to accurately retrieve the CH4 concentration.
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3.2. Simultaneous Measurement of CH4 and NH3

The performance of the PA instrument was evaluated for simultaneous measurement
of CH4 and NH3, especially the potential interference from NH3 and CH4 on each other.
The interference between NH3 and CH4 was observed through altering the concentrations
of CH4 and NH3 that were controlled by MFCs. The input channel of the PA cell was
composed of channels A and B, which always had identical flow rates, leading to a con-
stant CH4 concentration in the PA cell. Meanwhile, channel B for NH3 was connected to
two MFCs, which controlled the flow rates of channels 1 and 2 for NH3 and N2, respec-
tively. The NH3 concentration in the PA cell could be altered by changing the flow rate in
channels 1 and 2.

For investigating the interference of NH3 in CH4 measurement, a constant CH4
concentration of 50 ppm was generated with the same flow rate of 0.15 L/min in channels A
and B. Different NH3 concentrations of 50, 100, 180 and 220 ppm were obtained by changing
the flow rate in channels 2 and 3. Figure 8a shows the measured CH4 concentrations with
different NH3 concentrations. The dashed line presents the fluctuation of the measured
CH4 concentration without taking into account the interference of NH3, while the retrieved
CH4 concentration remains constant after eliminating the NH3 interference as mentioned
in Section 2.3.

Figure 8a shows the CH4 interference in the measurement of NH3 by recording the
fluctuation of NH3 concentration through altering the CH4 concentration. As shown in
Figure 8b, the measured NH3 concentration is constant across different CH4 concentrations,
which shows that different CH4 concentrations cannot affect the measurement of NH3.
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3.3. Instrument Performance: Allan Deviation, Accuracy, Precision and Uncertainty

The Allan–Werle variance method was utilized to evaluate the long-term stability of
the instrument with a constant concentration of 46 ppm of CH4 and 270 ppm of NH3 in the
PAS cell. Figure 9a,b show the continuous measurement of CH4 and NH3 for 4000 s with
a time interval of 20 s, respectively. Figure 9c,d plot the Allan deviation of the estimated
concentration versus the average time, which indicates an optimum performance of the
PAS instrument: minimum Allan deviations (0.05 ppm) are obtained with an optimum
averaging time of 700 s for CH4 and 0.1 ppm with an integration time of 160 s for NH3.

Figure 9e,f show the distribution histogram of the retrieved CH4 and NH3 concen-
trations with a concentration of 46 ppm for CH4 and 270 ppm for NH3 in the PAS cell,
accompanied with Gaussian profile fits. The value of the mean concentration of CH4
(Figure 9e) obtained was 45.5 ppm, which results in a measurement accuracy of 0.5 ppm,
while the measurement precision was deduced to be 3.3 ppm (with an average time of
20 s) from the full width half maximum (FWHM) of the fitted Gaussian profile. For NH3
detection, a measurement accuracy of 0.3 ppm and a precision of 2.8 ppm were achieved
from the mean concentration of 269.7 ppm and the FWHM of the fitted Gaussian profile
in Figure 9f. The relative measurement uncertainty was determined by the ratio between
the standard deviation and the mean value of concentration. Figure 9a shows that the
standard deviation and the mean value of concentration for CH4 were 1.5 and 44.5 ppm,
respectively. For the NH3 measurement in Figure 9b, the standard deviation and the mean
value of concentration were 1.2 and 169.7 ppm, respectively. Thus, the relative measure-
ment uncertainties of CH4 and NH3 were determined to be 3.3% (1.5 ppm/44.5 ppm) and
0.4% (1.2 ppm/169.7 ppm), respectively. The limit of detection (LoD) of the instrument was
determined by the standard deviation of the background signal. By averaging five times of
PAS signals, which indicates an integration time of 100 seconds, the standard deviations of
background signals of NH3 and CH4 were found to be 0.3 and 0.1 ppm, respectively.
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Concentration distribution of the retrieved NH3 with a concentration of 270 ppm with Gaussian profile fit.

4. Conclusions

In this paper, we proposed a PAS-based dual-gas detection method, which combines
two DFB lasers at different far wavelengths. By adjusting the current and temperature
of the two DFB lasers, the absorption lines of NH3 and CH4 were recorded on the left
and right halves of one periodic current scan. Since the generated acoustic waves are
indistinguishable for the microphone due to the light absorption of different gases, the
two gases can be distinguished by time discrimination. In this way, an identical current
signal was used to control the two DFB lasers. The experiments showed that the linearity
of methane and ammonia can both reach 0.999, and the detection limit can reach 0.3
and 0.1 ppm, respectively, in an integration time of 100 s. According to the American
Conference of Industrial Hygienists, the maximum permissible exposure limit of NH3 is
25 ppm. Thus, the NH3 limit of detection (LoD) of 0.1 ppm for our PAS sensor is sufficient
for this industrial application. The portable PAS instrument is suitable for detecting gas
leakage in the chemical industry and environmental protection. In the case of a tight power
budget, to avoid the 3dB loss of the power combiner for the two laser beams at 1512 and
1653 nm, the beam splitter shown in Figure 1 can be replaced with a WDM (wavelength
division multiplexer) device [34].
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