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Featured Application: The thermographic flow visualization in applications with low thermal
contrast is directly applicable for in-process measurements on wind turbines in operation to an-
alyze, non-invasively and without contact, the boundary layer flow on rotor blades.

Abstract: Thermographic flow visualization is a contactless, non-invasive technique to visualize the
boundary layer flow on wind turbine rotor blades, to assess the aerodynamic condition and conse-
quently the efficiency of the entire wind turbine. In applications on wind turbines in operation, the
distinguishability between the laminar and turbulent flow regime cannot be easily increased artificially
and solely depends on the energy input from the sun. State-of-the-art image processing methods are
able to increase the contrast slightly but are not able to reduce systematic gradients in the image or
need excessive a priori knowledge. In order to cope with a low-contrast measurement condition and
to increase the distinguishability between the flow regimes, an enhanced image processing by means
of the feature extraction method, principal component analysis, is introduced. The image processing
is applied to an image series of thermographic flow visualizations of a steady flow situation in a
wind tunnel experiment on a cylinder and DU96W180 airfoil measurement object without artificially
increasing the thermal contrast between the flow regimes. The resulting feature images, based on the
temporal temperature fluctuations in the images, are evaluated with regard to the global distinguisha-
bility between the laminar and turbulent flow regime as well as the achievable measurement error
of an automatic localization of the local flow transition between the flow regimes. By applying the
principal component analysis, systematic temperature gradients within the flow regimes as well as
image artefacts such as reflections are reduced, leading to an increased contrast-to-noise ratio by a
factor of 7.5. Additionally, the gradient between the laminar and turbulent flow regime is increased,
leading to a minimal measurement error of the laminar-turbulent transition localization. The systematic
error was reduced by 4% and the random error by 5.3% of the chord length. As a result, the principal
component analysis is proven to be a valuable complementary tool to the classical image processing
method in flow visualizations. After noise-reducing methods such as the temporal averaging and
subsequent assessment of the spatial expansion of the boundary layer flow surface, the PCA is able to
increase the laminar-turbulent flow regime distinguishability and reduce the systematic and random
error of the flow transition localization in applications where no artificial increase in the contrast is
possible. The enhancement of contrast increases the independence from the amount of solar energy
input required for a flow evaluation, and the reduced errors of the flow transition localization enables
a more precise assessment of the aerodynamic condition of the rotor blade.

Keywords: thermographic flow visualization; image processing; principal component analysis;
measurement error

1. Introduction

Flow visualization on wind turbines in operation enables an evaluation of the actual
aerodynamic condition of a rotor blade. In particular, the position of the boundary layer
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flow transition between laminar and turbulent is of interest for the efficiency of the wind
turbine because it correlates directly with the lift and drag of the airfoil [1].

One possibility of visualizing the boundary layer flow on an airfoil is given by the
thermographic flow visualization that makes use of the relation between the heat transfer
coefficient and the local skin friction between the fluid and the surface [2]. The technique is
an already long established method in wind tunnel experiments to visualize the boundary
layer flow [3–5] and enables the analysis of the laminar-turbulent flow transition [6,7],
the laminar separation bubble [8,9] and turbulent separation [10]. For wind turbines in
operation, the thermographic flow visualization is particularly suitable because it is a non-
invasive, contactless approach without the need for surface preparation [11]. In addition to
the required infrared camera located on the ground in a distance of 100 m to 300 m, image
processing is essential to enable a thermographic flow analysis. The image processing is
needed to automatically extract the image information that provides a flow visualization
with a high distinguishability between the different flow regimes and that finally enables
the localization of the laminar-turbulent flow transition with a minimal measurement error.

Influencing factors reducing the global distinguishability between different flow
regimes in thermographic flow visualizations exist as a result of the flow characteristics
and external interference. Flow characteristics cause systematic temperature gradients
within a flow regime region due to a non-constant heat flux as well as random temperature
fluctuations due to flow fluctuations. External interferences are systematic temperature
gradients due to reflections and random measurement noise. To cope with the effects of
these influencing factors, the distinguishability between different flow regimes is usually
maximized by increasing the initial temperature difference between fluid and surface with
an active heating or cooling [5–7,12,13], respectively, while the influence of reflections is
further minimized by subtracting a reference image that was acquired by prior measure-
ments with no flow [7]. Since the temperature difference between fluid and surface cannot
be altered in free-field applications on wind turbines in operation without excessive effort,
and reference images cannot be acquired, an image processing of the raw thermographic
images is desired that is able to cope with the effects of the influence factors and maximizes
the flow regimes’ distinguishability.

Classical image processing methods for the thermographic flow visualization au-
tomatically result in a single output image. For instance, the averaging of a series of
thermographic images of a steady flow situation leads to a minimized measurement noise
and thus increases the signal-to-noise ratio. Crawford et al. [14] introduced an automatic
evaluation with a spatial low-pass filter to increase the signal-to-noise ratio in single im-
ages of in-flight experiments. Both methods increase the distinguishability between flow
regimes by minimizing the random image inhomogeneity. However, systematic influences
remain present. Another image processing introduced by Dollinger et al. [15] focuses on
temperature fluctuations and evaluates the temporal standard deviation of an image series
to increase the distinguishability between flow regimes by reducing random and systematic
inhomogeneities. These classical methods enable a straightforward, reproducible image
processing, but systematic image inhomogeneities are either not or only partially corrected,
which still limits the flow regimes’ distinguishability.

Other studies focus on enhanced image processing methods that extract the desired
information from a thermographic image series. Dollinger et al. [15] applied a Fourier
analysis by means of a discrete Fourier transform for each pixel over the image series
and selected a certain frequency range to evaluate the mean amplitude of the temporal
fluctuations. The evaluation of temporal fluctuations around the mean temperature is
unaffected by systematic spatial inhomogeneities within the flow regimes and therefore
has the potential to increase the distinguishability between the flow regimes. However, in
order to maximize the distinguishability, a priori knowledge about the frequency range of
the characteristic temperature fluctuations is needed. Another evaluation of temperature
fluctuations without the assumption of a harmonic basis was recently tested by means of
a Non-Negative Matrix Factorization [16]. The algorithm evaluates temporal and spatial
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image information in order to separate superimposed influences on the thermographic
image series, leading to a flow visualization result with decreased random and systematic
inhomogeneities and, thus, an increased distinguishability between the flow regimes. How-
ever, the non-reproducibility of the output images necessitates a manual post-processing
as well as a priori knowledge about the approximate location of the flow regimes in order
to identify the optimal output image. An enhanced image processing method that also
evaluates spatial and temporal image information, without the assumption of a harmonic
base, but provides reproducible results, is the principal component analysis (PCA). PCA is
already a standard method for thermographic structure analysis [17], but its potential for
the thermographic flow analysis has not yet been studied. Furthermore, the combination
of classical and enhanced image processing methods seems promising to maximize the
flow regimes’ distinguishability, which is a pending research task.

