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Abstract: Large amounts of high-quality image data are the basis and premise of the high accuracy
detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect
various high-quality ship image data based on the marine environment. A novel method based
on CNN is proposed to generate a large number of high-quality ship images to address this. We
obtained ship images with different perspectives and different sizes by adjusting the ships’ postures
and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into
2D ship image according to the principle of pinhole imaging. We selected specific experimental
scenes as background images, and the target ships of the 2D ship images were superimposed onto
the background images to generate “Simulation–Real” ship images (named SRS images hereafter).
Additionally, an image annotation method based on SRS images was designed. Finally, the target
detection algorithm based on CNN was used to train and test the generated SRS images. The
proposed method is suitable for generating a large number of high-quality ship image samples and
annotation data of corresponding ship images quickly to significantly improve the accuracy of ship
detection. The annotation method proposed is superior to the annotation methods that label images
with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.

Keywords: SRS images; data augmentation; convolutional neural networks; target detection; im-
age annotation

1. Introduction

Trade between countries has become increasingly intensive due to the trend of eco-
nomic globalization [1]. Waterway transportation is the primary transportation mode in
international trade [2]. A safe and orderly waterway transportation environment guaran-
tees successful trade worldwide. To ensure the safety and order of waterway transportation,
it is necessary to monitor the maritime environment of ship navigation effectively. Re-
searchers have successfully applied deep learning-based target detection algorithms in the
field of marine environment monitoring [3]. Image-based ship target detection algorithms
have the advantages of high resolution, a wide detection range, and strong adaptability.
Meanwhile, deep learning-based target detection algorithms are more stable and accurate
than the traditional ones [4–8]. However, the typical supervised deep learning algorithm
needs abundant labeled data to train the network; the acquisition of useful data (such as
large amounts of ship image data) is often tricky. Moreover, a large amount of data from
different scenarios are used to train deep learning-based detection models, which makes
the detection model much more comprehensive [9–16]. However, it is challenging to obtain
real ship images in typical situations such as maritime scenarios [3].

There are usually three methods to obtain ship image data for deep learning training.
The first method is to use a camera to capture images of ships in real scenes; the second
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method is to obtain published ship image data sets. The third method is to design simu-
lation ship images with high similarity to the real ship images based on the existing real
ship images. However, there are some problems in the ship images obtained by these
three methods.

The main problems of the ship images obtained by the camera are as follows: firstly,
maritime scene are usually cover a vast area; thus, it is difficult to obtain high-definition
images of target ships with ordinary surveillance cameras. Secondly, there are usually three
types of equipment for acquiring images of ships inmaritime scenarios: passive cameras,
active (PTZ) cameras, and drones. Since the passive camera and the active camera take
fixed positions, the number of postures of the ship in the images acquired by these two
devices is relatively limited. UAVs can obtain ship images of various postures of ships.
However, the limitation of the power supply also brings great difficulties to the operation.
In ports or docks with a high density of ships, drones cannot capture images at will due to
the privacy of ship transportation; in some scenarios where ships are sparse, the number of
ship types available is limited.

The ship image data collected from the public data set also have the following prob-
lems: the primary public ship image dataset inludes: (1) MS-COCO [17]; (2) Open Im-
ages [18]; (3) ImageNet [19,20]; (4) Pascal VOC [21]; (5) MarDCT [22]. There are lots of ship
images in the above data sets. It is usually difficult to accurately classify ships in specific
scenes using the ship image samples in the above single data set for training. The main
constraint factors are summarized as follows: (1) ship types, (2) types of ship postures,
(3)types of ship size, and (4) category of the background image. In addition, ship types
are constantly updated according to the developments of the times, bringing difficulties to
image classification and detection.

