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Abstract: Short-term load forecast (STLF) plays an important role in power system operations.
This paper proposes a spline bases-assisted Recurrent Neural Network (RNN) for STLF with a
semi-parametric model being adopted to determine the suitable spline bases for constructing the
RNN model. To reduce the exposure to real-time uncertainties, interpolation is achieved by an
adapted mean adjustment and exponentially weighted moving average (EWMA) scheme for finer
time interval forecast adjustment. To circumvent the effects of forecasted apparent temperature bias,
the forecasted temperatures issued by the weather bureau are adjusted using the average of the
forecast errors over the preceding 28 days. The proposed RNN model is trained using 15-min interval
load data from the Taiwan Power Company (TPC) and has been used by system operators since
2019. Forecast results show that the spline bases-assisted RNN-STLF method accurately predicts
the short-term variations in power demand over the studied time period. The proposed real-time
short-term load calibration scheme can help accommodate unexpected changes in load patterns and
shows great potential for real-time applications.

Keywords: exponentially weighted moving average; LASSO model selection; semi-parametric model;
short term load forecast; spline bases

1. Introduction

Short Term Load Forecasting (STLF) can be used to obtain the most economical
way to commit power generation sources while fulfilling policies requirements, ensuring
reliability and meeting the security, environmental, and equipment constraints of the power
system [1].

The daily load profile generally follows cyclic and seasonal patterns related to both
the climate and human activities, and is intrinsically a univariate time series. Many
general forecasting methods based on regression or time-series models can be used for
load forecasting (e.g., a semi-parametric additive model [2] or an autoregressive integrated
moving average (ARIMA) [3]). These methods assume, however, a linear relationship
between the observed and future time series. This assumption makes them less effective for
time series with significant nonlinear characteristics, such as those associated with energy
demand. Chen et al. [4] considers a more complicated time series model with a functional
trend curve to improve the forecast results.

Due to their nonlinear fitting ability, machine learning techniques have been applied
to many forecasting problems. The Artificial Neural Network (ANN) [5] is a typical
machine learning method. ANNs learn regularities and patterns automatically from past
recorded data and produce generalized results with the ability to be self-adaptive. Feed
forward Multilayer Perceptron (MLP) [6,7] and Generalized Regression Neural Network
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(GRNN) [8] are among numerous ANN-based STLF techniques used in many control
centers [9,10]. A systematic review on the techniques of electricity demand forecasting
methods is available [11]. This overview includes regression, time series analysis, ANN,
support vector machines and certain bottom-up approaches.

Load demand time series are nonlinear and non-stationary, with time-dependent
dynamic behaviors. Thus, in our view, the Recurrent Neural Network (RNN) is a more
suitable model for this purpose, as it can consider the temporal context in the feedback
connections and as it has a nonlinear property [12]. Several RNN models for STLF have
been proposed. In [13], system net load profiles are modeled by RNNs as the outputs of
dynamic systems influenced by weather, time and other environmental factors. A pooling-
based deep RNN for household load forecasts is proposed in [14], where the focus is to
provide more suitable training samples to the network.

Besides the cyclic patterns, the load demand is also affected by several exogenous
variables, including the prevailing weather conditions, the calendar effect, and the general
randomness inherent in individual’s behaviors. With climate change and the increase
of behind-the-meter renewable integrations, it is challenging to effectively integrate the
various exogenous variables into the STLF model and provide accurate load forecasts.
In [15], an ensemble of radial basis function neural networks (RBFNNs) is proposed
where exogenous features and features extracted from load series, through long short-term
memory (LSTM) networks and multi-resolution wavelet transforms in various timescales,
are used to train the RBFNNs. While in [16], a hybrid algorithm that combines similar
day selection, empirical mode decomposition, and LSTM neural networks to construct a
prediction model for STLF.

This study develops a RNN-based short-term (i.e., over the next few hours, the next
day, or the next week) load forecast model for the Taiwan Power Company (TPC) system.
It is implemented through a semi-parametric regression framework to catch general daily
demand behaviors. The STLF method uses the least absolute shrinkage and selection
operator (Lasso) regression [17] and an adaptive Lasso [18] to select suitable variables.
It includes multi-resolution basis functions [19] and cubic B-spline basis functions in the
RNN model, in order to catch useful patterns, reduce the overfitting problem, and increase
the forecast accuracy. An intuitive approach for calibrating the temperature forecasts is
also adopted to account for the trend of past temperature forecast errors.

To accommodate real-time operation purposes and deal with any unexpected changes in
system net load, a real-time short-term load adjustment tool is also developed. An interpo-
lation technique [20] based on the historical load values over the previous 15 min and their
differences with the current STLF values is employed to achieve a real-time forecast adaptation
in which the load forecast is updated every 5 min, for real time operation applications.

