
applied  
sciences

Article

An Efficient Analytical Approach to Visualize Text-Based Event
Logs for Semiconductor Equipment

Gunwoo Lee and Jongpil Jeong *

����������
�������

Citation: Lee, G.; Jeong, J. An

Efficient Analytical Approach to

Visualize Text-Based Event Logs for

Semiconductor Equipment. Appl. Sci.

2021, 11, 5944. https://doi.org/

10.3390/app11135944

Academic Editor: Jason K. Levy

Received: 24 May 2021

Accepted: 23 June 2021

Published: 26 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Smart Factory Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,
Suwon 16419, Korea; comlee@g.skku.edu
* Correspondence: jpjeong@skku.edu; Tel.: +82-10-9700-6284 or +82-31-299-4267

Abstract: Semiconductor equipment consists of a complex system in which numerous components
are organically connected and controlled by many controllers. EventLog records all the information
available during system processes. Because the EventLog records system runtime information so
developers and engineers can understand system behavior and identify possible problems, it is
essential for engineers to troubleshoot and maintain it. However, because the EventLog is text-based,
complex to view, and stores a large quantity of information, the file size is very large. For long
processes, the log file comprises several files, and engineers must look through many files, which
makes it difficult to find the cause of the problem and therefore, a long time is required for the
analysis. In addition, if the file size of the EventLog becomes large, the EventLog cannot be saved for
a prolonged period because it uses a large amount of hard disk space on the CTC computer. In this
paper, we propose a method to reduce the size of existing text-based log files. Our proposed method
saves and visualizes text-based EventLogs in DB, making it easier to approach problems than the
existing text-based analysis. We will confirm the possibility and propose a method that makes it
easier for engineers to analyze log files.

Keywords: log management; log parsing; equipment; EventLog; timescaledb; PostgreSQL

1. Introduction

Many semiconductor equipment manufacturers store everything that occurs during
the operation of the equipment in a log [1,2]. The log contains valuable information that
helps understand the system execution status and accurately identifies system errors. In
addition, engineers monitor system and equipment debugging for abnormal operations
and errors and include process progress information for future debugging and analysis [3].
The Log stores all the information generated from various modules (e.g., Process Module,
Transfer Module, Individual Components) that compose the equipment.

Logs are not standardized, and some equipment manage different log levels depend-
ing on the equipment manufacturer. In general, there are the EventLog, the Process Log, the
Alarm Log, the Lot History Log, and the Debug Log. The EventLog stores everything ac-
cording to the passage of time and is organized as a time series. The EventLog is text-based,
so it is hard to see. In the case of a long process, it is composed of several files, and it takes
a long time to analyze because it is necessary to understand the relationship between many
files [4,5]. The Process Log records information of the parameters related to recipes while
the process is in progress. The items included in the Process Log are generally provided
with functions to be defined by the user, and the Process Log is created based on the defined
items. The Alarm Log consists of Error, Warning, and Information and stores the contents
of all alarms that have occurred in the equipment. In terms of troubleshooting, when an
alarm occurs, the equipment can clear several alarms while the engineer is taking action.
If the user selects the wrong options, the alarm remains unresolved, and it has become a
common practice to capture various user interactions in the EventLog and store them in
a log file for later analysis [6,7]. The Lot History Log contains the history information of
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the lot in the equipment. Users can check information about the progress history through
this log. The Debug Log contains detailed information for troubleshooting when there is a
problem with the device. For example, there are Code Level Stack Dump and Snapshot
logs. In general, there is a System Debug Log for debugging when a problem occurs in
the system, and the Debug Log at the module level is used for each module as needed.
Various types of logs are suitable for various purposes, and the contents and types of logs
can vary significantly from system to system, even between components within the system.
The Event Log is the most common. It stores all contents that occur while all equipment
companies operate equipment. The Event Log is usually the first log that engineers check
to determine the cause of a problem in the equipment. The Event Log has a vast amount
of logging as all the history of the equipment has been stored, and it is difficult to grasp
the exact causal relationship because events that have occurred in multiple modules are
recorded in one log.

