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Abstract: The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk,
changes how datasets for supervised learning are built. In these cases, instead of having datasets
labeled by one source (which is supposed to be an expert who provided the absolute gold standard),
databases holding multiple annotators are provided. However, most state-of-the-art methods devoted
to learning from multiple experts assume that the labeler’s behavior is homogeneous across the input
feature space. Besides, independence constraints are imposed on annotators’ outputs. This paper
presents a regularized chained deep neural network to deal with classification tasks from multiple
annotators. The introduced method, termed RCDNN, jointly predicts the ground truth label and the
annotators’ performance from input space samples. In turn, RCDNN codes interdependencies among
the experts by analyzing the layers’ weights and includes l1, l2, and Monte-Carlo Dropout-based
regularizers to deal with the over-fitting issue in deep learning models. Obtained results (using
both simulated and real-world annotators) demonstrate that RCDNN can deal with multi-labelers
scenarios for classification tasks, defeating state-of-the-art techniques.

Keywords: multiple annotators; classification; regularized models; chained deep neural networks;
crowdsourcing

1. Introduction

Traditional supervised learning methods aim to estimate a mapping function from
input features to output labels. To train such a function, a set of samples (named the
training set) is commonly obtainable, and an expert annotates each instance to the absolute
ground truth (gold standard). Nonetheless, in many real-world scenarios, such a ground
truth is not available because the process to acquire it is expensive, infeasible, or the
given label corresponds to a subjective assessment [1]. As an illustrative example, let us
consider a cancer detection task based on medical images. The correct label for a specific
region, e.g., the presence of cancer or not in that region, must be obtained from a biopsy,
which is a risky and expensive procedure [2]. As an alternative, the labeling process can
be assigned to multiple heterogeneous annotators, who label part of the whole dataset
providing their subjective version of the unknown ground truth [3]. Recently, one of
the most common ways to obtain labels from multiple experts is through crowdsourcing
platforms (www.mturk.com;labelme2.csail.mit.edu/, (accessed on 19 April 2021)). The
attractiveness of crowdsourcing lies in getting suitable quality labels at a low cost [4,5].
In this sense, in a multi-labeler scenario, each instance is paired to a set of labels given
by multiple annotators with different and unknown expertise [6], being difficult to apply
traditional supervised learning algorithms [7].
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Accordingly, the area of learning from multiple annotators has been introduced to face
supervised learning settings in the presence of multiple annotators from both frequentist
(regularized) and Bayesian perspectives. In turn, the approaches mainly fit the labels from
multiple labelers or adjust the supervised learning schema [8]. The well-known “label
aggregation” or “ground truth inference” calculates a single hard label per instance to
feed a supervised learning algorithm [9]. The most straightforward strategy is majority
voting (MV), which uses the most voted label as ground truth estimation (or the average
in regression settings). This method has been used in several multi-labelers problems
because of its simplicity [10]. Still, it assumes homogeneity in the annotator’s performance
that is hardly feasible for real-world scenarios, e.g., experts vs. spammers. Conversely,
more elaborated models have been considered to improve the actual label’s estimation
through the expectation maximization (EM) framework or by facing the imbalanced la-
beling issue [11]. Other strategies jointly estimate the annotators’ parameters (related to
their behavior) and train a given supervised learning algorithm. This kind of approach has
shown better results than the ones related to label aggregation. Thereby, the features used
to train the learning algorithm provide valuable information to calculate the hidden ground
truth [9]. Concerning this, the fundamental work presented in [2] introduces an EM-based
framework to jointly estimate the annotators’ sensitivity and specificity while training
a logistic regression classifier. This approach has inspired several models to deal with
multi-labelers tasks, such as: regression [12,13], binary classification [14–16], multi-class
classification [1,17], and sequence labeling [18]. Moreover, some works have extended such
ideas for deep learning methods, where a new layer is included to codify the information
from multiple labelers [19,20].

Overall, two main issues arise when building a multiple annotators method: (i) the
labelers’ behavior is supposed to be homogeneous across the input feature space, and
(ii) the independence constraint is assumed over the experts’ outputs. The former challenge
is viewed in approaches where the annotators’ parameters (related to their performance) are
assumed homogeneous across the input space. Indeed, fixed-point [16,20] and stochastic
modeling [9] have been proposed in the literature. On this point, it is worth mentioning
that experts make decisions based not only on his or her expertise but also on the features
observed from raw data [2]. The latter issue (independence constraint for the annotators’
responses) arises to reduce the complexity of the model [21], and it is based on the fact
that each labeler performs the annotations individually [22]. Nevertheless, there may exist
correlations among the labelers, especially if the annotations are captured from human
experts [23]. Namely, the independence assumption is hardly plausible because knowledge
is a social construction; people’s decisions will be correlated because they share information
or belong to a particular school of thought [24].

This paper introduces a regularized chained deep neural network for multiple an-
notators, termed RCDNN, to jointly estimate the ground truth label and the annotators’
performance. RCDNN is inspired in the chained Gaussian processes model (CGP) [25],
where each parameter in a given likelihood is coded with multiple independent Gaussian
processes–(GP) priors (one GP prior per parameter). Unlike CGP, our method considers
that the last layer models the parameters of an arbitrary likelihood. Thus, in a multi-labeler
scenario, the annotators’ parameters are coded as a function of the input space. Moreover,
since each output in a deep model is computed as a linear combination of previous layers’
outputs, our RCDNN can code interdependencies among the annotators. Besides, l1, l2,
and Monte-Carlo Dropout-based regularizers are coupled within our method to deal with
the over-fitting issue in deep learning models. Achieved results, using both simulated
and real-world data, show how our method can deal with classification problems from
multi-labelers data.

The agenda is as follows: Section 2 summarizes the related work. Section 3 describes
the methods. Sections 4 and 5 present the experiments and discuss the results. Finally,
Section 6 outlines the conclusions and future work.
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2. Related Work

As analyzed by the authors in [26], there exists an increasing interest in developing
models to deal with multi-labeler data. However, it is possible to identify some problems
that are not entirely solved: (i) to code the relationship between the labelers’ performance
and the input space, and (ii) to identify annotators’ interdependencies.

In [23], the authors introduced a binary classification algorithm for multiple labelers,
where the input data are represented by Gaussian mixture model (GMM)-based clusters.
This approach assumes that each annotator exhibits a particular performance concerning a
given cluster. Nevertheless, such a model does not consider the information from multiple
annotators as an input for the GMM, leading to variations in the labelers’ parameters.
In [27], the authors propose a binary classification algorithm employing two distributions
to compute the annotators’ achievement as a function of the input space, namely, Gaussian
and Bernoulli. The parameters of such distributions are computed via logistic regression
optimization. Still, a linear dependence is assumed between the labeler’s expertise and the
input space, which may not be appropriate in the presence of non-linear data structures. For
example, if we take into account online annotators assessing documents, they may show
different labeling accuracies depending on if they are more familiar with some specific
topic [28].