The main contribution of this work is to develop a systematic procedure to combine
the methodologies of statistical modeling and machine learning in two consecutive stages,
so as to provide accurate forecasts of the load demand. To address overfitting in the
forecast model used in the statistical modelling stage, the important and effective factors
are identified by means of a variable selection procedure, together with an error-reducing
calibration of the forecasted temperature using a suitable non-linear transformation. RNN
machine learning models are then constructed, to capture the uncertainties of the com-
plex and non-linear load patterns. The procedure for real-time short-term load demand
adjustment further enhances the real-time forecast accuracy. As a result of this improved
forecasting, the system operator can begin earlier preparations to reduce the impact of net
load intermittency, particularly in systems with higher renewable penetration.

2. Methodology

The proposed RNN-based STLF procedure, with selected bases through a semi-
parametric model and a real-time load forecast adjustment scheme, is shown in Figure 1.
In the first stage, forecasts of daily load patterns up to the next seven days are obtained
using the apparent temperatures predicted by the Taiwan Central Weather Bureau (TCWB).
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In the second stage, based on past-forecasted results, real-time adapted forecasting load
sequences are generated through the interpolation method using real-time adaptation and
an exponentially weighted moving average (EWMA). Figure 1 presents the data flow of
the proposed RNN-based RNNadp model.
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Forecasting (STLF) and RNNadp

2.1. Apparent Temperature

The system net-loads are greatly affected by external factors such as temperature,
humidity, wind speed and seasonal events that change over time. The apparent temperature
index [21] equivalent to the temperature felt is used to evaluate its effect upon the load.
The apparent temperature Ta is defined as:

Ta = 1.04 ∗ Tc + 0.2 ∗ e− 0.65V − 2.7 (1)

where Tc is the temperature in Celsius, e = 6.105 ∗
(

RH
100

)
∗Exp

[
17.27Tc

237.7+Tc

]
, e is the pressure

in hPa, V is the wind speed in m/sec, and RH is the relative humidity in percent. The
apparent temperature for the next 48 h (with a 3 h resolution) is provided by the TCWB.
Throughout this work, references to “temperature” refer to the apparent temperature.

Different regions have different weather patterns. The total system load is a combination
of the loads from the north, central, south and east regions of Taiwan (whose average load
proportions are 38%, 28%, 33% and 1%, respectively). Since the goal is to forecast the total
system load, the temperatures of the four regions are merged into one value by taking the
weighted average of their temperatures with weights equal to their load proportions; namely:

T̃a =
4

∑
i=1

`iTa,i (2)

where i = 1, . . . , 4 corresponds to the north, central, south and east regions respectively,
Ta,i is the temperature in the ith region and `i is the proportion of regional load in system
total energy demand.

2.2. Spline Basis Functions

To catch the general behaviors of the daily load patterns, we consider the class of
multi-resolution basis functions proposed by Tzeng and Huang [19], which are ordered in
the direction of increasing resolution detail, with the number of bases, K, being chosen to
be large enough to represent the general 24-h patterns. On the other hand, due to the fact
that the daily load patterns may change rapidly between the peak and off-peak periods, we
also include the cubic B-spline basis functions to accommodate load patterns that change
substantially within relatively short periods of time. Two sets of bases functions are used:
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(1). the multi-resolution bases { f1, . . . , fn} defined on n control points {s1, . . . , sn} and (2).
the B-spline bases of order d,

{
Bi,d, i = 1, . . . , n

}
with knots at {s1, . . . , sn}. Details about

the spline basis functions can be found in [19].

2.3. Semi-Parametric Model

A semi-parametric (SPM) model is adopted for STLF under the framework of additive
models [22], by a suitable combination of the two aforementioned sets of spline basis
functions, together with the nonlinear function of the temperature.

Now let the sequence of daily load random vectors at time t be yt = (y(t, 1), . . . , y(t, n))′,
t = 1, . . . , T, with y(t,s) denoting the load at time t and local time grid location (control
point) s, s = 1, . . . , n.

The model for STLF is assumed to have the following form:

ỹ(t, s) = log(y(t, s)) = µ(t, s) + ε(t, s) (3)

where µ(t, s) represents the mean function of the logarithm of the daily load ỹ(t, s), and
ε(t, s) is the corresponding random error at time t = 1, · · · , T and period s = 1, . . . , n,
assuming that εt = (ε(t, 1), . . . , ε(t, n))′ ∼ N(0, Σn(t)), with Σn(t) being the covariance
matrix of the random error vector εt at time t. In the case of an independent error at time t
and assuming Σn(t) = σ2 In, the time series errors sequence εt, t = 1, . . . , T, may yield a
different covariance matrix estimate.

Specific patterns of the response variable (i.e., the system net load) of the model for
forecasts are described below, under the following explanatory variables.