There are some problems with the existing image generation methods for simula-
tion ships. Data augmentation methods are often used to create simulation datasets.
Cubuk et al. [23] proposed a scheme that automatically selects the data augmentation
manner. Cubuk et al. [24] proposed a simple parameterization for targeting augmentation
to the particular model and dataset sizes. Buslaev et al. [25] proposed a color augmentation
strategy for image data. Chawla et al. [26] proposed method carries out image geometric
transformation, such as flipping, rotation, clipping, deformation, and scaling, as well as
color transformations, such as denoising, blur, erasure, filling, etc. With the above methods,
an image can produce lots of data, and the features of the generated image data are highly
similar to the image samples. The GAN (generative adversarial network) algorithm [27]
and its improved algorithm [28–32] have become effective methods for data enhancement
in recent years. The simulation data generated in this manner are quite different from the
sample data, whereasthey are highly similar to the real data. However, this type of algo-
rithm has its downsides. For example, many samples are employed as training data before
the target data are generated. Additionally, the performance of the generated samples is
limited and constrained by the training samples [33–38].

For the above reasons, designing a method to generate ship images for CNN training
and testing is necessary. We alternatively used generated simulation ship image data to
build special ship image data to address this problem.

In general, 3D data are considered to contain more information than 2D data. There-
fore, we carried out a geometric transformation to generate image data by projecting the
transformed 3D target point set to a fixed 2D plane. This method is suitable for expand-
ing the amount of ship image data. Beside the difficulty of collecting a large amount of
training data, the second problem for deep learning applications is the annotation of these
image data.

Traditional image annotation methods includes the manual and automatic annotation
method. Both methods need to detect the contour of the target. The manual method is
carried out by eye and experience to identifythe target’s contour. In contrast, the automatic
method identifiesthe target’s contour using the target recognition algorithms or edge
detection algorithms.
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Manual annotation methods mainly include boundary box annotation, such as Label-
img, and peripheral contour annotation, such as Label-me. Alruwaili, M. et al. [39] pro-
posed a weighted spatial Fuzzy C-Means (wsFCM) segmentation method that considers
the image’s spatial information to segment objects and backgrounds in an image. Versaci,
M. et al. [40] proposed a new fuzzy edge detector based on both fuzzy divergence and
fuzzy entropy minimization to identifythe object’s contour in the image. The above two
methods need to take each pixel in the image to model the image, and then perform the
calculation. It is difficult to achieve the purpose of real-time image target detection using
this method.

This paper presents an annotation method based on SRS images, which automati-
cally and quickly generates many annotation data. The contributions of this paper are
summarized as follows:

(1) An SRS images building method based on a specific scene is proposed. The
simulated target ships are superimposed on the background image’s specified position to
form SRSimages. (2) This paper presents an automatic annotation method of ship image
which quickly generate many annotation data for CNN training and testing.

2. Methodology
2.1. The Proposed Method of SRS Images Generation

This paper used different kinds of real ship images, which are taken from real ex-
periment scenes as samples to design simulated ship models with 3D software. We then
obtained many 3D ship data by changing the parameters in the 3D software. After the 3D
data were converted into 2D data, the 2D simulation ship data weresuperimposed into the
real scene background to form an SRS image, and we annotated the SRS image with the
automatic annotation algorithm at the same time. The main workflow is shown in Figure 1.
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Figure 1. The main workflow of this paper. 1© is made by the 3D simulation software, and 1© is designed according to
the appearance of the real ship in the real experiment scene. After adjusting the posture and the size of the 3D simulation
ship data with the 3D simulation software, 1© is projected onto the 2D plane through a pinhole imaging model, and 2© is
derived. Then, we superimpose the foreground target (2D ship), which is extracted from 2© to the real scene background, so
we obtain 3©, and we can also obtain 4© by the proposed method. The final task 5© is to train and test the SRS image with
different CNN algorithms.

2.1.1. 2D Ship Image Generation from 3D Ship Model

The essence of the 3D ship model in practical applications is a 3D point cloud. There-
fore, we can use the following set of 3D coordinate points to represent the 3D ship model:

S = F( Xi Yi Zi ) =
{[

Xi Yi Zi
]T
}
(i = 1, 2, · · · , n) (1)

The principle of pinhole imaging, which is used to convert 3D data into a 2D image, is
as follows:

[ ui vi 1 ]
T ∼= K[ R t ][ Xi Yi Zi 1 ]

T (2)
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where [ Xi Yi Zi ] are the 3D coordinates of any point on a 3D target ship, and [ ui vi ]
is the coordinate of the corresponding image point. K is the camera’s internal parameter
matrix; it can be expressed by an upper triangular matrix, as follows:

K =

 fu ς u0
0 fv v0
0 0 1

 (3)

where fu and fv represent the focal length of the camera in terms of pixel dimensions
in the u and v direction, respectively, and [u0, v0] is the principal point in terms of pixel
dimensions. The size of the ship in the image is changed by adjusting the focal length of
the camera. Besides the internal parameter matrix of the camera, Formula (2) also involves
the rotation matrix and translation vector. The rotation matrix represents the camera’s
shooting angle, and the translation vector represents the shooting position of the camera.
The ship images from different perpectives can be generated by changing the shooting
angle, location of the camera, and focal length. Therefore, we obtained abundant target
ship images.