An important subsequent measurement task based on the flow visualization result is
the localization of the laminar-turbulent flow transition. In order to achieve this, different
image processing methods have been proposed. The most frequently applied approach
is to use either unprocessed raw images or the output of a simple image filtering such as
averaging, and then to locate the maximum temperature gradient along the temperature
profiles in the main flow direction [12,18–20]. For a dynamically changing boundary
layer flow, Wolf et al. [21] used the computation of differential images to visualize the
laminar-turbulent flow transition on a fast pitching airfoil. Crawford et al. [14] introduced
an automatic localization of the laminar-turbulent flow transition by means of a spatial
low-pass filter and a subsequent edge detection algorithm. However, the achievable
measurement uncertainty for the localization of the laminar-turbulent flow transition
was first investigated by Dollinger et al. [22] in unprocessed thermographic raw images.
According to their findings, the uncertainty is inversely proportional to the temperature
gradient between the laminar and turbulent flow regime. Additionally, it was shown that
the ideal localization method for locating the flow transition with a minimal uncertainty and
a sub-pixel accuracy is to apply a least-squares approximation of the temperature profile
with a Gaussian error function. As an alternative, the gradient of the temperature profile
can be approximated by a Gaussian function. If the temperature profile or its gradient has
the expected course according to the respective approximation, the flow transition position
can be extracted directly by the parameters of the fitted approximation function. However,
since the ideal temperature course is disturbed by different naturally occurring systematic
and random influences, enhanced image processing that reduces these influences has the
potential to improve the flow transition localization. The thermographic flow visualization
with enhanced image processing methods was, however, not yet investigated with regard
to the position error of the laminar-turbulent flow transition.

Therefore, the present article focuses on an enhanced image processing for thermo-
graphic flow visualization by means of a PCA to maximize the distinguishability between
the laminar and turbulent flow regime and to minimize interferences. The resulting flow
visualization is further assessed concerning the achievable measurement error of the flow
transition localization. Furthermore, the combination of the PCA with classical image
processing methods is studied to extract the maximal laminar-turbulent flow information
from thermographic image series.

Section 2 introduces the PCA and the figure of merit to evaluate the contrast between
the visualized flow regimes and explains the flow transition localization by means of an
approximation with a Gaussian error function or a Gaussian function. Section 3 describes
the thermographic experimental setup of the wind tunnel experiments. The image process-
ing results of the experimental data are studied with respect to the maximized contrast in
the flow visualization as well as the error of the flow transition localization in Section 4.
The article finishes with a summary and outlook in Section 5.
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2. Measurement Approach

At first, the following section introduces the PCA as a feature extraction method
and explains the hypothesis of its capability to create flow visualizations with increased
distinguishability between the laminar and turbulent flow regimes. Afterwards, the quan-
tification of the distinguishability between flow regimes by means of the contrast-to-noise
ratio is presented. Lastly, the signal processing for localizing the laminar-turbulent flow
transition is introduced.

2.1. Principal Component Analysis (PCA)

PCA [23] is a multivariate statistical procedure with the goal of extracting the im-
portant information of a dataset and representing them as uncorrelated variables, called
principal components (PCs) [24]. The PCs are characterized by their orthogonal orientation
to each other and are sorted according to their variance. Therefore, the first PC inherits
the most distinct information of the data set, hence representing the highest variety of the
complete data set. As a result, the first N PC can be linearly combined to approximate each
individual input of the data set sufficiently, while N remains much lower than the number
of individual input data. This can be interpreted as a dimensionality reduction while most
of the information to distinguish between the individual input remains.

If the complete data set is arranged in a I × J matrix X with I observations of J
individual variables, the PCs are obtained with a matrix factorization, the singular value
decomposition. The singular value decomposition of X is defined as

X = P∆QT , (1)

with the columns in P being the left singular vectors of X and also the eigenvectors of the
matrix XXT . The columns of Q being the right singular vectors of X and the eigenvectors
of the matrix XTX. ∆ is the diagonal matrix of the singular values, also being the diagonal
matrix of the eigenvalues of the matrix XXT . The PC F are afterwards calculated by
F = P∆ [24]. By obtaining only the first L largest singular values and their singular
vectors, a truncated matrix FL with rank L can be calculated, while the Frobenious norm
between F and FL is minimal. With L being smaller than J the dimension of the data set
has been reduced while retaining most of its variance. In the case of three-dimensional
data, a dimensionality reducing PCA gives the orthogonal base under which the maximum
variance of the data is maintained, i.e., the data are projected on a two-dimensional plane
with a maximal spread.

The PCA was applied early on to a variety of problems to handle multivariant data
in different fields of science to improve the differentiation between measurements [25].
Since the calculated PCs are sorted with descending variances concerning the data, the
PCA can be used for de-noising through simply ignoring the PCs with low variance and
reconstructing the data set based only on the high-variance basis [26,27].

Another application of the PCA that fueled the motivation for this work is the calcula-
tion of eigenfaces [28], a term for the PC of a data set of face images usually used in face
recognition tasks. By projecting the face images to a feature space, the significant variations
among those faces are extracted. Reducing a large data set of many images to a smaller set
of images representing features led to the hypothesis of a useful application in the ther-
mographic flow visualization. If applied to thermographic raw images with multiple flow
regimes, flow feature images with an increased distinguishability between the flow regimes
arise. The flow characteristics of different flow states contribute to different amounts of
variance throughout the image series in the respective image regions and, therefore, are
extracted as different features. In the resulting PC, these emphasized features might have
an increased distinguishability between flow regimes if compared to the average of the raw
image series.
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2.2. Distinguishability

The goal of any flow visualization is to create an image in which the different flow
regimes can be globally distinguished in order to evaluate their spatial expansion in the
region of interest. A widely used approach to quantify the distinguishability between image
areas in the field of image processing is the contrast-to-noise ratio. The contrast-to-noise
ratio between the laminar and turbulent flow regime is defined as

CNR =
| Īlam − Īturb|√

s2
lam + s2

turb

(2)

with Ī being the average pixel intensity and s the spatial standard deviation of the pixel
intensity in the respective flow regime.