1. It is observed that there are patterns depicted by the intra-daily, intra-weekly, peak
and off-peak effects to be modeled by the multi-resolution and cubic B-spline bases.

2. It is clear that the temperature significantly affects the load pattern. The weighted
average of the temperature at different periods each day, and similarly the daily
highest and lowest and the weighted average of temperatures in the different regions,
are included as important predictors.

3. The interaction effects of the period with the day type within each week are also crucial.

To accommodate these three effects, and also the temperature effect, let the mean
function at time t and point s be given by:

µ(t, s) = W(t) + D(s) + DW(t, s) + T(t, s) (4)

with:

1 intra-weekly effect W(t)
2 intra-daily effect D(s)
3 interaction effect among the intra-daily and intra-weekly DW(t, s)
4 apparent temperature effect T(t, s)

To model the intra-daily effect, we use a combination of the first 24 multi-resolution
bases { f1, . . . , f24} for 96 control points with si = i, i = 1, . . . , 96, and 96 cubic B-spline
bases

{
Bd

j,4, j = 1, . . . , 96
}

with knots at sj, j = 1, . . . , 96.
Similarly, the intra-weekly effect is modeled by 7 cubic B-spline bases Bw

k, with knots
at wk, k = 1, . . . , 7.

The interaction effects among the intra-daily and intra-weekly are modeled by the
products of the corresponding intra-daily and intra-weekly bases functions, namely:{

Bw
k,4 · fi, k = 1, . . . , 7, i = 1, . . . , 24,

}
,
{

Bw
k,4 · B

d
j,4, k = 1, . . . , 7, j = 1, . . . , 96

}
.

A detailed description of the spline bases functions is provided in Appendix A. The
corresponding SPM is a linear combination of the above basis functions. The explicit
expression of the model is given in Appendix B.
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2.4. Model Bases Selection

Many standard estimators can be improved by shrinkage methods, such as ridge
regression [23] and Lasso regression. This study adopts Lasso regression to obtain sparse
solutions from the model bases selection.

In a Lasso regression, the value of the parameter controls both the size and the number
of coefficients. Cross-validation is a resampling technique which can find a parameter value
that ensures a proper balance between bias and variance. In this case, cross-validation
considers the best tuning parameter value to be the one that minimizes the estimated test
error rate of the forecasting results. More details about the Lasso estimate and adaptive
Lasso can be found in [17,18].

2.5. Temperature Forecast Adjustment

Currently, TCWB provides three-hour temperature forecasts for the present day
(D-day), the next day (D + 1), and the maximum and minimum temperature forecasts for
the days (D + 2) to (D + 7).

1. Calibration of temperature forecasts

To calibrate the day-ahead temperature forecasts at the eight time points s1, . . . , s8
provided by TCWB before D-day (the first day that the temperature forecasts are to be cali-
brated), the errors between the historical apparent temperatures Ta(t, s), and the recorded
day-ahead temperature forecasts of the 28 days before D-day, T̂a(t, s), t = D− 1, . . . , D− 28,
s = s1, . . . , s8, are used for the calibration. Define both the historical and the forecasted
mean temperatures of the 28 days before D-day as T(D, s) and T̂(D, s) respectively, where
s = s1, . . . , s8:

Ta(D, s) =
1

28

D−1

∑
t=D−28

Ta(t, s) (5)

T̂a(D, s) =
1

28

D−1

∑
t=D−28

T̂a(t, s) (6)

For D-day, let the error between the mean temperatures and the calibrated temperature
forecasts be, respectively:

Te(D, s) = Ta(D, s)− T̂a(D, s) (7)

Tc(D, s) = T̂a(D, s) + Te(D, s) (8)

The calibrations and (D + 1)-day’s eight temperature forecast time points can be found
similarly. Note that samples from historical days with unusual temperature pattern are
treated as outliers and thus deleted beforehand.

2. Refined temperature forecasts

As we need to make load forecasts at 15-min intervals, we first interpolate the pro-
vided three-hour forecast data into a 15-min resolution, which will lead to smaller biases
versus the real 15-min interval temperatures. We use the well-established Cubic Hermite
interpolation method [20] and present that interpolation formula below.