On the other hand, the work in [29] uses a multivariate Gaussian distribution to
model the annotations, and the experts’ interdependencies are coded in the covariance
matrix. Besides, in [16], the authors introduce a binary classification method based on a
weighted combination of classifiers. The weights are computed using a centered kernel
alignment (CKA)-based loss to measure the similarities among the input features and the
labels from multiple annotators. Similarly, the authors in [1] proposed a localized kernel
alignment-based method, termed LKAAR, to build a classification approach with multiple
annotators. However, unlike the work in [16], LKAAR modifies the CKA-based loss to
measure the similarities among each input instance and its corresponding set of labels.
Thereby, LKAAR measures the annotators’ performance as a function of the input space
while considering interdependencies among the experts.

Our proposal follows the line of the works in [19,20] in the sense that RCDNN uses
a deep-based approach to build a supervised learning model in the context of multiple
annotators. However, while such approaches code the annotators’ parameters as fixed
points, we model them as functions to consider dependencies between the input features
and the labelers’ behavior. RCDNN is also similar to the LKAAR model introduced in [1].
Both approaches model the annotators’ performance as a function of the input instances
and consider interdependencies among the labelers. Nonetheless, unlike LKAAR, where
it is necessary to use as many classifiers as annotators, our approach only needs to train
a single classifier from a deep learning representation, which is advantageous for a large
number of labelers. As an illustrative summary, Table 1 shows the key insights of our
RCDNN and relevant state-of-the-art works.

Table 1. Survey of relevant supervised learning approaches devoted to multiple annotators.

Source Data Type/Application Perspective Expertise as a Function of
the Input Space

Modeling the Annotators’
Interdependencies

Raykar et al., 2010 [2] Regression-Binary-Categorical Frequentist 7 7
Zhang and Obradovic, 2011 [23] Binary Frequentist 3 7

Xiao et al., 2013 [13] Regression Frequentist 3 7
Yan et al., 2014 [27] Binary Frequentist 3 7

Wang and Bi, 2016 [28] Binary Frequentist 3 7
Rodrigues et al., 2017 [30] Regression-Binary-Categorical Frequentist 7 7

Gil-Gonzalez et al., 2018 [16] Binary Frequentist 7 3
Hua et al., 2018 [31] Binary-Categorical Frequentist 7 7
Ruiz et al., 2019 [9] Binary Bayesian 7 7

Morales- Alvarez et al., 2019 [15] Binary Bayesian 7 7
Zhu et al., 2019 [29] Regression Bayesian 7 3

Gil-Gonzalez et al., 2021 [1] Binary-Categorical Frequentist 3 3
Proposal-(RCDNN) Binary-Categorical Frequentist 3 3
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3. Methods
3.1. Chained Deep Neural Network

Let us consider an input-output dataset= {X∈X , y∈ Y}, where X =
{

xn∈X ⊆RP}N
n=1

and y = {yn∈Y}N
n=1 hold the input and output spaces, respectively, (with N instances and

P features). Inspired by the chained Gaussian processes model (CGP) [25], a likelihood
function with J parameters is written as:

p(y|X, θ) =
N

∏
n=1

p(yn|θ1(xn), . . . , θJ(xn)), (1)

where θ =
[
θ1 . . . , θJ

]> ∈RNJ is a parameter vector, and θj =
[
θj(x1) . . . θj(xN)

]> ∈RN .
Here, each θj(x)∈Mj maps an input sample to the parameter space, beingMj the domain
for the j-th parameter (j∈{1, 2, . . . , J}). A chained deep neural network (CDNN) can be
introduced linking each likelihood parameter θj(x) to one of the J outputs of a deep neural
network comprising S hidden layers. Accordingly, let f (x) = [ f1(x), . . . , f J(x)]> ∈RJ be a
vector containing the J outputs of a deep network:

f (x) = (εS ◦ εS−1 ◦ · · · ◦ ε1)(x), (2)

where ◦ stands for function composition. Then, each parameter is computed as: θj(x) =
hj( f j(x)), where hj : R → Mj is a deterministic function that maps each output f j(x) to
the appropriate domainMj. Besides, each layer εs, with s∈{1, 2, . . . , S}, depends on a set
of variables (neural network weights and bias) φ = [φ1, . . . , φS]

>, which can be estimated
by minimizing the following log likelihood cost (for i.i.d samples):

− log(p(y|X, θ, φ)) = −
N

∑
n=1

log
(

p(yn|θ1(xn), . . . , θJ(xn), φ)
)
. (3)

Remarkably, the deep model in Equation (2) allows exploiting the representation
learning capability of neural networks within a chained framework through the likelihood
in Equation (3).

3.2. Regularized Chained Deep Neural Network for Multiple Annotators

Let g :X →Y be a classification function trained on the input-output set {xn, yn}N
n=1,

where xn ∈X ⊆ RP is a P−dimensional input feature vector corresponding to the n-th
instance with label yn ∈Y ⊆ {1, 2, . . . , K}, being K the number of classes. yn is assumed
to be the absolute ground truth. However, in many real-world classification problems,
instead of the ground truth, multiple labels are provided by R∈Z+ experts with different
levels of ability [12], where the r-th expert annotates |Ωr| ≤ N instances, being |Ωr| the
cardinality of the set Ωr containing the indexes of samples labeled by expert r. Further,
let Ψn be the index set of annotators who labeled the n-th instance. Next, it is possible to
build a dataset from multiple annotators D =

{
X, Y = {yr

n}N
n=1; r ∈ Ψn

}
, where yr

n is the
decision of annotator r for instance n.

Following the work proposed by authors in [32]; here, a regularized chained deep
neural network (RCDNN) is introduced for classification tasks from multiple annotations.
Concerning this, let λr

n ∈{0, 1} be a binary variable representing the r-th annotator reliabil-
ity: λr

n = 1 if yr
n = yn, and λr

n = 0 in other case. If λr
n = 1, the label yr

n is modeled by means
of a categorical distribution; otherwise, if λr

n = 0, yr
n is supposed to follow an uniform

distribution. In consequence, the likelihood function in Equation (3) is rewritten as:

p(Y |θ) =
N

∏
n=1

∏
r∈Ψn

(
K

∏
k=1

ζ
δ(yr

n−k)
n,k

)λr
n( 1

K

)1−λr
n

, (4)
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where δ(yr
n − k) = 1, if yr

n = k, and δ(yr
n − k) = 0, otherwise. Moreover, ζn,k = p(yr

n =
k|λr

n = 1) is the estimation of the hidden ground truth for the n-th instance in class k.
Accordingly, an architecture holding J = K + R outputs is required within our

RCDNN for modeling the likelihood parameters θ in Equation (4). In particular, K output
layers {ϑk(·)}K

k=1 are fixed to estimate the hidden ground truth ζn,k based on a softmax
function as follows:

ζn,k = ϑk( f1(xn), . . . , fK(xn)) =
exp( fk(xn))

∑K
i=1 exp( fi(xn))

. (5)

Furthermore, a step function can be used to compute the annotator reliability. Yet, the
step function is approximated through R output layers {ιr(·)}R

r=1, fixing the well-known
sigmoid activation to avoid discontinuities and favor the RCDNN implementation:

λr
n = ι( fm(xn)) =

1
1 + exp( fm(xn))

, (6)

where m∈{K + 1, . . . J} is the index of the output linked to the estimation of the reliability
of r-th expert. Afterward, the log likelihood of Equation (4) is used to compute the RCDNN
weights and bias in φ, as follows:

φ∗ = arg min
φ
−

N

∑
n=1

∑
r∈Rn

[
λr

n(φ)

(
K

∑
k=1

δ(yr
n − k) log(ζn,k(φ))

)
− (1− λr

n(φ)) log(K)

]
, (7)

where λr
n(φ) and ζn,k(φ) highlight the dependency between the annotator reliabil-

ity/ground truth estimation and the RCDNN weights and bias. Figure 1 summarizes the
RCDNN pipeline as a classifier for a dataset holding multiple annotators.

ι(·) λ1n

ι(·) λRn

ϑ1(·) ζ1,n

ϑK(·) ζK,n

f1(xn)

fK(xn)

fK+1(xn)

fJ(xn)

· · ·

· · ·

· · ·

· · ·

· · ·ε1(·) ε2(·) εS−1(·) εS(·)

xn ∈ RP

...
...

...

...
...

...

...
...

...

Figure 1. Regularized chained deep neural network (RCDNN) classifier for multiple annotators.
J = K + R outputs are used to model the hidden ground truth label (as 1-K coding) and each
expert’s reliability.

In turn, to avoid over-fitting and favor the RCDNN generalization capability, l1 and l2
norm-based regularizers are used for dense layers; besides, Dropout layers are also added.
Of note, both regularization schemes are implemented through the function composition
presented in Equation (2). Lastly, to exploit the RCDNN generalization, the well-known
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Monte-Carlo Dropout prediction strategy is used to estimate the expert’s reliability λ̂r
n and

the ground truth label ζ̂n,k, as follows [33]:

λ̂r
n =

1
D

D

∑
d=1

λr
n(φ

∗, ∆d), (8)

ζ̂r
n,k =

1
D

D

∑
d=1

ζr
n,k(φ

∗, ∆d); (9)

where notation λr
n(φ

∗, ∆d) and ζr
n,k(φ

∗, ∆d) stands for the dependency between the es-
timated output, the trained RCDNN weights and bias based on Equation (7), and the
set ∆d holding Dropout layers. As seen, the Monte-Carlo Dropout-based predictions in
Equations (8) and (9) compute the RCDNN outputs as the sample mean over a stack of D
predictions; each of them activates randomly the Dropout layers in ∆d for the d-th iteration
within a Monte-Carlo scheme. For RCDNN’s implementation details see Section 4.4.

4. Experimental Set-Up
4.1. Tested Datasets

The introduced RCDNN classifier for multiple annotators scenarios is tested in three
different kind of datasets. The first category, termed 2D-PCA iris dataset, is intended to show
graphically how our method works. The principal component analysis (PCA) algorithm is
applied to reduce the well-known Iris dataset dimension from four to two [33], aiming to
easily observe some preliminary results in a cartesian plane and illustrate how multiple
annotations can be simulated.

The second category comprises datasets where the input data come from real-world
applications. Still, the labels from multiple annotators are obtained synthetically (Semi-
synthetic datasets). The latter is carried out to control the labeling process. In particular, nine
datasets of binary and multi-class-classification tasks are studied from the well-known UCI
repository. (http://archive.ics.uci.edu/ml, (accessed on 19 April 2021)) The chosen datasets
include: Wisconsin Breast Cancer database–(breast); BUPA liver disorders–(bupa); Johns
Hopkins University Ionosphere database–(ionosphere); Pima Indians Diabetes database–
(pima); Tic-Tac-Toe Endgame database–(tic-tac-toe); Iris Plants database–(iris); Wine data
set–(wine); and Image Segmentation dataset—(segmentation). Besides, the publicly avail-
able bearing data collected by the Case Western Reserve University–(Western) is tested. The
aim is to build a system to diagnose an electric motor’s status based on two accelerometers.
The feature extraction was performed as in [34].

The third category includes Real-world datasets, where both the input features and
the labels come from real-world applications. The Massachusetts Eye and Ear Infirmary
Disordered Voice Database from the Kay Elemetrics company is proved. A subset holding
N = 218 voice records is considered from both healthy and different voice issues. Each
voice record is parametrized using the Mel-frequency cepstral coefficients (MFCC) to obtain
an input space with a dimensionality of P = 13. A set of physicians label each voice record
by assessing its quality through the GRBAS protocol, comprising the evaluation of five
qualitative scales: Grade of dysphonia (G); Roughness (R); Breathiness (B); Aesthenia (A);
and Strain (S). For each scale, the specialist provides a tag ranging from 0 (healthy voice)
to 3 (severe disease) [35]. A five multi-class task is built (one per each qualitative scale).
However, five binary classification problems are provided to access the ground truth, which
is useful for validation purposes [36]. The second dataset is named music genre, which
corresponds to a collection of song records with 30 s of length and labeled from one to ten,
depending on their music genre: classical, country, disco, hip-hop, jazz, rock, blues, reggae,
pop, and metal. A total of 700 samples are selected randomly and published in the AMT
platform to obtain labels from multiples sources. The feature extraction is performed by
following the work in [32], to obtain an input space with P = 124 features. The third one is a
sentiment polarity dataset, which corresponds to a collection of more than 10,000 sentences
labeled as positive or negative. The AMT platform published 4999 sentences to gather

http://archive.ics.uci.edu/ml
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answers about their polarity. From this process, 27,747 answers were obtained from
203 labelers. The remaining were kept for testing purposes. Each sample is parametrized
following the procedure in [32] to get an input space in P = 1200 dimensions. Table 2
summarizes the tested semi-synthetic and real-world datasets.

Table 2. A brief description of the tested datasets for synthetic, semi-synthetic, and
real-world scenarios.