Through the imaging Formulas (1)–(3), 3D points cloud in a 3D ship model can be
converted into 2D image data. Therefore, the point set f (ui, vi) can also be used to represent
the ship’s coordinates in the image. The representation of the point set f (ui, vi) is as follows:

f ( ui vi ) =
{
[ ui vi ]

T
}
(i = 1, 2, · · · n) (4)

Next, we need to extract the points belonging to the simulated ship from the 2D image
point set, and add these points to the real experimental scene background.

2.1.2. Selection of the Background Images

In this study, the selected experimental location is shown in Figure 2a. Figure 2b is the
experimental scene image used as the background image of the SRS images.
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2.1.3. SRS Image Generation 

Figure 2. Selection of experimental scene: (a) experimental location, (b) experimental scene image.

As shown in Figure 2, the ship is sailing in a straight inland waterway. In this paper,
it is assumed that the ship’s posture is fixed. Therefore, we manually selected the ship
posture close to the actual situation before the experiment.

2.1.3. SRS Image Generation

The generation process of the simulation ship mainly includes the steps shown in
Figure 3. The red box in Figure 3 is the key to the whole generation process. The next
section provides a detailed description of the parts in the red box.
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Calculate the Size of the Simulation Ships

Figure 3 briefly illustrates the generation method of the simulated real ship image: the
simulated ship is extracted from the simulated ship image and superimposed into the real
experimental background scene to form the simulated real ship image. However, there is
no clear explanation for the scale, pose, and superimposed position of the simulated ship
in the simulated real ship image. The scale calculation method of the simulated ship in the
simulated real ship image is as follows:

(Uj, Vj) = λj·(uj, vj) (5)

where (uj, vj) is the size of the simulated ship, λj is the scale factor, and (Uj, Vj) is the ship
image after the scale change.

Calculate the Trajectory of Simulation Ships

As shown in Figure 4, suppose the length and height of the bounding box of the
simulation ship are h (pixel) and w (pixel), respectively. The distance between the center
point of the bounding box and the four corners of the bounding box is L. Here, set L as the
size of the simulation ship. The size (pixel) of L is:

L =

√(
h
2

)2
+
(w

2

)2
(6)
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As shown in Figure 4, the length and height of the bounding box of the simulated ship
are h (pixels) and w (pixels), respectively. The distance from the center of the bounding
box to the four corners of the bounding box is L. The center point of the simulated ship are
the coordinates (x1, y1) of the simulated ship in the background image. L is the size of the
simulated ship (pixels).

Sailing ships need to follow navigation rules, and they must navigate within the area
marked by the buoy boats. Both lines connecting the position of the buoy boats refers to
the red dashed line in Figure 4. Passing ships must navigate within the area enclosed by
the two red dotted lines. We considered the posture of the simulated ship fixed due to the
unchanged sailing direction. Next, we analyzed the trajectory of the simulated ship in the
background image, as shown in Figure 5.[

x′

f ′(x′)

]
=

[
cosθ sinθ
−sinθ cosθ

][
x

f (x)

]
(7)

f ′
(

x′
)
= −x·sinθ + f (x)·sinθ + λ· 1√

2πσ
exp(− ((x·cosθ + f (x)·sinθ)− µ)2

2σ2 ) (8)

where (x, f (x)) is the coordinate of the simulation ship in the background image, and
(x′, f (x′)) is the coordinate of the simulation ship after the θ degree rotation of the co-
ordinate axis. The trajectories of the ships in the maritime scene are distributed around
the X-axis. Firstly, we calculated the mean value of the ship’s trajectory, and then the
navigation coordinates of the SRS image were obtained by adding Gaussian distribution
parameters. The trajectory of the simulation ships in the real scene can be calculated
through this method.
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Image Superimposition of Target Ship Extracted from the 2D Ship Image and Selected
Maritime Scene Background

In the above, the pinhole imaging model was used to transform the 3D ship data
into a 2D image, and then we calculated the position and size of the simulation ship and
confirmed the posture of the simulation ship. The nest task is to extract the target ship from
the 2D ship image with a monochromatic background, and overlay it onto the selected
maritime background scene image to form SRS images.