2.3. Laminar-Turbulent Flow Transition Localization

The basic principle that enables a localization of the laminar-turbulent flow transition
in thermographic flow visualization images is the different heat transfer coefficients in the
different flow regimes. An initial temperature difference between fluid and surface leads
to different surface temperatures in the regions of the different flow regimes that can be
evaluated as the normalized intensity in the thermographic image. Figure 1a shows an
example flow visualization with a flow direction along the x-axis from left to right and a
laminar (0 px ≤ x ≤ 145 px) and turbulent (146 px ≤ x ≤ 250 px) flow regime colored
in green and red, respectively. Figure 1b shows the intensity profile I (thin black line)
along the center row in the flow visualization image marked with a white dashed line.
Two distinct intensity plateaus representing either the laminar (green) or turbulent (red)
flow regime are clearly distinguishable. Between the two flow regimes, a distinct, steep
change of the intensity with a high gradient exists. The corresponding gradient dI/dx of
the intensity profile is shown as a thin dotted black line.

One approach for localizing the position of the flow transition center between both
flow regimes is an evaluation of the intensity gradient profile. The aim is to localize the
position of the maximal gradient in flow direction by an approximation of the gradient
dI/dx with a Gaussian function

φ(a1, a2, a3, a4) = a3 · exp

(
− (x− a1)

2

2 a2
2

)
+ a4. (3)

The position of the maximum of φ after the least-squares approximation is given by
the parameter â1 and can directly be used as a measure of the flow transition position xtr in
the x-direction. Note that the optimal value â1 is obtained with a least-squares estimation,
so that xtr is specified with sub-pixel accuracy. The curve-fitting result for the example in
Figure 1b is shown as a thick dotted line.

A second approach for localizing the laminar-turbulent flow transition with an even
lower measurement uncertainty, compared to the approximation of the intensity gradient
profile, can be carried out by an approximation of the intensity profile itself [22]. By fitting
the Gaussian error function

Φ(b1, b2, b3, b4) = b3 · erf
(

x− b1√
2 b2

)
+ b4 (4)

to the intensity profile I, the flow transition can be determined directly by the position of
the function’s saddle point that is the parameter b̂1. The approximation of the intensity
profile with the Gaussian error function in the example in Figure 1b is shown with a thick
black line.

The systematic error of the flow transition localization depends on the capability of
the approximation function to auto-center at the position of the flow transition. In order to
achieve the auto-centering, the measurement data have to obey the approximation model
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function over the entire considered profile region. For the Gaussian function this means a
zero intensity gradient away from the flow transition, while for the Gaussian error function
two distinct intensity plateaus with constant amplitudes are needed. The random error of
the flow transition localizations depends on the absolute value of the intensity gradient at
the position of the flow transition and is inversely proportional to the intensity difference
between the laminar and turbulent flow regime for a given transition width [22].

0 50 100 150 200 250
x in pixel

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 in
te

ns
ity

 I 
in

 -

Laminar Turbulentb) 0.02

0.00

0.02

0.04

In
te

ns
ity

 g
ra

di
en

t d
I/d

x 
in

 p
x

1

0

50

100

150

y 
in

 p
ix

el

Laminar Turbulent

Flow direction

Flow transition line

a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized intensity I in -

Intensity
Gradient

Gaussian error function
Gaussian function

Figure 1. (a) Flow visualization image with a laminar and turbulent flow regime distinguishable
by different intensity levels. (b) Intensity profile (thin black line) and intensity gradient profile (thin
black dotted) along the white dashed line in (a). Two distinct intensity plateaus corresponding to
the laminar and turbulent flow regime are visible with a steep change between them. A Gaussian
error function fitted to the intensity profile is shown with a thick black line, and a Gaussian function
fitted to the corresponding gradient profile is shown with a thick black dotted line. The laminar-
turbulent flow transition can be localized by the saddle point of the Gaussian error function and by
the maximum of the Gaussian function.

An estimation of the random error σrand and the systematic error σsyst of the flow
transition localization can be conducted by evaluating the locations xtr,i for the intensity
profiles at different y-positions yi. In order to compensate for a flow transition line that is
not orthogonal to the evaluated intensity profiles, a linear fit of all located flow transitions
in the image is calculated. In the example of Figure 1a, all xtr,i for i = 0, 1, ..., 150 rows
along the y-dimension are used for the linear fit. Afterwards, each xtr,i is subtracted with
the respective value of the fitted line in the row i to calculate the distance of each located
flow transition position to the line fit. The error σrand is then estimated by the standard
deviation of these distances. The error σsyst is calculated by the average distance between
the fit and a manually located reference transition line.

The introduced approaches for locating the flow transition can be applied to any image
with information about the spatial distribution of the laminar and turbulent flow regimes.
In raw thermographic images, as in Figure 1, the image pixels’ intensities represent the
surface temperature. In the PC the image pixels’ intensities represent their relative ratio to
each other from the desired eigenvector that inherits the respective maximal variance in
the image series. The pixel intensity in each PC image can therefore directly be evaluated
in the same manner as the intensity in the raw thermographic images to analyze the
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distinguishability of flow regimes by the CNR and to locate the laminar-turbulent flow
transition. For simplicity, this pixel intensity in the PC is only refereed to as ’intensity’ in
this work.

3. Experimental Setup

The thermographic flow visualization measurements used in this article are conducted
in two different experiments at the Deutsche WindGuard’s Aeroacoustic Wind Tunnel
(DWAA) in Bremerhaven, Germany. The measurement objects along with the measurement
setup are introduced in Section 3.1. The image acquisition by means of the thermographic
flow visualization is explained in Section 3.2. In Section 3.3 the experimental procedure
is described.