Name Number of Number of Number of
Features (P) Instances (N) Classes (K)

synthetic 2D-PCA Iris 2 150 3

semi-synthetic

Breast 9 683 2
Bupa 6 345 2

Ionosphere 34 351 2
Pima 8 768 2

Tic-tac-toe 9 958 2
Iris 4 150 3

Wine 13 178 3
Segmentation 18 2310 7

Western 7 3413 4

real-world
Voice 13 218 2
Music 124 1000 10

Polarity 1200 10,306 2

4.2. Provided and Simulated Annotations

Since the semi-synthetic datasets do not provide annotations from multiple labelers, to
test our RCDNN classifier, it is necessary to simulate those annotations based on the ground
truth, which is available for this kind of experiments. Considering that our approach
models the annotators’ performance as a function of the input space, we simulate labels
using two schemes. The former, termed Non-homogeneous labels, represents the input
space by R clusters (for concrete testing, we use the K-means algorithm to define each
cluster) [27,37]. Then, the r-th annotator is considered an “expert”, i.e., his or her labels
correspond to the ground truth in samples belonging to the cluster r. For the rest of the
samples, the annotator makes mistakes in the 35% of the cases selected randomly. Similarly,
Biased coin (Non-homogeneous) assumes that the input space can be represented by using
R clusters [1,32]. In each cluster c∈{1, . . . , R}, a random number αr

n∼c is sampled from a
Bernoulli distribution with parameter pr

c ∈[0, 1] (n ∼ c stands for the instance n belonging
to the cluster c). So, the performance of the r-th annotator is modeled in each region c.
Then, the simulated annotations of the r-th expert yields: yr

n = yn, if αr
n∼c = 0, otherwise,

yr
n = ỹn, if αr

n∼c = 1.
Regarding the voice quality dataset, the annotations from four experts are provided,

R = 4. However, for concrete testing, only the G, R, and B scales are studied. Indeed, for
scales A and S, the sources’ expertise are not satisfactory [36]. Similarly, for the polarity
sentiment dataset, labels from 203 workers are available. Annotators who labeled at
least 15% of the available instances are kept, yielding R = 7 labelers. Finally, concerning
the music dataset, 2946 labels were obtained from 44 instances. Nevertheless, in our
experiments, the sources that labeled at least the 15% of the available instances are studied
(R = 9).

4.3. Method Comparison and Quality Assessment

Our model’s validation is carried out by estimating the classification performance
as the area under the curve (AUC) and the overall accuracy (Acc). The AUC is extended
for multi-class scenarios, as discussed in [38]. A cross-validation scheme is used with
30 repetitions, where 70% of the samples are utilized for training and the remaining 30%
for testing, except for the music and polarity dataset since they clearly define the train-
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ing and testing sets. Table 3 displays the state-of-the-art models that are considered for
comparison purposes. The Matlab codes for the state-of-the-art methods studied are
publicly available (GPC-MV MA-LFC, MA-MAE, MA-DGRL, GPC-GTIC, KAAR, and
LKAAR codes: https://github.com/juliangilg (accessed on 19 April 2021). MA-GPC codes:
http://www.fprodrigues.com/ (accessed on 19 April 2021)). Of note, the GPC-Gold is
used only to provide an upper bound for our approach.

Table 3. A short overview of the tested state-of-the-art approaches. GPC: Gaussian processes classifier, LRC: logistic regression
classifier, MV: majority voting, MA: multiple annotators, MAE: Modelling annotators expertise, LFC: Learning from crowds, DGRL:
distinguishing good from random labelers, KAAR: kernel alignment-based annotator relevance analysis, LKAAR: localized kernel
alignment-based annotator relevance analysis.

Approach Brief Description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the majority voting of the labels as the ground truth.
MA-LFC [2] A LRC with constant parameters across the input space.
MA-DGRL [32] A multi-labeler approach that considers as latent variables the annotator performance.
MA-MAE [37] A LRC where the sources parameters depend on the input space.
MA-GPC [14] A multi-labeler GPC, which is an extension of MA-LFC by using a non-linear approach.
KAAR [16] A kernel-based approach that employs a convex combination of GPC, it codes the labelers dependencies.
LKAAR-(LR,SVM,GPC) [16] A localized kernel alignment-based annotator relevance analysis using a combination of LRC, SVM, GPC

respectively. It models both the annotators dependencies and the relationship between the labelers’ behavior
and the input features.

4.4. RCDNN Detailed Architecture and Training

The proposed RCDNN architecture for multiple annotators comprises:

– IN: An input layer fed by the input samples X ∈RN×P;
– ε1(·): A dense layer coding relevant patterns from input features to perform. The

number of neurons is set as h = bρPe, where ρ ∈ {0.5, 1, 1.5} is chosen empirically; a
linear-based activation function is used to code input data linear dependencies;

– ε2(·): A dense layer fixing a tanh-based activation function with J = K + R neurons to
reveal non-linear relationships;

– ε3(·): A fully-connected layer with K neurons and a softmax-based activation function,
which is employed to estimate the hidden ground truth ζk,n;

– ε4(·): A dense layer with R neurons and a sigmoid-based activation function, which is
used to compute the annotators’ reliability in λr

n;
– For all provided εs layers l1 plus l2-based regularization strategy is used, searching

the regularization weights within the range {1e-3,1e-2,1e-1};
– Batch Normalization and Dropout layers are included between layers to avoid vanish-

ing and exploding gradient issues. Additionally, it favors the RCDNN’s generalization
capability as exposed in Section 3.2. See Figure 2 for details;

– The optimization problem in Equation (7) is solved by using a Back-propagation
algorithm as usual. Moreover, to favor scalability, we utilize a mini-batch-based
gradient descent approach with automatic differentiation (RMSprop-based optimizer
is fixed).

We clarify that our RCDNN is flexible, and it admits different deep structures such
as recurrent or convolutional layers aiming to deal with complex tasks (e.g., computer
vision or natural language processing). Moreover, our approach can build from different
activation functions (RELU, ELU, sigmoid, softmax). However, the last layers (in this
particular case ε3 and ε4) need to be designed to code each annotator’s behavior and the
hidden ground truth. For example, the parameter λr

n represents an estimation for the
annotators’ reliability; accordingly, we need to use an activation function whose output
belongs to the range [0, 1].

https://github.com/juliangilg
http://www.fprodrigues.com/
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Figure 2. RCDNN architecture details. εs stands for dense layer. ε1 holds a linear activation,
ε2 includes a tanh-based activation, and ε3 and ε4 output the hidden ground truth label and the
annotator’s reliability fixing a softmax and a sigmoid activation, respectively.

5. Results and Discussion
5.1. Synthetic Dataset Results

A controlled experiment is performed to estimate the performance of inconsistent
labelers as a function of the input space while highlighting their dependencies. For this
first experiment, the 2D PCA Iris dataset is employed (see Section 4.1). Besides, the data
are divided into five clusters using the K-means technique to emulate five annotators using
the approach “Biased coin (Non-homogeneous)”. A matrix A ∈ [0, 1]R×R is used to set a
different score (annotator reliability) for each pair annotator-cluster, as follows:

A =


0 0.9 0.5 0.15 0.6

0.9 0 0.3 0.4 0.75
0.5 0.3 0 0.6 0.3

0.15 0.4 0.6 0 0.8
0.6 0.75 0.3 0.8 0

. (10)

Note that the value ac,r refers to the probability that the annotator r fails labeling a
sample that belongs to the cluster c; thus, a zero-value means a perfect annotator for the
correspondent cluster. The r-th annotator is an expert (its labels correspond to the ground
truth) in the region c = r.