Let the sequence {ui}k
i=1 be a partition u1 < u2 < · · · < uk of the interval [u1, uk],

and let {Ti }, Ti = h(ui), be the corresponding data points. The local grid spacing is
∆u(i+0.5) = u(i+1) − ui, and the slope of the piecewise linear interpolant between the data

points is Si+0.5 =
∆hi+0.5
∆ui+0.5

.
The cubic Hermite interpolant polynomial defined for ui < x < ui+1 is:

H(u) = c3(u− ui)
3 + c2(u− ui)

2 + c1(u− ui) + c0 (9)

where
c0 = Ti, c1 =

.
hi,



Appl. Sci. 2021, 11, 5930 6 of 17

c2 =
3Si+0.5 −

.
hi+1 − 2

.
hi

∆u(i+0.5)
, c3 = −2Si+0.5 −

.
hi+1 −

.
hi

∆h2
i+0.5

,

.
hi = −

∆u(i−0.5)Si+0.5 + ∆u(i+0.5)Si−0.5

∆u(i+0.5) − ∆u(i−0.5)
,

Then the interpolant method produces as its output a sequence of temperature fore-
casts at 15-min intervals.

3. Transformed temperature forecasts

It is noted that the effect of temperature to the load is nonlinear as shown in Figure 2
and upon examination it is observed that the load is approximately linearly related to the
logistic sigmoid transformation of the temperature through

g(T) =
1

1 + e−c1(T−c0)
(10)

where c0 = 30 represents the location of the reflection from concave upward to concave
downward, c1 = 0.85 represents the scale parameter controlling slope changes.
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2.6. Recurrent Neural Network with Selected Bases

RNN introduces loops in the network and allow internal connections among hidden
units to enable exploration of the temporal relationships among the data [24]. The RNN
structure with selected model bases taken from the resulting SPM described above is
presented in the following.

1. General Structure of RNN

Each of the RNN layers uses a loop to iterate over the time steps of the sequence. An
RNN with a single hidden layer is illustrated below.

The input training data is the adaptive lasso estimator effects, it is given as:

x =
{

x(1), x(2), . . . , x(t), . . . , x(T)
}

, x(t) =
(

x(t)1 , x(t)2 , . . . , x(t)p

)ᵀ
, t = 1, . . . , T. (11)

The mapping of the output o(t) can be represented as:

o(t) = φ
(

ux(t) + wo(t−1) + b
)

(12)

where o(0) = 0, t = 1,..., T, φ are the activation functions, u is the input weight for x(t), w is
the input weight for o(t−1), where both are the same for all time points t, and where b is
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a parameter in the model representing the bias of the hidden layer and the output layer.
The RNN uses the hidden state o(t) at time step t to memorize the network. When t = 1, an
RNN is the same as an ANN.

Consider a RNN model with k multilayer perceptrons, where in the ith hidden layer
there are m neurons and the time step is T. Then the ith layer vector for these m neurons in

the (i−1)th layer at time t is expressed as: h(t)
i =

(
h(t)i,1 , . . . , h(t)i,m

)ᵀ
, t = 1, . . . , T, which can

be obtained through the following equation:

h(t)
i = φ

(
Uih

(t)
i−1 + Wih

(t−1)
i + bi

)
, i = 1, . . . , k, (13)

where h(t)
0 = x(t), h(0)

i = 0, Wi and Ui are the transition and input weight matrices. The
mapping of the output o(t) can be represented as:

o(t) = φ
(

Vh(t)
k + bo

)
, t = 1, . . . , T, (14)

where V is output weight matrices and b0 is a parameter in the model representing the
bias of the hidden layer and the output layer.

With suitable choices for the parameters, such as the number of layers k, number of
neurons in each layer m, and time steps of a sequence T, the RNN is expected to perform
better than a more general model structure considering time effects in the neural network
framework for STLF problems. We build an RNN model with k multilayer perceptrons in
Python using the tensorflow library.

2. Configuration Architecture

The RNN training process is heavily influenced by the choice of hyper parameters:
sequence size, number of hidden layers and number of nodes per hidden layer. Efforts were
made to search for a hyper parameter space to test different parameter combinations most
suitable for TPC system. The experiment was conducted using standard RNN network to
provide a best set of hyper-parameters. The results shown in Table 1 indicate that the best
number of hyper-parameters units is 14, Layers is 3, and Time steps is 4.

Table 1. Performance accuracy of various RNN architectures.

Time
Steps Units Layers (D + 1)-Day

MAPE

(D + 1)-Day
Max of APE

at 95%

Time
Steps Units Layers (D + 1)-Day

MAPE

(D + 1)-Day
Max of APE

at 95%

4 14
3 1.862 4.188

8 14
3 1.863 3.993

4 1.876 4.383 4 1.872 4.162
5 1.867 4.381 5 1.883 4.262

4 21
3 1.876 4.318

8 21
3 1.896 4.321

4 1.906 4.271 3 1.863 3.993
5 1.904 4.220 4 1.872 4.162

4 28
3 1.900 4.354

8 28
3 1.916 4.287

4 1.882 4.336 4 1.908 4.405
5 1.920 4.171 5 1.925 4.349

Figure 3 shows the structure of the RNN used in this work, where the input
{

X(1), . . . , X(t)
}

are values obtained from the selected model bases in the SPM model.
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2.7. Real-Time Adapted Forecasting

The increasing use of renewable power sources has produced an increase in inter-
mittency and a ramping in the net load profile that requires additional control efforts to
maintain frequency quality. For a complete treatment for STLF, we also provide a real-time
adaptive STLF procedure to help system operators with a detailed view into the real-time
power system condition, so as to aid in their decision making. A quasi-real time RNN-based
forecasting model (RNNadp) with the objective of providing short-term load forecasts is
described below.

