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Abstract: In this paper, we use the combined-unified hybrid censoring samples to obtain the
maximum likelihood estimates of the unknown parameters, survival, and hazard functions of
Pareto distribution. Next, we discuss some efficiency criteria of the maximum likelihood estimators,
including; the unbiasedness, consistency, and sufficiency. Additionally, we use MCMC to obtain the
Bayesian estimates of the unknown parameters. In addition, we calculate the intervals estimation of
the unknown parameters. Finally, we analyze a set of real data in view of the theoretical findings of
the paper.

Keywords: maximum likelihood estimates; unbiased estimator; interval estimation; minimum vari-
ance bound and relative efficiency; combined hybrid censored and unified hybrid censored samples

1. Introduction

Pareto distribution was introduced by Pareto [1] for the distribution of income. The
importance of Pareto distribution lies in its applications in economics and reliability studies.
Arnold [2] has given a wide historical aacount of Pareto distribution and its applications.
Estimation and characteristics of Pareto distribution were investigated by many authors,
among researchers, see for examples, Malik [3], Arnold and Press [4], Tiwari, Yang and
Zalkikar [5], Abdel-Ghaly, Attia and Aly [6], Hossain and Zimmer [7], and Soliman [8].
Saldaña-Zepeda et al. [9] have proposed a goodness-of-fit test for Pareto distribution when
the observations are Type-II right censoring. Wu [10] has constructed an interval estimation
for Pareto distribution using a doubly Type-II censored sample. Recently, Han [11] has
investigated the expected Bayesian estimation and its expected mean square error of Pareto
distribution parameter under different loss functions and Poudyal [12] has investigated the
truncated, censored, and actuarial payment-type moments of the robust fitting of a single
parameter Pareto distribution.

A random variable X follows Pareto distribution P(k, α) if its probability density
function (pdf) is given by

f (x) = αkαx−α−1, α > 0, k > 0, x ≥ k, (1)

with the corresponding cumulative distribution function (cdf) is given by

F(x) = 1−
(

k
x

)α

, x ≥ k. (2)

The reliability function R(t) and hazard function H(t) are given, respectively, as

R(t) =
(

k
t

)α

and H(t) =
α

t
. (3)
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Quite a few techniques exist to estimate the shape parameter of Pareto distribution.
Both of Type-I and Type-II censored are extensively used in practice. Type-I and Type-II
censoring schemes can be merged to get the hybrid censoring scheme which was first
introduced by Epstein [13]. The hybrid censoring scheme becomes quite important in the
reliability and life testing problems, see Fairbanks et al. [14], Draper and Guttman [15],
Chen and Bhattacharya [16], Jeong et al. [17], Childs et al. [18], and Gupta and Kundu [19].
Balakrishnan and Kundu [20] have discussed theinferences based on Type-I and Type-II hy-
brid censoring schemes. Next, they have discussed some details on the generalized hybrid
censoring and unified hybrid censoring schemes. Additionally, they have shown the adap-
tion of the hybrid censoring schemes in competing risks set-up and in step-stress modeling.
Jeon and Kang [21] have discussed the parameter estimation from half-logistic distribution
by using multiply Type-II hybrid censoring. Nassar and Dobbah [22] have investigated the
reliability characteristics of bathtub-shaped distribution under adaptive Type-I progressive
hybrid censoring. Algarni, Almarashi, and Abd-Elmougoud [23] have discussion the joint
Type-I generalized hybrid censoring for estimating the two Weibull distributions. Mohie El-
Din, et al. [24] have distressed the estimation and prediction for Pareto distribution under
Type-II progressive hybrid censoring scheme, while Çetinkaya [25] has drawn inference
based on Type-II hybrid censored data from a Pareto distribution. Huang and Yang [26]
have suggested a combined hybrid censoring sampling scheme (CHCS) as follows: Assume
n experimental units are placed under a certain experiment and let Xm:n and Xl:n denote
the failure time of the mth and lth units, respectively, such that (m, l) ∈ {1, 2, . . . , n}, (t1,
t2) ∈ (0, ∞), m < l, t1 < t2 and let t denote the termination time of the experiment. If the
mth failure occurs before time t1, the experiment terminates at min{Xl:n, t1}, when the mth
failure occurs in the interval ( t1 , t2), then the experiment is stopped at Xm:n and finally
when the mth failure occurs after time t2, the experiment is stooped at t2. For our later
convenience, we abbreviate this scheme as combined CHCS(m, l; t1, t2). The system as
devolved by Huang and Yang [26] includes six different cases, such that each case the data
are unobservable as explained below:

t =



Xm:n, 0 < t1 < Xm:n < (t2 < Xl:n),
Xm:n, 0 < t1 < Xm:n < (Xl:n < t2),
t2, 0 < t1 < t2 < (Xm:n < Xl:n),
Xl:n, 0 < Xm:n < Xl:n < (t1 < t2),
t1, 0 < Xm:n < t1 < (Xl:n < t2),
t1, 0 < Xm:n < t1 < (t2 < Xl:n),

(4)

where the unobservable data are marked by the parentheses.
Balakrishnan et al. [27] have proposed the unified hybrid censoring scheme (UHCS)

that is for a certain m, l ∈ {1, 2, . . . , n}, (t1, t2) ∈ (0, ∞), m < l, t1 < t2 and t denote the
experiment termination time. when the mth failure occurs before t1, then the experiment is
terminated at min{max{Xl:n, t1}, t2}, when mth failure occurs in the interval ( t1, t2), then
the experiment is terminated at min{Xl:n, t2} and when the mth failure occurs after time t2,
then the experiment is terminated at Xm:n. The symbol UHCS(m, l; t1, t2) is used for such
this scheme. Similarly, each type of these hybrid censored samples includes different six
cases such that in each case some part of sample are unobservable as given below

t =



t2, 0 < t1 < Xm:n < t2 < (Xl:n),
Xl:n, 0 < t1 < Xm:n < Xl:n < (t2),
Xm:n, 0 < t1 < t2,< Xm:n < (Xl:n),
t1, 0 < Xm:n < Xl:n < t1 < (t2),
Xl:n, 0 < Xm:n < t1 < Xl:n < (t2),
t2, 0 < Xm:n < t1 < t2 < (Xl:n),

(5)

where unobservable data are marked in the parentheses.
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Emam and Sultan [28] have suggested a unified approach from CHCS(m, l; t1, t2),
and UHCS(m, l; t1, t2) known as the combined-unified hybrid censored scheme (C-UHCS
(m, l; t1, t2)). They have applied the proposed censoring sampling to derive the Bayesian
and non-Bayesian estimates from Dagum distribution. We belief no attempt has been made
for estimating of the parameters of the Pareto distribution by using CHCS(m, l; t1, t2) or
UHCS(m, l; t1, t2), so, we apply C-UHCS(m, l; t1, t2) to Pareto distribution. In this paper,
we apply the combined-unified hybrid censored scheme to derive the estimates from Pareto
distribution. We consider the maximum likelihood estimator of the parameters of Pareto
distribution based on three cases: (i) the location parameter k when the shape parameter
α is known; (ii) the shape parameters α when the location parameter k is unknown; and
(iii) when the location and shape parameters are unknown. In addition, we state and
prove four theorems discuss the efficiency of these estimators based on unbiasedness,
consistency, and sufficiency. The remainder of this paper is structured as follows: in
Section 2, we present the likelihood function of C-UHCS, in Section 3, we derive the
maximum likelihood estimates of the unknown parameters in three different three cases
and use them to construct the asymptotic confidence intervals (CI) for both of k and α. Next,
in Section 4, we obtain the Bayes estimates of k and α under the squared error loss function
using MCMC. In Section 5, we analyze a real dataset in using the theoretical findings of
the paper. Finally, in Section 6, we draw a brief conclusion.

2. Likelihood Function of C-UHCS

Consider X1:n, X2:n, . . . Xr:n are the lifetimes of units that placed on a life-test, and let
cumulative distribution distribution (cdf) F(x) and probability density distribution (pdf)
f (x) and assume that, for any case, the experiment is terminated at t that may refer to
time t1, t2, observation xm:n or observation xl:n, and let r denote the maximum number of
failures until t equal, respectively, D1, D2, m and l. Emam and Sultan [28] have proposed
the likelihood function under the censoring samples C-UHCS(m, l; t1, t2) under different
choices of r, t and xr:n = (x1:n, x2:n, ..., xr:n) as

L(Ω|xr:n) =
n!