The flow chart of image superimposition is shown in Figure 6. The SRS images point
set is as follows:

f (xi, yi) = (1− a)· f (pi, ti) + a· f (ui, vi) a ∈ (0, 1) (i = 1, 2, · · · n) (9)

where f (ui, vi) is the simulation ship image point set, f (pi, ti) is the real scene image point
set, and f (xi, yi) is the SRS images point set.
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Generation of SRS Images

Simulation ships in SRS images have three elements: trajectory, size, and posture.
The experiments in the experimental scenario are shown in Figure 2; the observation
perspective does not change in this scene, and the navigation posture of the ship is assumed
to be unchanged or slightly changed. We needed to select the sailing posture before the
experiment. The size L of the ship is related to the position of the simulated ship in the
background image. In the experiment, we used the YOLO algorithm [12] for modeling,
as shown in Figure 7. Coordinates (x1, y1) and L are used to form three-dimensional
coordinates (x1, y1, L1) which are the position of the ship in the SRS image. Then, we used
the YOLO algorithm to count the data (x1, y1, L1) of 100 ships (cargo ships, passenger ships,
sand ships, and small ships.) in the experimental scene, and performed modeling. We
determined L by simulating the position of the ship (xi, yi). Finally, the ships’ trajectories
were determined based on the voyage data of 100 ships in the experimental scene. The
overall flow chart of the SRS image generation method is shown in Figure 7.
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2.2. Automatic Annotation of Target Ship

CNN is a typical supervised learning method, which needs to be trained with anno-
tated data to generate different target detectors. The specific location of the ship target
remains unknown in real image data. It usually depends on manual operation for the
selection ofthe target contour points to complete the annotation.

It often takes dozens of mouse clicks or more to complete a ship annotation. The
annotation is affected by the annotated image’s pixels, which often differ significantly from
the actual outline. This paper proposes an automatic annotation method for annotating
batch image data. The main flow chart of the proposed annotation method is shown in
Figure 8.
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First, we extracted the ship contour from the simulation ship image with the monochro-
matic background. Next, we superimposed the foreground ship image on the background.
Thus, the contour of the foreground ship is the contour of the ship in the SRS image.
The final task is to represent the contour of the ship in the SRS image in the form of an
annotation file.

2.3. Selecting the Typical CNN Algorithm for Training and Testing

To verify the effectiveness of the proposed methods (the SRS image data generation
method and the automatic image annotation method), two CNN algorithms, FCN [14], and
Mask RCNN [15], were selected to verify the results.

The Mask RCNN algorithm, developed based on Faster RCNN, was proposed by
He Kaiming’s team in 2018. This algorithm segments the target in the image. Moreover,
the algorithm also derives indicators such as the target object’s position in the image and
its reliability. Structurally speaking, Rol Align is introduced to replace Rol Pooling to
ensure the accurate semantics segmentation of the target object at the expense of part of
the detection time.

The FCN algorithm, proposed by Evan Shelhamer’s team in 2017, classifies images
at the pixel level. The size of the input image of the traditional CNN algorithm is fixed
during training due to the application of the full connection layer. The FCN algorithm
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uses a convolutional layer instead of the entire connection layer to regulate the image size
during training.

Usually, the object detection algorithm based on deep learning can be divided into
boundary box recognition and semantic segmentation recognition according to object
recognition manner. Both algorithms use the bounding box and image segmentation to
separate the object from the image. The second method obtains more abundant pixel
information of the object. Therefore, this study selected Mask RCNN and FCN based on
semantic segmentation to verify the results.

3. Results
3.1. Experiment Platform and Parameter Settings

The experimental configuration was as follows: CPU: Intel Core i7-8700K; Memory:
16G, GPU: NVidia GeForce GTX 1660; Operating system: Ubuntu 16.04.