1. Load Forecasts Interpolation

In the first stage, the STLF results are interpolated to be a sequence with values in
every 5-min period. The Cubic Hermite interpolation method is used to produce the load
forecasts at 5-min intervals. This real time load data at 5-min intervals is then used in the
second step to adaptively adjust the forecasting results.

2. Adaptive Load Forecasting

The correction value is the average difference between the actual and the forecasted
load values in the past 15-min interval. In other words, it is the average of the three
differences of the actual and forecasted load values calculated at 5-min intervals.

3. Exponentially Weighted Average

Finally, we use the EWMA to smooth the correction result. The exponential smoothing
is given by the formula:

ỹi = 0.8yi + 0.2ỹi−1 (15)

where yi is the ith corrected value.

3. Test Results

TPC system load data from January 2012 to December 2019 are used for testing
the proposed method. The load data used here is the net load (the power served by all
generators minus the TPC’s pumped storage load). The days in each year are divided into
two classes: general days and special days. Special days refer to exceptional days that have
their own load patterns (e.g., holidays, days experiencing a typhoon, etc.). General days
refer to either typical working days or weekends. The main goal of this study is to provide
STLF method for general days.



Appl. Sci. 2021, 11, 5930 9 of 17

3.1. Training Data Selection

For the future day loads to be predicted, the training samples are chosen from historical
days with a similar load pattern. The input-target pairs are the historical temperature
(predicted and actual) and load data recorded during the corresponding days in the
previous 28 days (4 weeks), together with the 6 weeks around the same period of the
previous year and the predicted temperatures of the future days from TCWB. To select
a subset of model bases as predictors for estimating the future day loads, a training set
that has 70 daily loads and temperature data corresponding to the time period shown in
Figure 4 is used. The forecasting process begins every morning at 9:00 a.m. to forecast
demand up to next 7 days with 15 min resolution. The test results obtained when applying
the method to forecast the load in year 2018–2019 are presented. STLF performance indices,
such as the mean absolute mean error (MAE), root mean square error (RMSE), absolute
performance error (APE) and mean absolute percentage error (MAPE), are used to evaluate
the forecasting accuracy of the model used [25].
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3.2. Comparison of Test Results Obtained from the Semi-Parametric Model and the RNN Model

The MAE, RMSE and MAPE of the accuracies of the load forecasts for every month
from 2018–2019 are provided. The forecasting accuracies for the two models based on the
historical temperatures serve as a baseline for comparison. In Table 2 the corresponding
(D + 1)-day monthly MAE, RMSE and MAPE of the two models with historical temper-
atures are given in details. It can be seen that with the actual temperature, both models
have good accuracies on the (D + 1)-day forecasts and the performances of the RNN model
is especially outstanding on most of the months from 2018–2019 with annual averages of
MAPE at 2.03, 1.70 respectively.

Table 2. Comparisons of the Model Performances of the next (D + 1)-day Forecasting Accuracies of
the SPM and RNN Models with Historical Temperatures.

SPM RNN Daily Load

Year MAE RMSE MAPE MAE RMSE MAPE Average

2018 605.01 792.93 2.31 530.2 719.98 2.03 26,382.82
2019 466.39 632.22 1.76 448.99 601.02 1.7 26,441.99
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3.3. Forecasts with Temperature Calibration

The actual temperature data indicate that temperature forecasting biases increase
rapidly with large values (around 3 degrees). Figure 5 presents the MAPE time plots of two
STLF models using original and adjusted temperature forecasts as inputs. From Figure 5
and Table 3, it can be seen that, after calibrating the forecasted temperature through bias
correction based on the previous 28 days’ temperature forecasting biases, the forecasting
accuracies are significantly improved.
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Figure 5. The mean absolute percentage errors (MAPEs) of semi-parametric (SPM) and RNN models
with the historical, forecasted and calibrated temperatures for the (D + 1)-day daily load patterns.

Table 3. Performance Comparisons on mean absolute percentage errors (MAPEs) of semi-parametric
(SPM) and RNN Models with the Historical, Forecasted and Calibrated Temperatures, for the next
(D + 1)-day Load Patterns.