(n− r)!
[1− F(t)]n−r

r

∏
i=1

f (xi:n), (6)

where r and t can be chosen in the different cases of censoring as:

L(C)(Ω|x) L(U)(Ω|x)
Cases r t r t

1 : 0 < t1 < Xm:n < t2 < Xl:n m Xm:n D2 t2
2 : 0 < t1 < Xm:n < Xl:n < t2 m Xm:n l Xl:n
3 : 0 < t1 < t2 < Xm:n < Xl:n D2 t2 m Xm:n
4 : 0 < Xm:n < Xl:n < t1 < t2 l Xl:n D1 t1
5 : 0 < Xm:n < t1 < Xl:n < t2 D1 t1 l Xl:n
6 : 0 < Xm:n < t1 < t2 < Xl:n D1 t1 D2 t2
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L(C)(Ω|x) is the likelihood corresponding to CHCS(m, l; t1, t2) given by Huang and
Yang [26] as

L(C)(Ω|x) =



n!
(n−m)!

[1− F(xm:n)]
n−m

m

∏
i=1

f (xi:n); D1 = 0, · · · , m− 1, D2 = m,

n!
(n− D2)!

[1− F(t2)]
n−D2

D2

∏
i=1

f (xi:n); D1, D2 = 0, · · · , m− 1,

n!
(n− l)!

[1− F(xl:n)]
n−l

l

∏
i=1

f (xi:n); D1 = D2 = l,

n!
(n− D1)!

[1− F(t1)]
n−D1

D1

∏
i=1

f (xi:n); D1 = D2 = m, · · · , l − 1,

(7)

and L(U)(Ω|x) is the likelihood corresponding to UHCS(m, l; t1, t2) given by Balakrishnan
et al. [27] as

L(U)(Ω|x) =



n!
(n− D)!

[1− F(t1)]
n−D

m

∏
i=1

f (xi:n); D1 = D2 = D = l, · · · , n,

n!
(n− l)!

[1− F(xl:n)]
n−r

l

∏
i=1

f (xi:n); D1 = m, · · · , l − 1, D2 = l,

n!
(n− D2)!

[1− F(t2)]
n−D2

D2

∏
i=1

f (xi); D1, D2 = m, · · · , l − 1,

n!
(n− l)!

[1− F(xl:n)]
n−l

l

∏
i=1

f (xi:n); D1 = 0, · · · , m− 1, D2 = l,

n!
(n− D2)!

[1− F(t2)]
n−D2

D2

∏
i=1

f (xi:n); D1 = 0..m− 1, D2 = m...l − 1,

n!
(n−m)!

[1− F(xm:n)]
n−m

m

∏
i=1

f (xi:n); D1, D2 = 0, · · · , m− 1.

(8)

3. The Maximum Likelihood Estimates

Let X1:n, X2:n, . . . Xr:n be the C-UHCS(m, l; t1, t2) from the Pareto distribution given in
(1). The likelihood function given in (8) in this case may written as

L =
n!

(n− r)!

[(
k
t

)α]n−r r

∏
i=1

α

xi:n

(
k

xi:n

)α

, k ≤ x1:n ≤ x2:n ≤ · · · ≤ t, (9)

and hence

log L = log
[

n!
(n− r)! ∏r

i=1 xi:n

]
+ r log α + nα log k− α log

(
tn−r

r

∏
i=1

xi:n

)
. (10)

From (9), we consider the following cases:

3.1. Case 1: α Is Known

The maximum likelihood estimate (MLE) of the parameter k is given by

k̃ = x1:n. (11)

From (11), it is easy to show that the X1:n ∼ P(k, nα), hence

E(k̃) =
nα

nα− 1
k, Var(k̃) =

nαk2

(nα− 2)(nα− 1)2 , and MSE(k̃) =
2k2

(nα− 2)(nα− 1)
, (12)
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this shows that, the estimator in (11) is consistent sufficient estimator of k, while the estimator

k̂ =
nα− 1

nα
x1:n, (13)

is consistent sufficient unbiased estimate of k and more efficient than k̃, since