Figure 3 shows the decision boundaries generated by our approach for the first experi-
ment. As shown, RCDNN offers a suitable representation for the multi-class classification
problem; an AUC score of 0.9837 is achieved, which demonstrates its generalization capa-
bility, even in cases where the ground truth is unknown. Indeed, RCDNN codes both the
relationship between the input space and the annotator’s behavior and the dependencies
among their labels, which improves the quality of the expert codification [1,16,29]. To
empirically support the above statement, Figure 4 shows each annotator’s simulated accu-
racy and the reliability estimated by our RCDNN. The latter elucidates how our method
performs a satisfactory identification of the zones where the labelers have the best accuracy.
The above is not unexpected because the annotators’ accuracy (simulated) is compared
with their reliability (estimated); hence, the regions where a specific labeler obtains the
higher accuracy should match the regions where the estimated reliability is closer to 1.

In addition, Figure 5 shows a comparison between the Pearson correlation coefficients
(absolute value) from the labelers’ performance in Equation (10), configuring the simulated
dependencies among the annotators, and the Pearson correlation coefficients (absolute
value) from the weight matrix Φε4 ∈ R(K+R)×R of the layer ε4(·) (RCDNN annotators’
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dependencies estimation). Comparing the real and the estimated dependencies, it is
noticeable that, even though the exact matrix is not recovered, our approach efficiently
finds tendencies between annotators’ performances. Thereby, the learned representation
from hidden layers (see Figure 2) allows coding both linear and non-linear patterns that
recover the expert dependencies from data. Then, our deep model estimates the unknown
ground truth and the relationships between annotators.

3 2 1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0

Figure 3. RCDNN’s decision boundaries for the 2D-PCA Iris dataset (synthetic scenario).
AUC = 0.9837. The point’s color stands for the Iris dataset classes. PCA1 and PCA2 stand for
the first and second PCA-based projections.

0 0.2 0.4 0.8 1

Annotator 1

Annotator 2

Annotator 3

Annotator 4

Annotator 5

0.6

Figure 4. RCDNN-based annotators performance (reliability) estimation for the synthetic experiments
(2D PCA Iris data). In the first column (from top to bottom), the simulated accuracy for each annotator
is presented based on Equation (10). The second column shows (from top to bottom) the estimated
annotators’ reliability (λr).
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Figure 5. Target and estimated annotators dependencies for the synthetic 2D PCA Iris dataset. In
the left, the Pearson correlation coefficients (absolute value) from simulated accuracies (experts
reliability) in matrix A of Equation (10) are shown. In the right, the dependencies among the
annotators estimated from the RCDNN ε4 layer’ weights are displayed.

5.2. Semi-Synthetic Datasets Results

Table 4 shows the results concerning the “Non-homogeneous labels”, where it is
supposed that the labelers’ performance depends on the input space X . We show the
non-parametric Friedman test results to establish their statistical significance. The null hy-
pothesis settles that all algorithms perform equal [39]. Additionally, we fix the significance
threshold as p < 0.05. The GPC-GOLD standard is not included within the test to compare
only multiple annotators approaches. First, we notice that most of the classification schemes
present a considerably high performance for both AUC and Acc; in fact, the average AUC
and Acc for all methods (except MA-DGRL and MA-MAE) are similar compared to the
upper bound GPC-GOLD. The above behavior demonstrates high-quality labels, which is
confirmed considering the performance of the most naive approach GPC-MV. Furthermore,
we highlight that our RCDNN presents the best average ranking and the second AUC and
Acc scores. Then, from non-linear-based approaches, we notice that a naive approach, as
GPC-MV, obtains similar performance compared with sophisticated ones, such as KAAR,
LKAAR-SVM, and LKAAR-GPC. Nevertheless, as we already comment, such an outcome
is a consequence of simulating annotators with suitable quality, which favors the majority
voting method. Besides, MA-GPC presents the lowest average ranking compared with its
other non-linear methods, resulting from a lack of generalization (over-fitting). Regarding
the results for the linear models, they achieve lower performance than non-linear ones. As
seen, there is no statistical evidence to establish that our RCDNN outperforms its competi-
tors (p-value = 0.2). We explain such an outcome because, for this experiment, the quality
of the labels is significantly high; thus, similar performances are obtained.

On the other hand, Table 5 shows the results concerning the simulation method “Biased
coin (Non-homogeneous)”. At first sight, there exists a generalized lower performance
compared with previous results in Table 4. To explain such an outcome, we recall the
stimulation parameters A in Equation (10), where the element 1− ac,r (column r, row c)
indicates the r-th annotator’s performance in region c. Accordingly, taking the average by
column to the matrix 1− A, we obtain the annotators accuracy [0.57, 0.53, 0.66, 0.61, 0.51].
We remark that the labelers’ accuracy is considerably low for this experiment, which
impacts the algorithms’ performance. RCDNN achieves the best predictive performance
in both the overall accuracy and the AUC score; RCDNN also obtains the best average
ranking. Moreover, the non-linear competitors KAAR, LKAAR-GPC, and LKAAR-SVM
achieve competitive results. However, GPC-MV and MA-GPC offer the lowest classification
scores. Regarding GPC-MV, the result is explained because GPC-MV corresponds to the
most naive approach. After all, it considers that the whole annotators achieve similar
performance. On the other hand, the MA-GPC achieves a similar performance compared
with GPC-MV; such a behavior proves that MA-GPC is more prone to over-fitting [9].
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Remarkably, simple classifiers as MA-LFC, MA-DGRL, and LKAAR-LR obtain competitive
outcomes compared to the non-linear competitors; in fact, all the linear models excepting
MA-MAE outperform GPC-MV and MA-GPC. An additional experiment is conducted: an
LR-based classifier using the ground truth (following a similar scheme for GPC-GOLD) is
trained overall datasets, obtaining an average AUC equal to 87.21 (close enough to the MA-
DGRL and LKAAR-LR performances). Accordingly, a linear structure is presented in some
of the studied datasets. In turn, MA-MAE obtains the worst generalization performance
(even worse than GPC-MV). Such an outcome is a consequence of over-fitting, empirically
demonstrated in [16]. Of note, RCDNN and LKAAR-GP obtain similar results, which is
expected since both approaches compute the annotators’ performance as a function of the
input space while taking into account dependencies between the labelers. However, an
unexpected result regarding the “tic-tac-toe” dataset arises, where LKAAR-GP far exceeds
the performance of our approach. The above outcome is caused by the categorical features
in such a dataset, which cannot be modeled with the chosen DNN architecture Figure 2.
Still, our method can be easily adapted by setting different layers and activation functions.
Likewise, we apply the Friedman test to verify the significance of results in Table 5. As
seen, we obtain a Chi-square of 21.16 with p-value = 0.01. Thus, we have enough statistical
evidence to determine that our approach exhibits the best performance than state-of-the-art
competitors.