Additionally, if the problem occurred in the past, it is often difficult to analyze. In
some cases, analyzing a problem device and several devices that do not have a specific time
may exceed human analysis capabilities. In terms of log file size, when saving text-based
logs, it is necessary to minimize the file size and efficiently save and manage it. Despite
the enormous value hidden in the log files, how to analyze them effectively remains a big
challenge [8].

This study started with the idea that engineers had difficulties with text log analysis
and visualizing the text-based EventLog would help engineers analyze it. Customers are
requesting more sensor data at a faster cycle. The saved text-based EventLog is compressed
and stored on the hard disk. In particular, the disk size of computers that have been used
in the past is not large. So, many types of equipment are using the minimum period of
keeping it. If an EvnetLog file becomes oversized, this reduces the period that it can be kept.
It is often difficult to check the EventLog because it has already been deleted after a certain
period. If the EventLog size is large, many files cannot be stored, so a method to reduce
the EventLog is needed. We were looking for a way to reduce the size even by changing
the file structure of the existing EventLog. The file structure we found is Technical Data
Management Streaming (TDMS).

To check the usefulness of TDMS, file sizes were compared, and actual memory usage
was also compared. In conclusion, TDMS was able to store more information under the
same conditions. TDMS can be one alternative to reduce the file size. Many EventLogs
need an analytics system to experiment with in different ways, and we designed and
implemented an EventLog analysis system to analyze, targeting the EventLog. This paper
presents an example that various expressions are possible by extracting and visualizing
meaningful information from the EventLog of the existing Text Base through this system.

The paper is organized as follows. Section 2 describes the background and related
research. Section 3 describes the configuration of the log analysis system and the DB design.
Section 4 discusses the experimental results, and finally, Section 5 presents the conclusions.

2. Background and Related Research

Many logs made in semiconductor equipment must be managed well. The hard disk
of the equipment controller has a limited capacity and cannot store files indefinitely. There-
fore, it is essential to automatically compress [9] past logs and delete them after a certain
period. If the EventLog is deleted due to insufficient space on its hard disk, the EventLog
needs to be saved for as long as possible because there is no way to verify the problem.
To do so, we needed a way to reduce the size of Log. By default, log-based text is com-
pressed and archived. However, we needed to change the same information to a different
format and reduce the size. Previous studies have also proposed a Comprehensive Log
Compression(CLC) method that integrates data compression online [10] or uses frequent
patterns and compression representations to identify repetitive information in large log files
generated by communication networks [11]. However, these studies have reduced file size
through compression without changing the structure of existing data. Parsing must be used
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to obtain the information it wants from the Log file [12,13]. Depending on implementing
parsed information, we also use the method of finding anomaly identification [14–16]. As
an example of log analysis, the FIU aims to automate the process model [17] and facilitate
data analysis on the system event log by combining the equipment status and event text
analysis based on log files for the purpose of equipment productivity and diagnostic evalu-
ation. There are studies on the design and implementation of an integrated system called
Log Analysis Platform (FLAP) [18], and several event clustering proposal studies on log
files in a network environment [19,20].

More diverse studies have been conducted from the process mining perspective. In
particular, studies have been conducted on algorithms and various models. Typical algo-
rithm examples include pattern mining studies using logCluster algorithms [21], algorithms
for detecting if logs are complete [22], process-oriented data mining algorithms and model
configurations that provide insight into organizational processes using event log data [23],
and algorithm studies for visualizing large-scale parallel process models [24–27]. In addi-
tion, a study on a general approach to mining the personal information protection process
using the information accessed to the system log [28], a study on personal information
protection [29], event abstraction [30], knowledge extraction [31], operation Research [32],
security vulnerabilities [33], quality-aware semi-automatic approach to extracting Event-
Logs from relational data [34], and event log prediction studies using RNN for utilization
of EventLogs were performed [35].

From a mining perspective, some of the studies on information extraction and visual-
ization are similar to ours. However, the visualization target is the visualization part of the
model and differs from ours as the Logfile contents are not visualized in various ways. In
order to store more information in the field of semiconductor equipment, semiconductor
equipment is also offered as an optional PC for separate data storage. Data-Distribution
Service for Real-Time Systems (DDS) for high-speed data logging, such as Process Log,
is used to store many data in Log, but not all semiconductor equipment uses DDS. To
evaluate DDS communication performance based on models built within the IEC 61,499
standard and compare it with existing socket-based solutions [36,37] and evaluate equip-
ment productivity and diagnostic purposes, automating model composition and processes
based on log files [38] were investigated.