Var(k̂) =
k2

nα(nα− 2)
< Var(k̃), nα > 2. (14)

The corresponding MLEs of the reliability and hazard functions are given,
respectively, by

R̂(t) =
(

nα− 1
nαt

x1:n

)α

and Ĥ(t) =
α

t
. (15)

In order to construct a confidence estimation for k in this case, we consider the
pivotal quantity

W1 =
k̂− µk̂

σk̂
=
√

nα(nα− 2)
(

nα− 1
nαk

x1:n − 1
)

, nα > 2. (16)

Again, it is easy to show that the distribution of W1 given in (16) follows Pareto
distribution of the second kind with shape parameter α∗ = nα, location parameter

θ∗ = −
√

nα(nα− 2)+
(
(nα− 1)

√
nα−2

nα

)nα

, and scaleparameter k∗ =
(
(nα− 1)

√
nα−2

nα

)nα

.

Thus Fw1(w) can be written as

FW1(w) = 1−

 (nα− 1)
√

nα−2
nα

w +
√

nα(nα− 2)

nα

, w > −
√

nα(nα− 2) +

(
(nα− 1)

√
nα− 2

nα

)nα

,

and then the (1− γ)100% confidence interval for k is constructed by(
(

γ

2
)

1
nα X1:n , (1− γ

2
)

1
nα X1:n

)
. (17)

The mean length of the confidence interval given in (17) is nαk
nα−1

[
(1−γ/2)

1
nα − (γ/2)

1
nα

]
which approaches to zero as n→ ∞.

3.2. Case 2: k Is Known

The MLE of α can be obtained from (10) as

α̃ =
r

log[y1]
, (18)

where y1 =
( t

k
)n−r

∏r
i=1
( xi:n

k
)
. From (18), we can see that α̃ is sufficient statistics of α.

The mean and variance of the MLE of α and 1
α can be derived in Theorem 1 below.

Theorem 1. If X1:n, X2:n, . . . Xr:n be the C-UHCS(m, l; t1, t2) from Pareto distribution given
in (1), then the consistent sufficient MVUE of 1

α is 1
α̃ , where α̃ is a biased consistent sufficient

statistic of α and for r > 2, we have

E(α̃) =
r

r− 1
α, Var(α̃) =

r2α2

(r− 2)(r− 1)2 and MSE(α̃) =
(r + 2)α2

(r− 1)(r− 2)
, (19)
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and

E(
1
α̃
) =

1
α

, Var(
1
α̃
) =

1
rα2 . (20)

Proof. See Appendix A.

The unbiased estimate of α is given by

α̂ =
r− 1

r
α̃ =

r− 1

log
[( t

k
)n−r

∏r
i=1
( xi:n

k
)] ,

and hence

Var(α̂) =
α2

r− 2
< Var(α̃), r > 2,

this shows that α̂ is an unbiased consistent sufficient estimate for α.

3.3. Case 3: k and α Are Unknown

The MLEs of k, α, R(t) and H(t) can be derived, respectively, by

k̃ = x1:n, α̃ =
r

log(y2)
, R̃(t) = exp

(
r log

( x1:n
t
)

log[y2]

)
and H̃(t) =

r
t log[y2]

, (21)

where

y2 =

(
t

x1:n

)n−r r

∏
i=2

xi:n. (22)

From (21), we see that (k̃, α̃) are jointly sufficient statistics for (k, α). The following
theorem states the mean and variance of the MLE of 1

α̃ in this case.

Theorem 2. If X1:n, X2:n, . . . Xr:n be the C-UHCS(m, l; t1, t2) from Pareto distribution given
in (1). For the biased estimate of 1

α , we have

E
(

1
α̃

)
=

r− 1
rα

, Var(
1
α̃
) =

r− 1
r2α2 , and MSE(

1
α̃
) =

1
rα2 , (23)

while log[y2]/(r− 1) is an unbiased estimate of 1/α with variance 1/((r− 1)α2) and relative
efficiency 1− 1/r.

Proof. See Appendix B.