It is worth noting that the previous experiments were done under controlled scenarios
using simulated annotations aiming to stress our method and compare its performance
with recently developed approaches. In short, RCDNN offers the best advantages among
the state-of-the-art models considered in AUC, overall accuracy, and average ranking.

5.3. Real-World Datasets Results

Up to this point, RCDNN unravels the information hidden in noisy annotations
(simulated) to estimate the unknown ground truth considering experts’ performance as a
function of the input space and dependencies among labelers. However, the following ex-
periments aim to demonstrate how our approach can outperform state-of-the-art methods
even for real labelers, e.g., the challenge is higher as the input data and the annotations are
obtained from real-world applications. Table 6 describes the results achieved using AUC
as the metric to compare the state-of-the-art methods in five different real-world datasets.

First, analyzing the voice data, for the scales G and R, all the approaches give similar
AUC values. In fact, for the scale G, the GPC-MV attains competitive performance. The
latter can be explained in the sense that the annotators exhibit similar conduct for these
scales [36]. Conversely, for B scale, a generalized reduction is presented. Looking at
RCDNN results for this database, it is noticeable that the achievement is similar among all
the scales, which is an exceptional outcome that shows our method’s capabilities to detect
regions where annotators have superior execution.

In the polarity dataset, an acceptable RCDNN’s performance is attained compared to
others. Our approach requires defining several layer weights in the deep model (Figure 2)
concerning the number of features (P), labelers (R), and classes (K). For this particular
dataset, those values are considerably higher: P = 1200, R = 7, and K = 2. Nevertheless,
the introduced regularization strategy (l1, l2, plus Monte-Carlo Dropout) allows computing
an acceptable AUC performance of 76.04 in comparison with the best achieved by the
KAAR method 77.46.
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Table 4. Semi-synthetic datasets results for Non-homogeneous labels. Bold: the highest AUC excluding the upper bound (target) classifier GPC-GOLD. Marked with *: the highest accuracy
(Acc) except the upper bound. The last column presents the average ranking for both the AUC score and the overall accuracy (GPC-GOLD is not considered), the best average ranking for
AUC is highlighted in bold, and the accuracy is marked with *. From the Friedman test we obtain a Chi-square of 12.21 (p-value = 0.2).

Method Breast Bupa Ionosphere Pima Tic-Tac-Toe Iris Wine Segmentation Western Average
AUC-Acc

Average
Ranking

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 94.52± 0.57 92.39 -
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 79.75± 0.57 86.12 -

GPC-MV AUC[%] 99.11± 0.58 70.95± 3.90 93.14± 3.49 81.21± 2.57 87.83± 4.11 99.63± 0.39 98.41± 1.38 91.48± 1.48 78.14± 4.15 88.87 5.77
Acc[%] 96.29± 1.48 66.60± 4.31 87.90± 3.26 74.87± 2.32 81.96± 3.46 95.33± 3.05 93.96± 3.34 82.68± 5.30 63.35± 1.68 82.54 4.88

MA-LFC AUC[%] 98.72± 0.93 71.53± 4.18 82.08± 4.79 82.29± 2.22 61.13± 3.28 98.75± 1.44 96.83± 1.75 99.58± 0.11 87.77± 0.79 86.72 5.33
Acc[%] 95.63± 1.79 69.68± 4.20 * 81.43± 4.44 76.52± 1.91 * 64.88± 2.86 94.44± 4.62 87.74± 4.67 95.40± 0.71 * 57.21± 1.32 80.32 6.11

MA-DGRL AUC[%] 99.30± 0.39 68.00± 4.09 77.60± 7.50 81.72± 2.57 61.83± 2.80 98.78± 1.34 95.33± 3.35 98.31± 0.32 87.67± 0.85 85.39 6.44
Acc[%] 94.63± 1.77 65.77± 3.47 81.94± 3.42 76.45± 2.81 66.45± 2.24 94.59± 2.96 84.91± 6.50 89.58± 0.99 60.55± 1.26 79.43 7.11

MA-MAE AUC[%] 99.28± 0.60 70.82± 3.90 78.91± 6.01 81.80± 2.57 60.35± 3.28 85.97± 2.39 98.20± 1.33 97.27± 0.28 72.83± 0.80 82.76 7.33
Acc[%] 96.31± 1.38 66.92± 3.35 82.25± 3.99 76.12± 2.77 65.64± 2.37 94.81± 4.14 89.31± 5.79 92.94± 0.76 52.41± 1.56 79.63 5.77

MA-GPC AUC[%] 95.81± 2.94 49.81± 11.72 94.46± 3.09 67.83± 4.24 81.44± 3.81 99.15± 1.03 99.85± 0.24 99.42± 0.14 94.14± 0.52 86.87 5.22
Acc[%] 96.70± 1.37 * 59.52± 4.71 82.13± 3.32 72.77± 2.71 76.39± 2.85 94.30± 2.90 94.34± 2.80 94.74± 0.68 78.52± 1.11 * 83.26 * 5.55

KAAR AUC[%] 98.81± 0.66 70.20± 5.70 93.88± 3.53 81.18± 2.93 89.55± 2.84 99.56± 0.52 99.53± 0.36 92.34± 1.38 81.77± 1.02 89.64 5.55
Acc[%] 96.02± 1.14 65.99± 5.44 87.52± 4.24 75.10± 2.98 81.68± 2.41 95.56± 2.92 * 96.54± 2.11 81.11± 4.15 64.58± 1.47 82.67 4.77

LKAAR-LR AUC[%] 99.34± 0.44 68.86± 5.16 87.14± 3.38 82.04± 2.44 65.40± 3.13 96.00± 2.50 99.21± 0.82 97.97± 0.27 83.25± 1.22 86.57 5.66
Acc[%] 96.00± 1.46 64.17± 4.22 84.10± 3.20 75.67± 2.15 66.96± 2.74 82.59± 6.07 94.28± 3.19 90.02± 0.93 51.49± 2.05 78.36 7.22

LKAAR-SVM AUC[%] 98.29± 0.80 64.37± 3.36 96.98± 2.01 77.80± 2.28 89.82± 2.14 98.05± 1.90 99.53± 0.47 97.89± 0.32 79.08± 0.95 89.09 6.33
Acc[%] 96.36± 1.02 63.14± 3.67 92.19± 2.43 * 72.52± 2.22 80.99± 2.81 84.44± 6.76 96.48± 2.26 91.28± 0.93 53.73± 2.06 81.79 5.88

LKAAR-GPC AUC[%] 99.00± 0.75 71.07± 5.05 93.37± 2.91 81.23± 2.21 91.97± 2.01 99.57± 0.61 99.64± 0.34 92.61± 1.73 81.37± 1.37 89.98 4.44
Acc[%] 96.03± 1.32 66.92± 4.79 87.75± 3.90 75.10± 2.65 84.09± 2.43 * 95.26± 3.29 96.54± 2.16 80.98± 3.91 65.20± 1.72 82.65 4.44