We completed the experiment with the V2T_ShipData dataset of V2T Laboratory of
Wuhan University of Technology. We selected 100 items of sailing data of real ships for the
experiments. Among them, there were 25 cargo ships, passenger ships, sand ships, and
small ships. Five pictures of one ship were selected for experimental testing. Therefore, a
total of 500 ship sample images were used for this experiment’s training and detection task.

3.2. Generation and Automatic Annotating of SRS Images Data

In this experiment, four typical ships sailing in the Yangtze River were selected for
experiments and modeling. The results of the modeling are shown in Figure 9.
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As shown in Figure 9, the dimension L and coordinates (x and y) of 25 sailing ships in
the actual scene were detected by the YOLO algorithm to construct a 3D curved surface.
The coordinates (trajectories) of the simulation ship can be calculated by Formula (9). The
dimension L of the ship can be calculated by the curved surface and the coordinates of
the ship. The posture of the simulation ship was selected manually. Therefore, all three
elements of SRS images were obtained. The SRS images generated by the proposed method
are shown in Figure 10a,b.
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In this experiment, we used two annotation methods to label the four kinds of ships,
as shown in Figure 10c. The annotation methods, bounding box method (green box in
Figure 10c), and outline method (red line in Figure 10c) were used to label SRS images.
Simultaneously, the names of the targets were displayed on the top left of the labeled targets.

3.3. Training and Detection with Mask RCNN and FCN

The Mask RCNN and FCN algorithms were selected to test the generated dataset in
this paper.
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In this study, 500 images were selected for the experiment from 10,000 SRS images.
There were 125 images of cargo ships, passenger ships, sand ships, and small ships. These
500 ship images were used as training samples of the two algorithms (Mask RCNN and
FCN). Then, the 500 real ship images mentioned above were used as the sample data
for detection.

The detection samples of both algorithms are shown in Figure 11.
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4. Discussion
4.1. Comparative Experiment 1: Comparing Our Annotation Method with the Existing
Annotation Method

In this paper, the automatic labeling algorithm and manual labeling method proposed
were used to label the cargo ship, which was taken as an example. The labeling results are
shown in Figure 12.
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The annotation results of the manual annotation are shown in Figure 12a. The annota-
tion results of the automatic annotation algorithm proposed (the blue line in Figure 12b)
accurately labeled the object in the image. The comparison results of both annotation meth-
ods are shown in Figure 12c; the manual annotation method (the blue line in Figure 12a)
easily labeled the non-target pixels as target pixels but the proposed annotation method
did not have this situation. The automatic annotation method proposed was able to label
the contour and the boundary box of the targetat the same time. The manual annotation
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method can only label one by one, but the proposed annotation method can carry out
batch annotation.

4.2. Comparative Experiment 2: Comparing the SRS Images with the Real Scene Ship Image

The similarity between the SRS images and the real ship image is the key of the study.
We selected a real ship image and an SRS image with the same background to detect the
similarity between both. Figure 13a is a real ship image, and Figure 13b is an SRS image.
We took pixels as the research object for modeling. The average value of each row of pixels
in the two images was calculated (Figure 13c). The results show that the designed SRS
images have a high similarity with the real ship image.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 23 
 

in the two images was calculated (Figure 13c). The results show that the designed SRS 
images have a high similarity with the real ship image. 

   
(a) (b) (c) 

Figure 13. Difference between the SRS image and the real ship image: (a) the real ship image; (b) SRS images; (c) contrast 
curve. 

In order to further verify the effectiveness of the SRS image, we took two kinds of 
data, which are real ship images and SRS images, as training data and took real images as 
testing data to carry out experiments. The experiment included three steps: first, all the 
training data were real images. Then, we took 300 real images and 200 simulation images 
as training data. Finally, we took 100 real images and 400 simulation images as training 
data. Taking Mask RCNN and FCN as training and testing methods, the experimental 
design and results are shown in Table 1. 

Table 1. Test results of similar data sets. 