SPM RNN

Month Historical Forecasted Calibrated Historical Forecasted Calibrated

201801 2.6 2.64 2.6 1.62 1.43 1.41
201802 4.13 4.13 4.09 3.57 3.64 3.64
201803 2.52 2.16 2.25 1.88 1.71 1.68
201804 2.51 2.23 2.45 2.14 2.92 2.40
201805 3.58 3.32 3.77 2.32 2.68 2.41
201806 2.23 2.38 2.15 2.20 3.77 3.20
201807 1.43 2.00 1.87 1.49 2.95 2.64
201808 1.86 2.96 2.00 1.98 4.49 3.47
201809 2.5 2.85 2.33 2.89 3.87 2.57
201810 1.87 2.53 2.2 1.81 2.51 2.11
201811 1.57 1.54 1.7 1.62 2.01 1.75
201812 1.35 1.39 1.32 1.40 1.52 1.43

Average 2.32 2.48 2.37 2.03 2.74 2.34

201901 2.00 2.06 2.05 1.98 2.14 2.09
201902 1.83 1.84 1.87 1.88 2.05 1.97
201903 1.26 1.26 1.48 1.29 1.34 1.31
201904 2.10 2.52 2.63 1.94 2.6 2.38
201905 2.35 2.85 2.49 2.32 3.12 2.73
201906 2.02 2.98 3.12 1.57 3.02 2.57
201907 1.30 1.95 1.89 1.5 2.09 2.00
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Table 3. Cont.

SPM RNN

Month Historical Forecasted Calibrated Historical Forecasted Calibrated

201908 1.91 2.55 2.6 1.9 2.87 2.80
201909 2.24 2.61 2.16 2.06 2.76 2.26
201910 1.21 1.77 1.88 1.32 2.04 1.72
201911 1.26 1.41 1.47 1.16 1.49 1.45
201912 1.71 1.73 1.73 1.56 1.64 1.60

Average 1.76 2.13 2.11 1.7 2.26 2.08

3.4. Real-Time Forecast Performance

The monthly performance comparisons for 2018 on the MAPE of the real-time D-day
forecast for the next 6 h are given in Table 4. As the table shows, the annual averages of the
MAPE for the RNN-based RNNadp model are below 1%.

Table 4. Performance Evaluation on MAPE of the Real-Time D-day Forecast Over the Next 6 Hours.

Month 15 Min 30 Min 60 Min 120 Min 180 Min 360 Min

201801 0.488 0.49 0.494 0.502 0.509 0.529
201802 0.468 0.469 0.471 0.477 0.483 0.499
201803 0.481 0.482 0.485 0.495 0.506 0.528
201804 0.488 0.493 0.502 0.515 0.526 0.55
201805 0.47 0.475 0.483 0.496 0.506 0.554
201806 0.456 0.459 0.466 0.477 0.488 0.542
201807 0.434 0.438 0.445 0.457 0.465 0.496
201808 0.447 0.451 0.457 0.465 0.474 0.513
201809 0.485 0.486 0.492 0.503 0.513 0.557
201810 0.525 0.529 0.535 0.546 0.558 0.582
201811 0.473 0.475 0.478 0.484 0.493 0.515
201812 0.452 0.453 0.455 0.460 0.470 0.490

Average 0.473 0.475 0.481 0.490 0.500 0.530

Figure 6 shows the performance of the model for a typical day of the studied period,
June 22. As can be seen, the real time load pattern and the forecasting load pattern of the
RNN model have similar trend patterns, but the forecasted curve is much lower. With the
adjusted model, RNNadp, however, the forecast accuracy improves significantly, obtaining
an average error of 0.567% across the entire day.
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3.5. Comparison of ANN, MIX, SPM and RNN Model Performance

In this sub-section, performance of different STLF methods are compared, including
a two-stage Artificial Neural Network (ANN) model and an STLF model developed
previously by TPC with special attention being given to the adjustments of the peak and
nadir load forecasts [26], and a mixed model (MIX) with a weighted average of the ANN
and against our basic RNN without Lasso variable selection or temperature calibration,
where the weights are inversely proportional to the MAPEs of the previous day.

The performances of the next (D + 1)-day monthly MAPEs for these four forecasting
models are presented in Table 5, for the year 2018. As the table shows, each model has its
own advantages and disadvantages in daily load profile and max/min load forecasts. For
example, the RNN model has the best overall yearly average performance for monthly
MAPEs: 2.34 for the daily loads and 2.23 for daily peak loads. The SPM model, however,
performs the best for nadir loads, with an average monthly MAPE of 2.18.

Table 5. Performance Comparisons of the Monthly MAPE (Daily Load Average, Peak Load and Nadir Load) for the
(D + 1)-day Forecasts with the Artificial Neural Network (ANN), mixed model (MIX), SPM and RNN Models.