3.1. Measurement Objects

The validation of the introduced image processing method is conducted on a cylinder
object in cross-flow with a diameter of 160 mm that is mounted in the middle of the
closed test section of the wind tunnel, see Figure 2a. The used material for the cylinder
is polyoxymethylene and has thermal properties suitable for the thermographic flow
visualization. The selected freestream flow velocity is v∞ = 50 m s−1, resulting in a
Reynolds number of 5.1× 105. For this flow condition, the boundary layer flow over the
cylinder consists of laminar, turbulent and separated flow regimes as well as a laminar
separation bubble in the region of laminar-turbulent flow transition, see Figure 3.

Figure 2. Both measurement objects used in this work. (a) DU96W180 airfoil object with a chord
length of 600 mm. (b) Cylinder object with a diameter of 160 mm in the wind tunnel test section.

0 20 40 60 80 100 120 140 160 180
Position  in degrees

ls r ts

Laminar (L) Laminar 
separated (LS) Turbulent (T) Turbulent 

separated (TS)

Figure 3. Oil paint measurement on a 160 mm diameter cylinder in cross-flow at a Reynolds number of Re = 5.1× 105. The
beginning and end of the different boundary layer flow regimes is visible by the accumulation of oil.

In order to study a measurement object equivalent to the perspective application on
wind turbine rotor blades, a second experiment is conducted with a DU96W180 airfoil,
see Figure 2b, with a chord length of 600 mm and the same material properties as a real
rotor blade airfoil. The flow velocities in two test cases are chosen to yield Reynolds
numbers that are typical for the flow situation on wind turbines in operation, Re = 2× 106

for test case 1 and Re = 3× 106 for test case 2. Note further that all measurements are
conducted with no explicit heating that could enhance the thermal contrast between the
flow regimes. Therefore, the thermographic images are similar to in-process measurements
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on wind turbines in operation where the thermal conditions of surface and fluid cannot
be manipulated easily. The existing thermal contrast between the fluid and surface in the
wind tunnel experiments solely depends on the heating of the fluid by the wind tunnel fans
and wall friction. The increase in the fluid temperature during test case 1 and test case 2
are dT1/dt = 1.9× 10−5 K s−1 and dT2/dt = 3.5× 10−4 K s−1, respectively. The angle of
attack of the airfoil model in both test cases is α = 6°.

The two different heating rates result in different thermal conditions in the test cases 1
and 2. The mean surface temperature of the airfoil measurement object during test case 1 is
in an almost steady state and increases during the image acquisition by only dT1 = 0.02 K.
During test case 2 a transient state with a constant heating up increases the mean surface
temperature by dT2 = 0.35 °C. For the thermographic raw images this means that the
thermal contrast between the laminar and turbulent flow regime in test case 1 is very low
compared to the contrast in test case 2.

Additionally, an external heating source is used to create a disturbing reflection near
the leading edge of the airfoil in test case 2. The reflection in combination with a flow-
depending non-constant heat flux generates a non-homogenous temperature field within
the laminar flow regime. This way the PCA can be examined for its ability to reduce
systematic gradients in order to increase the distinguishability, when the thermal contrast
in the thermographic image is already high.

3.2. Thermographic Measurement System

The acquisition of the thermographic images is conducted with an infrared camera,
typeImageIR 8300, from the manufacturer InfraTec. The actively cooled InSb focal plane
array works with a global shutter (snap-shot detector), has a pixel size of 15 µm at a
full range resolution of 640 px × 512 px and a maximum frame rate of 100 Hz with an
integration time set to 1600 µs. The sensitivity is between 2.0 and 5.0 µm and has a noise
equivalent temperature difference (NETD) of less than 25 mK @ 30 °C. The experimental
setup is depicted in Figure 4. At a viewing distance of 1.75 m and instantaneous field
of view of 0.15 mrad, a geometric resolution of 0.26 mm results on the surface per pixel.
An image series of the static flow situation is acquired with 6000 images for the cylinder
and 10,000 images for the airfoil measurements, respectively. The image processing of the
thermographic images is conducted with the script language Python.

Figure 4. Experimental setup in the wind tunnel. The thermographic camera ImageIR 8300 watches
the cylinder measurement object through a CaF2-window. Additional camera systems observe the
test section of the wind turbine.
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3.3. Experiment Procedure

First, the thermographic images acquired by the cylinder measurements and the two
airfoil test cases are pre-processed by separating the objects’ surface from the background in
each image. For the measurement on the cylinder object, all images in the image series are
rectified, and the areas in the two-dimensional image plane (640 px × 39 px) are allocated
to the angular values θ = 0° to θ = 180° between the stagnation point and the opposite
point on the cylinder object. The images of the two airfoil measurements are additionally
cropped between the leading edge and the end of the turbulent flow regime, as the focus of
this work is the distinguishability between these flow regimes, and surface modifications
downstream create thermal artefacts that are not addressed in this work. The images
have a dimensionality of 250 px × 152 px. In order to quantify the flow transition location
normalized to the chord, the chord length c is calculated prior the cropping of the images.

The images of all three experiments are afterwards evaluated by the PCA, and the PC
images are calculated. To compare the PCA with classical image processing methods for
creating flow visualizations, two additional methods are chosen. Firstly, the temporal mean
value of the image series is considered as it is particularly successful in reducing white
measurement noise and, therefore, increasing the CNR between different flow regimes.
Secondly, the temporal standard deviation of the image series is considered because of its
capability to reduce reflections and systematic gradients. The resulting flow visualizations
of the PCA-based and the two classical image processing methods are compared with
regard to the distinguishability between the laminar and turbulent flow regime quantified
by the CNR, see Section 2.2. Additionally, all three flow visualizations are evaluated and
compared concerning the systematic and random error of the flow transition localization
conducted with both the Gaussian and Gaussian error fit methods. By assessing the
different advantages of either image processing and flow localization method, the question
how the PCA can be used as a complementary method to classical evaluations is studied.