RCDNN (ours) AUC[%] 99.47± 0.33 69.80± 6.07 92.60± 2.80 83.25± 3.13 71.17± 3.76 99.74± 0.26 99.90± 0.13 99.15± 0.19 89.61± 0.71 89.41 3.00
Acc[%] 97.06± 1.19 * 63.69± 4.26 86.79± 2.37 76.00± 3.10 68.06± 3.02 95.33± 2.46 97.84± 1.86 * 92.96± 1.06 66.46± 1.82 82.68 3.66 *
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Table 5. Semi-synthetic datasets results for Biased coin (Non-homogeneous) labels. Bold: the highest AUC excluding the upper bound (target) classifier GPC-GOLD. Marked with *: the
highest accuracy (Acc) except the upper bound. The last column presents the average ranking for both the AUC score and the overall accuracy (GPC-GOLD is not considered), the best
average ranking for AUC is highlighted in bold, and the accuracy is marked with *. The Friedman test returns a Chi-square value of 21.16 (p-value = 0.01).

Method Breast Bupa Ionosphere Pima Tic-Tac-Toe Iris Wine Segmentation Western Average
AUC-Acc

Average
Ranking

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 94.52± 0.57 92.39 -
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 79.75± 1.28 86.12 -

GPC-MV AUC[%] 90.78± 4.28 50.47± 6.19 82.91± 6.03 70.18± 6.29 65.91± 6.72 98.55± 1.38 97.75± 2.04 90.18± 1.71 74.40± 4.94 80.13 7.44
Acc[%] 86.63± 2.06 48.27± 4.84 75.65± 6.45 66.52± 5.16 64.66± 3.64 88.81± 5.00 86.92± 5.76 79.24± 4.99 65.04± 1.52 73.53 6.77

MA-LFC AUC[%] 97.99± 0.99 59.64± 8.08 72.66± 9.98 72.73± 3.43 52.88± 3.13 96.72± 8.98 96.47± 2.13 99.50± 0.15 84.97± 0.84 81.51 6.22
Acc[%] 96.00± 1.70 * 56.41± 8.12 69.17± 12.53 58.10± 4.53 46.27± 3.03 92.30± 5.18 87.55± 4.97 95.06± 0.80∗ 55.17± 1.33 72.89 6.11

MA-DGRL AUC[%] 99.31± 0.42 61.77± 6.17 77.83± 7.02 81.66± 2.65 55.70± 3.95 98.76± 1.33 95.26± 3.30 98.32± 0.34 86.61± 1.10 83.91 4.66
Acc[%] 78.08± 2.22 55.64± 4.52 71.43± 5.15 76.90± 1.99 * 60.64± 2.33 94.37± 2.66 84.84± 6.32 89.63± 0.89 65.61± 1.28 75.24 5.55

MA-MAE AUC[%] 95.22± 1.70 64.63± 9.77 64.18± 9.17 79.94± 2.64 52.36± 4.78 93.16± 5.08 96.25± 2.40 94.40± 1.26 61.40± 0.93 77.95 7.66
Acc[%] 87.15± 1.85 62.34± 8.46 67.94± 7.19 75.94± 2.69 53.33± 6.42 81.70± 11.68 86.67± 5.15 88.38± 2.00 49.34± 4.15 72.53 7.00

MA-GPC AUC[%] 85.37± 5.90 40.79± 12.30 74.52± 4.57 73.17± 3.34 61.82± 4.51 98.71± 1.14 99.60± 0.41 99.35± 0.14 93.09± 0.58 80.71 5.55
Acc[%] 92.55± 2.17 52.82± 6.38 69.87± 4.41 62.42± 3.00 62.33± 2.98 93.85± 3.49 95.09± 2.65 93.46± 0.83 76.88± 1.19∗ 77.70 4.44

KAAR AUC[%] 97.81± 0.99 56.52± 9.13 82.20± 4.93 67.90± 3.16 75.34± 4.70 98.75± 1.10 97.91± 1.36 91.75± 1.41 82.30± 0.73 83.39 6.22
Acc[%] 77.19± 3.14 52.44± 7.79 72.60± 4.80 61.20± 2.95 70.69± 3.63 90.44± 5.48 91.45± 4.28 76.38± 5.05 64.61± 1.36 73.00 6.88

LKAAR-LR AUC[%] 99.52± 0.30 66.07± 6.14 82.99± 5.01 80.57± 3.31 52.32± 3.38 96.83± 2.14 99.27± 0.68 97.87± 0.30 81.03± 0.80 84.05 4.55
Acc[%] 92.47± 2.24 60.22± 5.67 * 78.92± 4.32 75.07± 2.65 55.64± 2.77 83.41± 6.92 94.59± 3.12 89.77± 0.99 54.80± 2.05 76.10 4.88

LKAAR-SVM AUC[%] 98.37± 1.00 52.35± 6.40 88.28± 5.13 66.84± 3.66 73.85± 3.43 96.22± 2.50 98.88± 0.80 97.59± 0.34 79.19± 1.46 82.39 5.88
Acc[%] 87.72± 5.17 50.96± 6.81 84.73± 4.66 * 64.81± 3.11 70.02± 2.74 74.15± 7.90 91.82± 4.33 90.37± 1.24 55.39± 3.03 74.44 5.66

LKAAR-GPC AUC[%] 98.14± 1.04 58.36± 7.24 86.23± 4.47 73.80± 2.83 80.02± 4.15 99.61± 0.61 98.74± 0.93 92.24± 1.80 83.35± 0.75 85.61 4.22
Acc[%] 86.76± 4.33 54.52± 5.27 78.25± 5.51 69.64± 3.01 74.90± 2.99 * 95.93± 3.15 * 93.84± 3.57 78.71± 4.18 66.58± 1.19 77.68 4.22

RCDNN (ours) AUC[%] 99.26± 0.42 64.16± 3.87 83.41± 6.28 82.08± 3.27 65.31± 3.87 99.51± 0.53 99.77± 0.22 99.06± 0.20 87.94± 1.03 86.72 2.55
Acc[%] 94.07± 2.00 58.24± 5.13 76.70± 6.19 74.91± 3.77 65.07± 1.17 93.33± 3.30 96.17± 2.57 * 91.28± 0.99 61.56± 5.13 79.04 * 3.44
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In the case of music data, our RCDNN obtains the best classification performance. On
the other hand, MA-MAE and MA-GPC exhibit a significantly low performance, even lower
than the intuitive lower bound (GPC-MV). This behavior has been repeated in the previous
experiments because of the over-fitting issue. Nevertheless, an additional challenge is
presented for the music dataset regarding the multi-class classification setting. Accordingly,
a one-vs-all scheme is fixed for all of the binary classification methods (including MA-MAE
and MA-GPC). Such a scheme to deal with multi-class classification can lead regions on
the input space that are ambiguously classified [40].