DDS is focused on storing more data. Furthermore, research based on log files is
similar in part to a parsing Log but different from the research we are conducting because
it focuses on automating processes. We have looked into many previous studies but have
not found any similar examples of research to the present study. Our research aims to study
a new Format for more extended storage of EventLogs generated by equipment and make
it possible for engineers to identify problems by visualizing text-based EventLogs quickly.
An EventLog is typically stored in ASCII format as Text. File Format is also an essential factor if
storage needs to be stored and frequently updated. When logging data in 0.1 s, the system has
extensive logging, which can also affect communication. Therefore, it is essential to select the
Data Format that can produce the best performance when compressing files in the EventLog.

National Instrument developed technical data management streaming (TDMS) to store
measurement data. A three-step structure consisting of Root, Group, and Channel can place
another group under one Root and yield the resulting channel. Above all, unlimited user
properties can be added to each step, making it suitable for storing large amounts of sensor
data, such as semiconductor equipment. The aim of this study is to verify whether TDMS
can reduce and utilize the EventLog’s file size in the future by comparing the existing ASCII
saved EventLog with the TDMS-converted file. In addition, by visualizing the EventLog,
we suggest what contents can be displayed compared to the text-based one.

3. Log Analysis System Configuration and DB Design

EventLog files of semiconductor equipment were collected and studied. The over-
all system development language used R, and Database configured the system using
timescaledb in PostgreSQL.
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3.1. Configuration of EventLogs

EventLogs show what happened in the system based on the source of the event. The
history of events is displayed chronologically, making it easy to see what happened from
the past to the present. The event log consists of the following:

• Record the contents of all user actions in the UI. For example, the operator starts or
stops Lot with the manual and records everything he or she looks upon a particu-
lar screen.

• Records the events that occurred for all modules. For example, if you open and
close the valve of an installation or run a command to raise the temperature to a
certain temperature, you will record the information in the EventLog that increases
the temperature.

• In the EventLog, information about failures in the event of a facility failure and in the
event of a failure resolution are also stored.

• Records all information related to scheduler behavior.
• Displays information about each module operating situation.

The explanation of each item of the content shown as an example in Figure 1 is
as follows.

• Log Time: The Log Time indicated the time stamp when the CTC server receives the
event and records the logging on the log file.

• Issue Time: The issue time indicates the time stamp when the issuer reports the events.
• Event ID: Each event has a specific eventID and this ID section shows a number of it.
• Name: It is an identifier of the parent category of each event.
• Issuer: Each event is published by each issuer, and the issuer can be either device level

or image level.
• Event Text: Event Text provides more detailed information about which event has occurred.

Figure 1. Example of an EventLog.

3.2. Architecture Design

An example of an EventLog is the overall system configuration, as shown in Figure 2,
divided into two parts. The first experiment proceeded as follows. EventLogs stored based
on Text were collected in the equipment. We developed a TDMS Parser that can store the
same information and collected EventLogs stored in TDMS format. We compared the two
groups of File Size and measured the loading rate through the program that can view
EventLogs. The results of the experiment are explained in Section 4.
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The second development part was carried out as follows. The EventLog was col-
lected by period and model to understand the overall structure. The EventText described
in Figure 1 contained various information, which we extracted and provide in a schematic.
Text information was drawn in various forms and some contents that were considered
meaningful were identified. Based on this information, we created a table in DB and saved
the information of the EventLog in a table that meets the query criteria. We developed the
program using the R program information stored in each table.

Figure 2. System Architecture.