Training and 
Testing 
Method 

Type of Data for 
Training (Number) 

Type of Data for  
Testing (Number) 

Accuracy 
(%) 

TPR 
(%) 

FPR 
(%) 

FCN 
Real(500) 

Real(500) 
84.2 86.4 19.1 

Real(300) + SRS-I(200) 88.5 90.8 11.8 
Real(100) + SRS-I(400) 91.3 92.8 9.2 

Mask RCNN 
Real(500) 

Real(500) 
86.3 88.5 17.6 

Real(300) + SRS-I(200) 90.6 93.2 10.6 
Real(100) + SRS-I(400) 92.9 94.5 7.6 

Table 1 shows the results of different detection methods combined with various 
image dataset. According to the results of FCN, “SRS-I(400) + Real(100)” achieves the 
highest accuracy rate (91.3%), followed by “SRS-I(200) + Real(300)” (88.5%), “Real(500)” 
(84.2%), “SRS-I(400) + Real(100)” (TPR: 92.8% and FPR: 9.2%) outperformed the compared 
methods, as confirmed by the results of the true positive rate (TPR) and false positive rate 
(FPR). The FPR of the proposed method was the lowest among the compared 
methods.Moreover, “SRS-I(400) + Real(100)” demonstrated the highest AUC (0.910). 
Therefore, the dataset generated by the proposed method was more effective than the real 
dataset selected by us (Figure 14). The detection results of Mask RCNN, “SRS-I(400) + 
Real(100)” achieved the highest accuracy rate (92.9%), followed by “SRS-I(200) + Real(300)” 
(90.6%), “Real(500)” (86.3%). 

Figure 13. Difference between the SRS image and the real ship image: (a) the real ship image; (b) SRS images; (c) con-
trast curve.

In order to further verify the effectiveness of the SRS image, we took two kinds of
data, which are real ship images and SRS images, as training data and took real images as
testing data to carry out experiments. The experiment included three steps: first, all the
training data were real images. Then, we took 300 real images and 200 simulation images
as training data. Finally, we took 100 real images and 400 simulation images as training
data. Taking Mask RCNN and FCN as training and testing methods, the experimental
design and results are shown in Table 1.

Table 1. Test results of similar data sets.

Training and
Testing Method

Type of Data for Training
(Number)

Type of Data for
Testing (Number) Accuracy (%) TPR (%) FPR (%)

FCN
Real(500)

Real(500)
84.2 86.4 19.1

Real(300) + SRS-I(200) 88.5 90.8 11.8
Real(100) + SRS-I(400) 91.3 92.8 9.2

Mask RCNN
Real(500)

Real(500)
86.3 88.5 17.6

Real(300) + SRS-I(200) 90.6 93.2 10.6
Real(100) + SRS-I(400) 92.9 94.5 7.6

Table 1 shows the results of different detection methods combined with various image
dataset. According to the results of FCN, “SRS-I(400) + Real(100)” achieves the highest
accuracy rate (91.3%), followed by “SRS-I(200) + Real(300)” (88.5%), “Real(500)” (84.2%),
“SRS-I(400) + Real(100)” (TPR: 92.8% and FPR: 9.2%) outperformed the compared methods,
as confirmed by the results of the true positive rate (TPR) and false positive rate (FPR).
The FPR of the proposed method was the lowest among the compared methods.Moreover,
“SRS-I(400) + Real(100)” demonstrated the highest AUC (0.910). Therefore, the dataset
generated by the proposed method was more effective than the real dataset selected by us
(Figure 14). The detection results of Mask RCNN, “SRS-I(400) + Real(100)” achieved the
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highest accuracy rate (92.9%), followed by “SRS-I(200) + Real(300)” (90.6%), “Real(500)”
(86.3%).
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“SRS-I(400) + Real(100)” (TPR: 94.5% and FPR: 7.6%) outperformed the compared
methods according to the true positive rate (TPR) and false positive rate (FPR). The FPR of
the proposed method was the lowest among the compared methods. Therefore, the dataset
generated by the proposed method was more effective than the other compared datasets,
as confirmed by the highest AUC (0.918) (see Figure 14).

4.3. Comparative Experiment 3: Comparison with the Existing Data Augmentation Methods

At present, the common data augmentation methods, such as Imgaug [41], have the
core idea of pixel transformation of 2D images. The transformation methods, such as
rotation, translation, flipping, scaling, and clipping, increased the number of samples.