4. Results

The following section presents the results of the PCA and compares the resulting
flow visualizations with the two classical image processing methods. First, the temporal
mean value, the temporal standard deviation and the first three PCs (PC 1, PC 2, PC 3) of
each set of measurement images are shown in order to compare the flow visualizations
qualitatively. Secondly, the intensity profiles in flow direction, the corresponding gradient
and their approximations with the model functions from Equations (3) and (4), respectively,
for locating the laminar-turbulent flow transition are presented for each flow visualization.
Lastly, the located transition lines are compared with regard to their random and systematic
measurement errors. The section is structured into three subsections: one for the cylinder
and two for the two test cases with the airfoil.

4.1. Cylinder

Due to the changing incidence angle between the infrared camera and the curved
surface of the cylinder object at the front and back, the radiation of the surface area in the
out most left and right of the image plane is visualized as higher, as it can be explained by
the surface temperature. This is due to the reflection of the environment and is consequently
the result of a measurement artefact and will not be evaluated.

4.1.1. Flow Visualization

The flow visualizations resulting from the three image processing methods—temporal
mean value, temporal standard deviation and PCA—are depicted in Figure 5. The extent
of the laminar and turbulent flow regimes is marked in each image. The evaluation of the
mean value shows the existing temperature gradients within the laminar and turbulent
flow regimes due to the chord-position dependency of the friction coefficient and, thus,
heat flux [1,5,10]. Additionally, the area in the middle of the image at the end of the laminar
flow regime is superimposed with a reflection from the camera lens. The complete image
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also has random temperature fluctuations due to flow irregularities and measurement
noise. Nevertheless, a qualitative distinguishability between the flow regimes is possible
due to different intensities in the image.

Laminar Turbulent

CNR=2.52
Mean value

Laminar Turbulent

CNR=0.25
Standard deviation

0

20

y 
in

 p
ix

el
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Laminar Turbulent

CNR=3.70
PC 2

0 20 40 60 80 100 120 140 160 180
Position  in degrees
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CNR=2.84
PC 3

0.0 0.2 0.4 0.6 0.8 1.0
Normalized intensity I in -

Figure 5. Thermographic flow visualization of the cylinder object in cross-flow with a Reynolds number of 5.2× 105.
Temporal mean value and temporal standard deviation as well as principal components (PC) no. 1–3 from the PCA of
the image series. Systematic inhomogeneities in the flow regimes are reduced while a contrast between the laminar and
turbulent flow regime is maximized in PC 2 with CNR = 3.70.

The temporal standard deviation of the image series, shown in Figure 5, has almost
no distinguishability between the flow regimes. However the artefact of the camera lens
reflection is filtered out. While the flow regimes look more homogenous, the contrast
between the flow regimes is low.

The PC 1 to PC 3 show great differences between each other. Note that the region of
the reattachment of the laminar flow at θr = 117° is emphasized in each image, due to its
spatial fluctuation. Additionally, the systematic gradient within the laminar flow regime
is reduced in each PC compared to the mean value, including the impact of the reflecting
camera lens. However, a qualitative distinguishability between the laminar and turbulent
flow regime seems only possible in PC 2 and PC 3.

The calculated CNR between the laminar and turbulent flow regimes is given in the
top right corner of each image and reads 2.52 for the mean value. Note that the camera
lens reflection in the mean value image is not included in the CNR calculation in order to
exclude the effect of the artefact. The PC 2 has the maximal CNR with 3.70.

4.1.2. Flow Transition Localization

Figure 6 shows the intensity profile (blue) and the intensity gradient profile (orange)
of the center row (white dashed line) of each flow visualization image from Figure 5. The
approximation result for each profile is shown with a dashed line in the corresponding
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color. The flow transition position derived from the approximations is marked with a
vertical dotted line.

The intensity profile of the temporal mean value shows the impact of the systematic
temperature gradient within the laminar flow regime between 60° < θ < 110° and in
the turbulent flow regime between 117° < θ < 145°. Due to the course of the intensity
profile, the approximation does not fit to the profile outside the turbulent flow regime.
Because of this, the approximation curve does not center itself between the laminar and
turbulent flow regimes and results in an estimated flow transition position within the
turbulent flow regime. In addition, there is no sharp jump in intensity between the flow
regimes, but a continuous steady increase that causes a flat slope of the approximation
curve. The approximation of the intensity gradient profile fits to the gradient peak at
θ ≈ 118° instead of centering between the laminar and turbulent flow regimes. This is due
to the different systematic gradients in the flow visualization and the absence of a single
prominent gradient peak between the flow regimes.

The intensity profile of the temporal standard deviation does not have two distinct
plateaus representing the laminar and turbulent flow regime. The approximation therefore
fails to fit to the profile correctly and has a high systematic error in the localization of the
flow transition. The intensity gradient, however, has a prominent peak between the laminar
and turbulent flow regime, allowing for a more accurate localization of the flow transition.

The intensity evaluation of the PC 2 illustrates the advantageous of the enhanced
image processing by means of the PCA. Two distinct intensity plateaus are present due to
the high CNR, while a sharper gradient between the laminar and turbulent flow regime
persists. As a result, the approximations of the intensity profile as well as of the corre-
sponding gradient profile successfully locate the flow transition between the laminar and
turbulent flow regimes with a minimal error to the center position between them.
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Figure 6. The intensity profile (blue line), intensity gradient profile (orange line) along the white dotted line in the temporal
mean value, temporal standard deviation and PC 2 flow visualization in Figure 5. The approximation of the intensity profile
(blue dashed) and intensity gradient profile (orange dashed), respectively. The flow transition localization results of both
methods are depicted with a vertical dotted line in the respective color. Different expressions of the intensity plateaus are
visible in each profile with varying gradient amplitudes between the plateaus. The most distinct expression of two plateaus
including a steep step between them exists in the PC 2.
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In order to compare the results of the located flow transition line in the entire flow
visualization, the two introduced localization methods were repeated for each row of the
temporal mean value, temporal standard deviation and PC 2 flow visualization image in
Figure 5. The localization results are shown in Figure 7 with a single thermographic raw
image as background and the located flow transition lines plotted in red for the mean value,
blue for the temporal standard deviation and green for the PCA flow visualization result.
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Figure 7. Comparison of the located laminar turbulent flow transition line by means of the temporal mean value (red),
temporal standard deviation (blue) and PCA (green) flow visualization of the image series. Flow transition localization
based on the approximation of the intensity profile (top) and approximation of the intensity gradient profile (bottom). For
both methods, the localization in the PCA result has qualitatively the lowest random and systematic error.