3.3. Configuration of PostgreSQL and Timescledb

To select a database, we tested various types of DBs. The EventLog is time-series data
that stores data over time. Sometimes it is necessary to delete the old data set from the DB.
Deletion may be complicated because the table structure is not Hypertable or Chunk, so
that it can be easily separated from data integrity. Timescaledb, an extension of PostgreSQL,
provides time-series database properties, and EventLog DB Tables can be designed as
Hypertables. The EventLog data table, with time and partition, is implemented as a Hyper-
table, and the EventLog is collected and saved in Figure 3 Hypertable and Figure 4 Chunk.
In addition, when the chunk table deletion policy is registered, it provides a read-only
data compression function that saves space by up to 90%, and provides automatic cluster
command execution for files that are no longer changed. If it uses this function, it can
manage the DB efficiently.

Figure 3. Hypertable (Logical database table).
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Figure 4. Chunk (Physical table).

4. Experiment and Results
4.1. Experiment Environment

EventLogs were collected for one month for the Etch equipment in the Semiconductor
Lab. The instrument generated two EventLogs every hour. In the EventLog, more than
1000 issuers were recording data. Among the many EventLogs, we have experimented
with the EventLog, that has the most extensive number of issuers. The experiment was
conducted in the following manner.

• Save the EventLog file in DB.
• Using R Code, we figured out data properties while drawing various pictures in

the DB.
• The experiment was carried out by grouping into several groups.
• Checked the data of several files in a row.

Through this process, we identified the types of meaningful data. Therefore, this
Prototype Test is essential. Finally, we made a DB table after confirming the data on the
screen that we show to the user.

4.2. ASCII vs. TDMS Comparison Result

The EventLog is structured based on Text. Additionally, the contents saved in the log
are determined by the log level designated by the user. For example, if the log level is 1,
only the most basic details are saved in the log. In the highest Level 5, all fine details are
saved in the log, and the log file size increases. It is not easy to store large amounts of
information quickly. Further, the use of disk may be restricted due to the increase in the file
size of the EventLog. Therefore, we checked if TDMS is an alternative to reducing the size
when saving Text Log. First of all, we checked the type of TDMS that is configured.

TDMS can be expressed in a total of three file structures, as shown in Figure 5. A file
can be created as a Physical File Format, configured as a Logical File Format, or configured
as a Perceive File Format. An EventLog consists of Time-Series, so it is usually organized in
the form of a Physical File Type. However, the contents inside can be extended to either
the logical type or the Perceive file type. We analyzed the format of the existing EventLog
and configured Objects and Properties according to the contents. A function was made
to convert to TDMS. We evaluated the compression rate and memory usage rate with the
existing text-based file and the new TDMS file format.
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Figure 5. Form of TDMS file.

Experimental results in Figure 6, the ASCII-based EventLog increased in Loading time
in direct proportion to the length of the file increase. On the other hand, in TDMS, the
change in speed was insignificant even when the file size increased. This is because when
storing the same amount of data, TDMS is structured compared to Ascii, and the size can
be reduced. For example, in ASCII-based LogFile, time can be displayed in the year, month,
day, hour, minute, second, and millisecond. In the text-based EventLog, time is configured
in ASCII. However, TDMS can convert to Double. Not only time but also many numerical
data stored in the EventLog can be reduced in size when converting to TDMS. Therefore,
TDMS can reduce the file size and is faster compared to ASCII.

Figure 6. ASCII vs. TDMS Loading Speed Comparison.

As a result of comparing memory use under the same conditions, it was found that
the longer the file length, the higher the memory use of an ASCII-based EventLog. The
constant memory usage of TDMS was maintained as shown in Figure 7.

In conclusion, as shown in Table 1, TDMS files are smaller in size, more compressed,
and use less memory than ASCII files. A 22.5 min recipe was run on the equipment, and
data were collected from 1582 channels at 0.1 s intervals. The collected files were collected
in two types, a general ASCII file, and a TDMS file. The file size was reduced to 51% for
uncompressed files compared to ASCII by TDMS and 64% for compressed files. In addition,
the compression ratio of TDMS was 1% higher than that of ASCII.
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Figure 7. ASCII vs. TDMS Memory Usage Comparison.

Table 1. ASCII vs. TDMS Compression Ratio Comparison.

1582 Channels (22.5 Min), 10 Hz Unzipped [MB] Zipped [MB] Compression Rate

ASCII 201.8 10.0 95%
TDMS 99.9 3.5 96%

Size Reduction 51% 64%

4.3. EventLog Visualization Results

After configuring the system and storing the EventLogs in the DB, the result of the
analysis was as follows. Existing text-based EventLogs are not intuitive, and it often takes
a long time to find the exact location. By expressing the EventLogs in various forms, we
can more easily find the cause of the problem and understand the overall contents.