ANN MIX SPM RNN

Month Daily Peak Nadir Daily Peak Nadir Daily Peak Nadir Daily Peak Nadir

201801 1.77 1.33 2.30 1.95 1.61 2.78 2.60 3.18 2.48 1.41 1.21 0.96
201802 2.19 2.63 2.21 2.38 2.82 2.43 4.09 4.51 3.18 3.64 3.81 2.94
201803 2.40 2.18 2.88 1.98 2.05 2.65 2.25 3.20 1.79 1.68 1.75 1.81
201804 2.78 3.01 2.59 2.12 2.33 2.21 2.45 2.93 2.23 2.40 2.31 2.33
201805 2.85 2.92 3.25 2.75 3.26 2.35 3.77 4.58 3.39 2.41 2.79 2.32
201806 7.25 6.48 8.29 7.59 6.60 9.02 2.15 2.30 2.87 3.20 3.04 2.96
201807 2.09 2.07 2.09 2.38 2.51 2.04 1.87 2.15 1.62 2.64 2.37 2.55
201808 1.89 1.91 1.68 2.13 2.59 1.78 2.00 2.05 1.80 3.47 3.30 3.73
201809 2.67 2.46 2.70 3.29 3.14 3.06 2.33 1.61 2.23 2.57 1.96 2.94
201810 1.94 2.02 1.68 1.31 1.41 1.26 2.20 1.96 1.94 2.11 1.81 2.28
201811 3.31 3.78 3.23 1.57 2.24 1.54 1.70 2.45 1.59 1.75 1.74 2.13
201812 1.49 1.47 1.16 1.25 1.19 0.79 1.32 1.06 1.17 1.43 1.24 1.60

Average 2.72 2.68 2.86 2.54 2.63 2.64 2.37 2.66 2.18 2.34 2.23 2.33

The RNN performance is the best in the spring seasons and fairly good in the winter,
when daily load patterns are stable. The SPM performance is the best in the summer season
when the weather varies more. The MIX model has its best accuracy in the winter season.
The ANN does very well in February and August, when there is the most uncertainty
in the load pattern. Both the ANN and MIX models have large biases in June, however,
especially for days adjacent to special days.

In more closely examining the daily MAPEs of the four models, we find that there are
only 2 days for which all four models have MAPEs greater than 4, thus failing to catch the
real load patterns: the day before Chinese New Year’s Eve in February and the “nine in
one” election day in November. Figure 7 shows the actual and (D + 1)-day forecasts for the
four models made on the previous D-day of these two days. All four models have similar
forecasts with large biases to the real load on these two days. This indicates that these two
days should be considered as special days in the future, so as to avoid large biases being
included in the training samples for future forecasts, thereby helping improving the biases,
particularly in February, for the SPM and RNN models.

Figure 8 presents the boxplots of daily MAPEs in 2018, after deleting the two days
mentioned above. The performances of SPM and RNN are shown to be generally more
robust, with fewer extremely large MAPEs. Figure 9 provides two subfigures with the
actual and forecasted loads in two of the days where both ANN and MIX have large
biased forecasts.
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One of those days is 13 June 2018, where the MIX and ANN have similar daily
forecasts, while the SPM and RNN perform reasonably well. The other day is 11 June 2018,
where the MIX model is slightly better than the ANN, with smaller biases.

Another indication that the four models complement each other well is that only about
5% of forecasting days have MAPEs greater than 2.5 for all four models. This 5% compares
to the 18% of days where the MAPEs of both ANN and MIX are both greater than 2.5, and
the 14% of days where this is true for both SPM and RNN–a reduction of more than 9% in
these cases. Among those days where all four models had large errors, about two thirds
had explainable unexpected circumstances that caused the forecasting errors, such as TPC
executing electric demand bidding, extreme weather conditions, or special events.

A new model can, in fact, be created by using an optimal weighted average of the
ANN, SPM and RNN forecasts as such a hybrid model might further reduce the forecasting
errors with proper time-varying weightings. How to choose appropriate optimal weights
is a topic worthy of further investigation.

3.6. Performances of the (D + 2) to (D + 7) Day Forecasting Accuracies of the RNN Models

Figure 10 presents the monthly averages of the (D + 2)-day to (D + 7)-day forecasting
MAPEs of the RNN models with forecasting temperatures from 2018–2019. Note that the
seasonal patterns appear in both years, and, as they are the (D + 2)-day to (D + 7)-day
forecasts, the higher MAPEs due to longer-range forecasts are to be expected.
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4. Conclusions