A comparison shows that the locations of the flow transition lines in the flow visual-
izations based on the two classical methods have a higher random and systematic error
than those in the results based on the PCA. Consequently, the lowest systematic error σsyst
for either localization method in any of the classical image processing flow transitions
amounts to 8.33◦ for the intensity gradient approximation of the mean value, while the
localization based on the intensity approximation in the PCA is the lowest with 3.58◦. The
random error σrand of the PCA result is also lower than in the classical methods with 0.06◦.
The minimal random error in any of the classical methods’ flow visualizations is 1.24◦ for
the approximation of the intensity gradient of the mean value. An overview over all errors
is given in table Table 1.

Table 1. Located flow transition position θtr and corresponding random and systematic error σrand and σsyst by means of
both localizations methods for each image processing methods’ resulting flow visualization in the cylinder object experiment
at a Re = 5.1× 105. Temporal mean value (mean), temporal standard deviation (std) and PCA. All values are normalized to
the angular position [0°, 180°] on the cylinder.

θtr in ◦ σrand in ◦ σsyst in ◦

Mean std PCA Mean std PCA Mean std PCA

Intensity approximation 140.7 119.4 113.1 10.78 39.84 0.22 31.26 9.93 3.58
Intensity gradient approximation 117.8 118.6 114.4 1.24 34.14 0.06 8.33 9.59 4.89

To conclude, the PCA image processing is able to create a flow visualization with an
increased CNR between the laminar and turbulent flow regime that maximizes the global
distinguishability. As a result, the approximation of the intensity profile as well as the
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intensity gradient profile are able to auto-position themselves around the flow transition
and minimize the systematic error of the flow transition localization in the PCA result.
Additionally, the steep intensity step between the flow regimes is increased in the PCA-
based flow visualization, minimizing the random error of the flow transition localization
with both localization methods. The PCA image processing therefore enables a more robust
flow transition localization in the considered measurement configuration.

4.2. DU96W180 Airfoil (Test Case 1)
4.2.1. Flow Visualization

The first test case on the DU96W180 airfoil is conducted at a chord Reynolds number
of 2× 106. Due to the low flow velocity at the time of the image acquisition, the object
surface is in a thermal equilibrium and does not change its temperature throughout the
measurement. As a result, the contrast between the laminar and turbulent flow regime is
very low. The flow visualization results by means of the PCA and the two classical image
processing methods, the temporal mean value and the temporal standard deviation of the
image series, are depicted in Figure 8. The only distinct feature in the mean value is a
small area between both flow regimes with lower intensity, indicating a laminar separation
bubble due to its effect of isolating the surface from the warmer fluid temperature. It is
hardly possible to distinguish globally between the laminar and turbulent flow, since both
areas have an almost equal intensity, and systematic gradients create inhomogeneities
within both flow regimes.
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Figure 8. Thermographic flow visualization of the DU96W180 airfoil in cross-flow with a Reynolds number of 2× 106.
Temporal mean value and temporal standard deviation as well as principal components (PC) no. 1–3 from the PCA of
the image series. Systematic inhomogeneities in the flow regimes are reduced while a contrast between the laminar and
turbulent flow regime is maximized in PC 1 with CNR = 1.79.

The temporal standard deviation image does not show any flow features and consists
only of noise and artefacts in the form of a circular pattern and a row-wise pattern, probably
due to the camera lens and acquisition method. As no flow features are visible, a global
distinguishability between the laminar and turbulent flow regime is not possible.

All three PCs show two distinct areas of different intensities, correlating with the
laminar and turbulent flow regimes. However, the intensity as well as the contrast between
the flow regimes varies in each image. On top of that, PC 3 shows an emphasized region in
the top left that is likely to be traced back to an artefact caused by the camera lens. PC 1
and PC 2 do not inherit this artefact, though PC 2 shows a strong systematic gradient in
the vertical direction. A qualitative inspection suggests that a global distinguishability
between the laminar and turbulent flow regime is maximal in the PC 1.

The quantification of the CNR between the laminar and turbulent flow regimes in
each flow visualization supports these observations. Without considering the temporal
standard deviation, the mean value has the lowest CNR with 0.24, while all PC images
have a higher CNR, and the maximum is found in PC 1 with 1.79.
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4.2.2. Flow Transition Localization

Figure 9 shows the intensity profiles (blue) and respective intensity gradient profiles
(orange) along the white dashed line depicted in the respective flow visualizations from
Figure 8. The approximations of the intensity profiles and the gradient profiles are shown
with a dashed line in the respective color. The results of each of the two flow transition
localization methods are marked with a vertical dotted line.
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Figure 9. The intensity profile (blue line), intensity gradient profile (orange line) along the white dotted line in the temporal
mean value, temporal standard deviation and PC 1 flow visualization in Figure 8. The approximation of the intensity profile
(blue dashed) and intensity gradient profile (orange dashed), respectively. The flow transition localization results of both
methods are depicted with a vertical dotted line in the respective color. Different expressions of the intensity plateaus
are visible in each profile with varying gradients between the plateaus. The most distinct expression of the two plateaus
including a steep step between them exists in the PC 1.

As mentioned before, the temporal standard deviation flow visualization offers no
features that can distinguish flow regimes. This is confirmed by the intensity and the
intensity gradient profiles shown in Figure 9, as no distinct plateaus or single gradient peaks
exist, respectively. The flow transition localization therefore has a high systematic error.

As expected by the low CNR between the flow regimes, no distinct plateaus with
different intensities exist in the mean value. Consequently, the auto-positioning of the
approximation fails, and the fitting curve does not center at the position of the flow
transition. The intensity gradient profile has multiple peaks and no constant plateau around
the flow transition, also resulting in a false positioning of the respective approximation.
As a result, both methods have a high systematic error in the located position of the flow
transition. Without a sharp temperature rise in the intensity profile and multiple peaks in
the gradient profile, the random error is also expected to be high.