The target detection algorithm based on deep learning needs many image data for
training, extracting sufficient target features from the image data, and generating the target
detector. The abundant target features extracted from the training data guaranteed the
detection accuracy. Traditional data enhancement methods increase the amount of data by
changing the scale, posture and color of the existing 2D image but the actual enhancement
of image features is limited.

GAN [29], an unsupervised deep learning algorithm, is a classic data augmentation
method. GAN aims to fit the distribution of the sample set to obtain highly qualified
samples based on zero-sum game theory. The GAN algorithm generated simulation images
highly similar to the real images. The simulation ship images generated by CycleGAN were
used for deep learning training and testing in this paper. The simulation ship generated
by the CycleGAN algorithm [30] after 500 epochs is shown in Figure 15a. The SRS image
shown in Figure 15c has a much higher definition and clearer contour than the image
shown in Figure 15a.
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Figure 15. The simulation ship image generated by different methods: (a) the simulation ship image generated by CycleGAN;
(b) the real ship image; (c) the SRS image.

Table 2 shows the results of different detection methods combined with various image
datasets. According to the results of FCN, the proposed method achieved the highest
accuracy rate (93.2%), followed by CycleGAN (90.9%), Imgaug (85.7%). The proposed
method (TPR: 94.4% and FPR: 7.1%) outperformed the compared methods, as confirmed
by the results of the true positive rate (TPR) and false positive rate (FPR). The FPR of the
proposed method was the lowest among the compared methods. Moreover, the proposed
method demonstrated the highest AUC (0.924). Therefore, the dataset generated by the
proposed method was more effective than other compared datasets (Figure 16). The
detection results of Mask RCNN, the proposed method achieved the highest accuracy rate
(94.6%), followed by CycleGAN (91.7%) and Imgaug (87.3%).

Table 2. Test results of similar data sets.

Training and
Testing Method

Type of Data for Training
(Number)

Type of Data for
Testing (Number) Accuracy (%) TPR (%) FPR (%)

FCN
Imgaug [41]

Real(500)
85.7 88.9 17.1

CycleGAN [30] 90.9 91.5 11.2
Our method 93.2 94.4 7.1

Mask RCNN
Imgaug [41]

Real(500)
87.3 89.5 14.6

CycleGAN [30] 91.7 93.1 10.5
Our method 94.6 95.7 5.6
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The proposed method (TPR: 95.7% and FPR: 5.6%) outperformed the compared
methods according to the true positive rate (TPR) and false positive rate (FPR). The FPR of
the proposed method was the lowest among the compared methods. Therefore, the dataset
generated by the proposed method was more effective than the other compared datasets,
as confirmed by the highest AUC (0.935) (see Figure 16).

5. Conclusions

This study proposes a novel ship image generation method and a novel ship image
annotation method. The proposed method was developed based on a 3D simulated ship
and CNN algorithms. Firstly, a large number of simulation ships were generated by 3D
simulation software. The experimental image scene used as the background image was
selected. Secondly, the proposed generation method of simulated ship images includes
three key parts: (1) the posture of the simulation ship; (2) the trajectory of the ship; (3) the
size of the ship. The postures of the simulation ships areselected manually according to the
actual navigation posture of the ships; the trajectory and the size of the simulation ship can
be computed with the model proposed in this paper. There was a high degree of similarity
between the SRS image and the ship image of the real scene. The experimental results
show that the SRS images achieved a higher detection accuracy than the same number of
the ship images. The automatic annotation methods proposed can be used as a bounding
box annotation and contour annotation. The ship image data set and automatic annotation
program of this study will be published subsequently.

There are still some problems to be solved in this study. First, we manually selected
the posture of the 3D simulation ship according to the posture of the ship in the real scene.
In a follow-upwork, the proposed method will automatically identify the ship’s posture in
the real scene, on this basis, it will automatically set the 3D simulation ship posture. Second,
there were about 20 kinds of ships in the 3D simulation ship dataset; thus, the number of
ship types and the similarity between SRS images and real ship images need to be increased.
Third, we calculated the position and the size of the simulation ship in Euclidean space. In
the follow-up work, time-domain and frequency-domain characteristics will be used to
calculate the position of the target ship in SRS images.
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