An STLF method using a semi-parametric model and RNN with selected bases is
presented. This tool has been adopted by TPC Operation Department for daily operation
purposes since 2019. Due to the weather characteristics in Taiwan, test results indicate
that STLF is especially challenging at season transitions: from spring to summer and from
summer to autumn. The main advantage of an RNN-based STLF proposed here is that
with the calibrated forecasted temperatures and features extracted from the load series,
through ensembles of B-spline and multi-resolution bases after statistical variable selection
approach, it can avoid the overfitting problems in the deep learning stage and adapt to
these weather changing patterns earlier than other methods. Noticeable improvements
of the MAPEs in 2019 for the RNN model with calibrating temperatures as compared
with other methods are observed. However, the intra-day load forecasts are sometimes
far off due to unexpected meteorologic factors. The real-time adaptive load forecasts for
the next one hour with every 5-min interval and helps the system operator to adjust the
ancillary service requirement to meet the electricity demand changes. In [15,16], both have
used LSTM as the deep learning methodology; we have also tried the LSTM model, where
results for the STLF show that the improvements on the accuracies of the forecasts are
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limited and the model is more complicated and takes much more time to compute, which
is not that feasible for daily use in practice. In [16], a similar-days selection procedure
is adopted, which is worthy of more studies to see the advantages and shortcomings of
this approach for our dataset with fast changing weather patterns. Besides the techniques
presented, an optimal model averaging various load forecasting models is a topic for
further investigation, as is how to extend the training samples to special day load forecasts.
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Appendix A. Spline Bases Functions

Appendix A.1. Multi-Resolution Bases

The proposed class of basis functions in Tzeng and Huang [19] is developed using thin-
plate splines (TPS). As presented in Tzeng and Huang [19], for given data Zi observed at n
distinct control points s1, · · · , sn ∈ R, a TPS function f(s) can be obtained by minimizing

n

∑
i=1

(Zi − f (si))
2 + ρJ( f ) (A1)

where

J( f ) =
∫
R

(
∂2 f (s)

∂2s

)2

ds ≥ 0 (A2)

J( f ) = is a smoothness penalty, and ρ ≥ 0 is a tuning parameter.
The multi-resolution spline basis functions fk(s), k = 1, . . . , n, are defined in Tzeng

and Huang [19] for the knot points s1, . . . , sn ∈ R, to have the following expression

fk(s)


1, k = 1
s, k = 2

λ−1
k−2

[
φ(s)−ΦX

(
X′X

)−1x
]′

vk−2, k = d + 2, . . . , n
(A3)

where x = (1,s)’, X = (x1, . . . , xn)
′, φ(s) = (φ1(s), . . . ,φn(s))′with φi(s) =

1
12(s− si)

3 and Φ

is the n× n matrix with the (i,j)th element φj(si), vk is the kth column of V, Vdiag (λ1, . . . ,λn)

V’ is the eigen-decomposition of QΦQ’ with λ1 ≥ . . . ≥ λn and Q = I−X
(

X
′
X
)−1

X′.

Appendix A.2. Cubic B-Spline Bases

B-splines are a clean, flexible way of making long splines with arbitrary order conti-
nuity. B-splines of order d are connected piecewise polynomial functions of degree d−1
defined over a grid of knots {s1, . . . , si, . . . , sn}. The B-spline bases for all orders d, d ≥ 0,
may be defined through Cox-deBoor recurrence formula. A spline curve Sd(s) of order d,
built from a linear combination of cubic B-spline basis functions Bi,d, i = 1, . . . , m, can be
expressed as

Sd(s) = ∑
i

ciBi,d(s) (A4)
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where

Bi,0(s) =
{

1 if si ≤ s ≤ si+1,
0 otherwise.

(A5)

and d ≥ 1
Bi,d(s) =

s− si
si+d − si

Bi,d−1(s) +
si+d+1 − s

si+d+1 − si+1
Bi+1,d−1(s) (A6)

with d = 4 corresponding to the cubic B-spline basis function. Note that Bi,d(s) are non-zero
only for s in interval [si, si+d+1).

Appendix B. Semi-Parametric Model

The mean function for the semi-parametric model mentioned above, at time of day t
and daily time control point s, is given by

µ(t, s) = W(t) + D(s) + DW(t, s) + T(t, s) (A7)

where

W(t) =
7

∑
k=1

αkBw
k,4(t) (A8)

D(s) =
24

∑
i=1

βi fi(s) +
96

∑
j=1

γjB
d
j,4(s) (A9)

DW(t, s) =
7

∑
k=1

24

∑
i=1

(αβ)kiB
w
k,4(t) fi(s) +

7

∑
k=1

96

∑
j=1

(αγ)kjB
w
k,4(t)Bd

j,4(s) (A10)

T(t, s) = vTa(t, s) (A11)

and α = (α1, . . . , α7)
′, β = (β1, . . . , β24)

′, γ = (γ1, . . . , γ96)
′, αβ =

(
(αβ)1,1, . . . , (αβ)7,24

)′
,

αγ = (αγ1,1, . . . αγ7,96)
′ are unknown coefficients to be estimated.
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