In the PC 1 flow visualization, however, two distinct plateaus in the intensity profile ex-
ist, as expected by the high CNR. Therefore, the approximation successfully auto-positions
at the position of the flow transition between these plateaus with a minimal systematic
error. Additionally, the steep intensity step between the flow regimes, visible as a high
distinct peak in the intensity gradient profile, minimizes the random error and allows for
an approximation of the intensity gradient profile with minimal systematic and random
error. A comparison of the two intensity profiles and the intensity gradient profiles of the
mean value and the PC 1 highlights the advantage of the PCA method for creating flow
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visualizations with two distinct intensity plateaus representing the two flow regimes and a
steep step between them.

Figure 10 compares the results of the two flow transition localization methods applied
to all image rows of the temporal mean value, temporal standard deviation and PC 1 flow
visualizations depicted in Figure 8. The flow transition line results located in the mean
value image are plotted in red, the ones from the temporal standard deviation image in
blue and from the PCA image in green. As a background image, one single thermographic
raw image from the image series is used.
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Figure 10. Comparison of the located laminar turbulent flow transition line by means of the temporal
mean value (red), temporal standard deviation (blue) and PCA (green) flow visualization of the
image series. Flow transition localization based on the approximation of the intensity profile (top)
and approximation of the intensity gradient profile (bottom). For both methods, the localization in
the PCA result has qualitatively the lowest random and systematic error.

A clear difference in the systematic and random localization errors between the PCA
result and the two classical image processing methods is visible. Only the PCA result
resembles the expected linear form of the flow transition line. The estimated systematic
error σsyst reads 0.34% and 0.30% the chord length c for the approximation method of
the intensity and the intensity gradient profile, respectively. In comparison, the minimal
systematic error in any of the classical image processing methods is achieved by the
intensity gradient approximation in the mean value with 4.28% c. The same applies for
the random error that reads 0.24% c for the intensity gradient approximation in the PCA
result and 5.50% c for the same localization method in the mean value flow visualization.
All measurement errors are listed in Table 2.

To conclude, when the fluid temperature is nearly constant during the measurement,
and the contrast between the laminar and turbulent flow regime is low, the PCA enables not
only an increase in distinguishability but also a flow transition localization with minimal
random and systematic error.
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Table 2. Located flow transition position xtr and corresponding random and systematic error σrand and σsyst by means of
both localizations methods for each image processing methods’ resulting flow visualization in the DU96W180 test case 1 at
a Re = 2× 106. Temporal mean value (mean), temporal standard deviation (std) and PCA. All values are normalized to the
chord length c.

xtr/c in % σrand/c in % σsyst/c in %

Mean std PCA Mean std PCA Mean std PCA

Intensity approximation 53.1 40.9 46.1 17.62 22.07 0.25 6.96 7.08 0.34
Intensity gradient approximation 50.7 41.0 46.1 5.50 23.00 0.24 4.28 5.51 0.30

4.3. DU96W180 Airfoil (Test Case 2)
4.3.1. Flow Visualization

The second test case on the DU96W180 airfoil was conducted at a chord Reynolds
number of 3× 106. The fluid during the experiment has a positive temporal temperature
gradient caused by the higher flow velocity, see Section 3.1, resulting in a constant heating
of the airfoil. Due to different heat coefficients in the laminar and turbulent flow regimes,
both regimes have a different temporal temperature gradient. As a result, the two classical
image processing methods’ flow visualizations, the temporal mean value and the temporal
standard deviation of the image series, shown in Figure 11, have a high CNR between
the flow regimes of 1.97 and 1.85, respectively. In both images, a clear distinguishability
between the two flow regimes is possible.
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Figure 11. Thermographic flow visualization of the DU96W180 airfoil in cross-flow with a Reynolds number of 3× 106.
Temporal mean value and temporal standard deviation as well as principal components (PC) no. 1–3 from the PCA of the
image series. Systematic inhomogeneities in the flow regimes are reduced in the PC, while a contrast between the laminar
and turbulent flow regime is maximized in the mean value with CNR = 1.79.

The PCA flow visualizations for PC 1 to PC 3 also have a good contrast between
the flow regimes; however, differences in the reduction in spatial temperature gradients
within the flow regimes exist. The PC 1, for example, has a gradient within the laminar
flow regime just as strong as the mean value or the standard deviation image. The most
homogenous flow regime, by sufficient contrast, is located in PC 2 with a CNR of 1.93.
The global contrast was not increased by the PCA evaluation compared to the classical
methods, but spatial gradients are reduced due to the flow as well as artefacts such as the
reflection on the left side of the image, increasing the homogeneity of the flow regimes.

4.3.2. Flow Transition Localization

Figure 12 shows the intensity profile, intensity gradient profile, the approximations for
locating the flow transition as well as the resulting flow transition positions equivalent to
the last section, see Section 4.2. All intensity profiles have a high gradient at x ≈ 148 px that
enables a flow transition localization with minimal random error with either localization
method. However, the systematic gradients within the laminar flow regimes in both the
mean value and the temporal standard deviation have the effect that no distinct intensity
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plateaus representing the two flow regimes exist. As a consequence, the approximation of
the intensity does not auto-center at the position of flow transition, resulting in a systematic
error of the localization. In the PC flow visualization, however, the reduction in the
systematic gradients lead to the existence of two clearly distinct intensity plateaus between
which the intensity approximation successfully centers.
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Figure 12. The intensity profile (blue line), intensity gradient profile (orange line) along the white dotted line in the
temporal mean value, temporal standard deviation and PC 1 flow visualization in Figure 11. The approximation of the
intensity profile (blue dashed) and intensity gradient profile (orange dashed), respectively. The flow transition localization
results of both methods are depicted with a vertical dotted line in the respective color. Different expressions of the intensity
plateaus are visible in each profile with varying gradient amplitudes between the plateaus. The most distinct expression of
two plateaus including a steep step between them exists in the PC 2, even though the high gradient in the classical image
processing result is sufficient for an auto-centering of the intensity gradient approximation.