• Expressing the Frequency of Event Occurrence by Module:
As shown in Figure 8, The subject generating the event is recorded in the EventLog,
and it was designated as an issuer. If it draws the cumulative chart for each event
issuer, it can yield the following screen. This type can be used in various ways. For
example, you can view alarms by type in the Alarm Log, and you can also check the
total number of alarms.

• Expressing the Amount of Change Over Time:
There are cases where one needs to monitor how parameters change over time as
shown in Figure 9. For example, it is crucial to managing the accumulated Radio
Frequency (RF) On-time in the process chamber in Etch equipment. In this case, it
is possible to draw a trend chart as follows by overlapping several EventLogs and
displaying several parameters together.

• Monitoring Success and Failure by Period:
A macro is a kind of script that automatically checks things that have been manually
checked by the operator in the equipment. Some of these macros are executed daily,
and there are cases where macros are executed under certain conditions. We can check
whether the executed macro was executed typically or was abnormally terminated.
Pass or Fail information may be utilized as a future monitoring feature as in Figure 10.
It can be used to monitor the entire equipment and to monitor the equipment that
frequently fails.

• WaferMap; Map information about wafers is stored in the EventLog, and a WaferMap
can also be drawn using this information. WaferMap information is vital information.
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With this information, if it can draw a map before and after the process proceeds, it
can judge the process result through the wafer map as in Figure 11. These Map data
can also be used to compare before and after Etch.

• Check the Idle Section: In semiconductor equipment, the event when the recipe starts
and ends is recorded. If we express this below, we can check where the chamber
is idle. If we mark the start and end parts at the beginning and end of the recipe
and expand to information of recipe parameters for each step, we can analyze how
the equipment operated at that time. In addition, it is possible to compare why the
delay between two or more pieces of equipment occurs by using this information. The
equipment performance degradation can be analyzed by checking and analyzing the
delayed section until the recipe starts and ends. It can also compare the data between
two equipment with differences in throughput to see the delay interval. Through
visualization, it can easily find the section where Idle occurs as in Figure 12.

Figure 8. Event Occurrence Frequency by Module.
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Figure 9. Trend Chart of Multiple Parameters for The Amount of Time Change.

Figure 10. Success and Failure Monitoring.
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Figure 11. WaferMap .

Figure 12. Check the Idle Section.

5. Conclusions

In this study, two experiments were conducted with the EventLog. The file size of
the EventLog was reduced to 51% for uncompressed files compared to ASCII by TDMS
and 64% for compressed files. In addition, the compression ratio of TDMS was 1% higher
than that of ASCII. Regarding the EventLog analysis of the equipment, the new value of
utilizing the text-based EventLog was confirmed through experiments on various cases
that can be performed with the event log through the system. In particular, when analyzing
multiple files simultaneously, it was visually displayed when this system was used, and
it was more convenient than analyzing with existing text for engineer analysis. From the
perspective of big data, log files are another area of research. Many companies and re-
searchers are studying the EventLog and the System Log of computer systems, but the field
of log research of semiconductor equipment is not actively studied. Analyzing various log
information, creating new value from log files, and expanding it will be used in conjunction
with a monitoring system and a big data system. Through LogFile analysis, we learned
that many analyzes could be done using Log. The purpose of the final study we are going
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to carry out is not just show a single EventLog. Using this system, we want to store various
logs in the semiconductor equipment in the DB and compare between equipment. By using
the data stored in the system, we can check the reason for the difference in the performance
of the equipment and check when this problem started. For this reason, log file analysis is
an essential factor in the big-data analysis of semiconductor equipment. Considering when
hundreds of pieces of equipment are connected, we plan to conduct further research on the
pre-treatment. In addition, the Equipment Data Acquisition (EDA) Client, which is used as
a standard semiconductor protocol, collects all the data of semiconductor FAB in real time.
We are very interested in this data, and we plan to conduct further research on Log Parsing
in the EDA Client.
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