Lastly, like for the semi-synthetic datasets, we perform a Friedman test to validate
the significance for the results in Table 6. We obtain a Chi-square value of 26.71 with a
significance of p-value = 0.0015; thus, we reject the null hypothesis and conclude that the
performance of our approach statistically defeats its competitors.

Table 6. Fully real-world datasets results. Bold: the method with the highest performance excluding the upper bound
(target) classifier GPC-GOLD. The last column presents the average ranking for AUC score, in bold the best average ranking.
The Friedman test returns a Chi-square value of 26.71 (p-value = 0.0015).

AUC([%])

Method Voice Dataset Polarity Dataset Music Average AUC Average RankingG R B

GPC-GOLD 93.66 93.66 93.66 80.26 92.84 90.81 -
GPC-MV 90.17 84.73 84.04 71.14 88.79 83.77 6.8
MA-LFC 89.99 90.59 87.27 72.06 85.99 85.18 6.4

MA-DGRL 85.45 90.14 79.33 56.13 88.32 79.86 8.4
MA-MAE 91.08 89.12 80.74 48.73 81.92 78.31 8.4
MA-GPC 91.50 91.16 80.81 61.18 82.53 81.43 6.8

KAAR 89.85 93.50 89.20 77.46 88.96 87.79 3.8
LKAAR-LR 90.39 92.92 88.94 68.28 84.43 84.99 6.0

LKAAR-SVM 92.06 93.02 86, 98 72.70 89.98 87.70 3.6
LKAAR-GPC 90.78 93.60 89.79 76.50 86.44 87.42 3.4

RCDNN (ours) 92.24 94.19 92.57 76.04 93.29 89.66 1.4

5.4. Introducing Spammers and Malicious Annotators

As a final experiment, we wish to analyze the impact of spammers and malicious an-
notators on the performance of our multi-labeler classifier. For concrete testing, we use the
pima dataset, which holds 768 instances; from this dataset, we use 538 samples for training
and the remaining 230 for testing. We create synthetic labels from 5 annotators generated
from the biased coin (Non-homogeneous) procedure (see Section 4.2 and Equation (10)).
According to Figure 6 (blue dots), we notice that from the 5 labelers, two are categorized
as suitable labelers, one as Spammers and the remaining as Malicious. Then, we add Re
additional annotators aiming to test our approach in extreme scenarios, where the number
of malicious or spammers annotators increases. The labels are simulated as follows: a
random number αr

n is sampled from a Bernoulli distribution with parameter pr; then if
αr

n = 0, yr
n = yn, and yr

n = ỹn otherwise. For Spammers, we use Re = 65, and pr = 0.5 (see
red dots in Figure 6); alike, for malicious labelers, we fix Re = 20, and pr = 0.6 (see green
dots in Figure 6).
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Figure 6. Receiver operating characteristic (ROC) plot for the annotators simulated within the
spammers and malicious scenario. Blue dots indicate the basis annotators. Red dots show extra
annotators with parameters Re = 65, and pr = 0.5. Green dots specify extra labelers with Re = 20,
and pr = 0.6. We notice that annotators located in dashed line vicinity are considered Spammers.
Similarly, labelers above the dashed line are regarded as good annotators; conversely, labelers located
below such a line are malicious annotators.

Figure 7 presents the classifiers’ performance as a function of the number of spammers
(left in Figure 7) and malicious annotators (in right Figure 7). First, we analyze the effect of
Spammers annotators on the RCDNN’s performance. From the results in Figure 7 (left),
we remark that when the number of Spammers is less than 40, the performance of our
approach is not affected. However, when the number of Spammers exceeds 40, the RCDNN’
AUC becomes unstable, oscillating between 0.6 and 0.8. Accordingly, we highlight that the
critical point is presented when the percentages of good, spammers and malicious labelers
are, respectively, 4.65%, 90.70%, and 4.65%; which shows that our RCDNN is robust in
the presence of a high number of Spammers. Now, we compare our RCDNN with two
state-of-the-art models, MA-LFC (linear model with the more competitive performance
according to Table 6) and LKAAR-GPC (Non-linear model with the more competitive AUC
in Table 6). We notice that the LKAAR-GPC behavior is similar to our approach when the
number of spammers is greater than 35, the AUC starts to descend gradually. Conversely,
we note that the MA-LFC’s performance is drastically affected by the spammers; in fact,
for more than 8 spammers, the AUC is close to 0.2.

Second, we inspect the consequences when malicious labelers are added. From the
results in Figure 7 (right), we note that our RCDNN is significantly affected when we have
more than 5 malicious annotators; in that case, the AUC decreases from 0.85 approximately
to a value near to 0.2. Thereby, we notice that the critical point is presented when the
percentages of good, spammers, and malicious labelers are, respectively, 25%, 12.5%,
62.5%. In such a sense, for this experiment, we can affirm that our approach can deal with
malicious labelers if the percentage of them is below 62.5%. Finally, studying the results
related to LKAAR-GPC, we notice that LKAAR again performs similar to our RCDNN due
to for more than 5 malicious labelers, LKAAR-GPC achieves AUC scores lower than 0.5; on
the other hand, MA-LFC is susceptible since, for more than 2 malicious labelers, the AUC
decreases to a value near to 0.2.
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Figure 7. MA-LFC, LKAAR-GPC, and RCDNN performance (AUC) as a function of the number of
labelers (spammers and malicious annotators).

6. Conclusions

This paper introduces a novel regularized chained deep neural network classifier,
termed RCDNN, to deal with multiple annotator scenarios. Our method is built based
on the ideas of the chained Gaussian processes [25], where each parameter in a multi-
labeler likelihood is modeled by using the outputs of a deep neural network. In such
a way, RCDNN codes the annotators’ expertise as a function of the input data and the
dependencies among the labelers from the last hidden layer’s weights. Besides, l1, l2, and
Monte-Carlo Dropout regularization strategies are coupled within our RCDNN architecture
and predictor to contract the over-fitting challenge of deep models. The proposal is tested
using different scenarios concerning the provided annotations: synthetic, semi-synthetic,
and real-world experts. According to the results, RCDNN achieves robust predictive
properties for the studied datasets even in the presence of Spammers and Malicious
labelers, outperforming state-of-the-art methods while providing an estimation of each
labeler’s reliability and the dependencies among annotators.

As future work, extending RCDNN for regression tasks is an exciting research line, i.e.,
based on the model introduced in [12]. Next, the authors plan to use other deep structures,
i.e., Convolutional and Recurrent layers and different activation functions, to apply our
approach in more complex tasks such as computer vision or natural language processing.
Finally, as RCDNN was tested on the Western dataset, which comprises building a system
to diagnose an engine’s status, the authors plan to focus on that topic to build an automatic
system to identify internal combustion engines’ conditions from multiple annotators.
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