Figure 13 shows the result of the entire flow transition line localization over all image
rows based on the temporal mean value (red), the temporal standard deviation (blue) and
the PCA (green) result. Due to the high gradient at the position of the flow transition,
the localization by means of the intensity gradient approximation has minimal random
and systematic error in each flow visualization. The spatial temperature gradient in the
laminar flow regime due to the changing heat flux and thermal reflection in the mean value
and the temporal standard deviation results in a higher systematic error compared to the
PCA result if the flow transition is located by means of the intensity profile approximation.
Nonetheless, the minimal random error σrand and systematic error σsyst amount to 0.13% c
and 0.52% c for the approximation of the intensity gradient profile in the mean value. All
errors are listed in Table 3.
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Table 3. Located flow transition position xtr and corresponding random and systematic error σrand and σsyst by means of
both localization methods for each image processing method’s resulting flow visualization from the DU96W180 test case 2
at a Re = 3× 106. Temporal mean value (mean), temporal standard deviation (std) and PCA. All values are normalized to
the chord length c.

xtr/c in % σrand/c in % σsyst/c in %

Mean std PCA Mean std PCA Mean std PCA

Intensity approximation 48.9 46.6 43.8 0.50 0.74 0.21 4.36 2.05 0.75
Intensity gradient approximation 45.0 43.6 43.8 0.13 0.17 0.20 0.52 0.93 0.76
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Figure 13. Comparison of the located laminar turbulent flow transition line by means of the temporal
mean value (red), temporal standard deviation (blue) and PCA (green) flow visualization of the
image series. Flow transition localization based on the approximation of the intensity profile (top)
and approximation of the intensity gradient profile (bottom). The intensity gradient approximation
method successfully locates the flow transition in each image with minimal random and systematic
error due to the existence of a high gradient. The localization based on the intensity profile approxi-
mation in the classical image processing methods, however, has a larger systematic error. This error
is minimized if the PC flow visualization is used for the localization.

In conclusion, the PCA is able to reduce the influence of systematic gradients within
the flow regimes due to reflection artefacts or spatial temperature gradients, allowing for a
flow transition localization with the approximation of the intensity profile. However, the
random and systematic errors for an approximation of the intensity gradient profile are on
the same order of magnitude for each image processing method. Only if the approximation
of the intensity is preferred does the PCA have advantages for locating the flow transition
with reduced errors.
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5. Conclusions and Outlook

The article introduced an enhanced image processing method based on PCA for the
thermographic flow visualization of wind turbine rotor blades. The goal was to increase
the distinguishability between the laminar and turbulent flow regimes and finally enabling
a flow transition localization with minimal random and systematic error. The PCA results
are compared to two classical image processing methods for evaluating a thermographic
image series: the temporal mean value and the temporal standard deviation. Furthermore,
two flow transition localization methods were introduced based on the approximation of
the intensity profile and the intensity gradient profile in flow direction with a Gaussian
error function and Gaussian function, respectively.

The evaluation was applied to a cylinder in cross-flow condition and a DU96W180
airfoil. This allowed the study on a well-known geometry in fluid dynamics by means
of the cylinder as well as on a more application-oriented object. The experiments were
conducted in a wind tunnel with a closed test section and Reynolds numbers oriented
on the application on real wind turbines. For the airfoil, two different fluid temperature
situations were tested. A steady-state test case with an almost constant fluid temperature
and a transient state with a positive temperature gradient were evaluated during the
experiment. In this way, it was possible to analyze the PCA results on thermographic
images with little to no distinguishability between the laminar and turbulent flow regimes
and images with a high initial distinguishability. Thus, all possibilities from the real
application were covered, and the potential of PCA regarding the application on wind
turbines in operation was studied.

In the cylinder experiment, the PCA enables a more robust localization of the flow
transition compared to the classical image processing methods. The effects of systematic
gradients and artefacts are minimized, and the CNR is increased by 47%. The random
error of the localization is reduced by a factor of 20.7 and the systematic error by 57%. In
test case 1 with a low contrast between flow regimes, the classical methods are not able
to increase the CNR. Applying the PCA, however, a flow visualization with an increased
CNR by a factor of 7.5 is created, and the systematic and random measurement errors
of the flow transition localization are reduced by 3.98% and 5.26% of the chord length
c, respectively. If the distinguishability is already high, the PCA achieves a CNR on the
same order of magnitude as the classical methods. However, the PCA enables a more
robust flow transition localization by means of the intensity profile approximation with a
Gaussian error function, as spatial systematic gradients in the flow regimes are reduced.
The first airfoil test case also shows that the existence of a laminar separation bubble highly
influenced the localization in the classical image processing methods, while the PCA result
is unaffected and allows for a more robust flow transition localization.

The increase in the flow regimes’ distinguishability for measurement conditions with a
low initial temperature difference between fluid and surface minimizes the requirement of
the thermographic flow visualization technique with regard to the necessary solar energy
input. Being less dependent on the strong blade heating, measurements during cloudy
days, early in the morning or late in the day become possible. Additionally, a flow transition
localization with reduced errors improves the assessment of the aerodynamic condition of
the wind turbine and the decision regarding the necessity of maintenance work. Note that
the findings of this work are applicable to any similar setup with an airfoil in cross-flow
condition and comparable Reynold’s numbers, for instance aircraft wings and helicopter
blades [21].

Even if the introduced image processing methods evaluate different information in
the image series, the combination of the methods does not prove to be advantageous.
However, the surface area of the laminar and turbulent flow regimes was cropped from
the background prior to the analysis, as the PCA is sensitive to any changes in the image
series, including the background. For a pre-evaluation, the classical methods, such as the
mean value of the image series, are more robust to identify the surface area and the rough
distribution of the flow regimes. Afterwards a more detailed evaluation by the PCA is
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capable to maximize the distinguishability and minimize the measurement error of the flow
transition localization. This way, the PCA is a valuable addition to the existing evaluation
methods of thermographic images. With the absence of an artificial heating or cooling
of the measurement object or the fluid, this work is capable for a future application to
in-process measurements on wind turbines in operation.

Thus, the next step is conducting experiments on real wind turbines. For this task, a
co-rotation of the measurement setup with the rotation of the rotor is desirable to acquire
the image series with a high frequency. In addition, more wind tunnel experiments on
the cross-sensitivities of the PCA on artefacts, dead pixels in the thermographic image or
the pre-chopping of the image data need to be carried out. An analysis of the necessary
number of images as well as the measurement frequency in order to achieve the increase in
distinguishability could give information about the minimal necessary image acquisition
effort. Additionally, a post-processing of the principal components should be developed in
order to decide which component or which combination of components inherits the most
information about the flow situation.
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