Theorem 3. If X1:n, X2:n, . . . Xr:n be the C-UHCS(m, l; t1, t2) from Pareto distribution given
in (1). For the biased estimate of α, we have

E(α̃) =
r

r− 2
α, r > 2, (24)

Var(α̃) =
r2α2

(r− 3)(r− 2)2 , r > 3, (25)

MSE(α̃) =
r2 + 2r− 6

(r− 3)(r− 2)2 α2, r > 3, . (26)

and for the unbiased estimate of α, we have

α̂ =
r− 2

r
α̃ =

r− 2
log y2

, Var(α̂) =
α2

r− 3
, r > 3 and RE(α̂) =

r− 3
r

. (27)
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Proof. See Appendix C.

Theorem 4. If X1:n, X2:n, . . . Xr:n be the C-UHCS(m, l; t1, t2) from Pareto distribution given
in (1). Then the unbiased MLE of k of Pareto distribution is(

1− log y2

n(r− 1)

)
X1:n. (28)

Proof. See Appendix D.

Remark 1. The MLEs of Pareto parameters and their properties based on complete sample given in
Baxter [29] can be easily derived from our results in the cases 1, 2, and 3 by setting r = n.

Now, we apply the normality appromimation of the MLEs to obtain the appromimate
confidence intervals for k and α. The variance-covariance matrix of the parameters V̂ =
[σi,j], i, j = 1, 2 can be witten as

V(k̂, α̂) = −


∂2log[L]

∂k2
∂2log[L]

∂k∂α

∂2log[L]
∂α∂k

∂2log[L]
∂α2


−1

(k=k̂,α=α̂)

, (29)

where the elements of the observed variance-covariance matrix can be derived from (10) as

∂2 log[L]
∂k2 =

−nα

k2 ,
∂2 log[L]

∂α2 =
−r
α2 ,

∂2 log[L]
∂α∂k

=
n
k

, (30)

and hence the minimum variance bound of the MLEs of α and 1
α are given, respectively, by

α2

r and 1
rα2 . V(k, α) takes the form

V(k, α) =
k2α

n(r− nα)


r

α2
k
n

k
n

nα

k2

, k̂ =

(
1− log y2

n(r− 1)

)
x1:n and α̂ =

r− 2
log y2

, (31)

then the 100(1− τ)% confidence intervals for the parameters k and α are given by(
k̂− zτ/2

√
V(k̂), k̂ + zτ/2

√
V(k̂)

)
and

(
α̂− zτ/2

√
V(α̂), α̂ + zτ/2

√
V(α̂)

)
, (32)

where V(k̂) and V(α̂) are the estimated variances of k̂ and α̂, which are given by the
diagonal elements of V(k̂, α̂), and zτ/2 is the upper (τ/2) percentile of standard normal
distribution, where τ/2 =

∫ ∞
zτ/2

1√
2π

e−z2/2dz. The delta method was used for derive
approximate confidence intervals for R(t) and H(t) as

Ψ1 =
[

∂R(t)
∂k

∂R(t)
∂α

]
(k=k̂,α=α̂)

, and Ψ2 =
[

∂H(t)
∂k

∂H(t)
∂α

]
(k=k̂,α=α̂)

, (33)

where

∂R(t)
∂k

=

(
k
t

)α−1(α

t

)
,

∂R(t)
∂α

=

(
k
t

)α

log
(

k
t

)
,

∂H(t)
∂k

=
1
t

, and
∂H(t)

∂α
= 0. (34)
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Then, the approximate estimates of V(R̂(t)) and V(Ĥ(t)) are given, respectively, by

V(R̂(t)) ' Ψ1V
(

k̂, α̂
)

Ψt
1, and V

(
Ĥ(t)

)
' Ψ2V

(
k̂, α̂
)

Ψt
2, (35)

where Ψt is the transpose of Ψ and

R̂(t)± zτ/2

√
V(R̂(t)) and Ĥ(t)± zτ/2

√
V(Ĥ(t). (36)

4. Bayesian Estimation: MCMC Method

In the Bayesian approach, the risk functions are chosen depending on how one mea-
sures the distance between the estimate and the unknown parameter. To perform the
Bayesian analysis, usually we use loss the squared error (SE) loss function as

LSE(g(ϕ), ĝ(ϕ)) = (g(ϕ)− ĝ(ϕ))2, (37)

where ĝ(ϕ) is an estimate of g(ϕ) and the Bayes estimate of g(ϕ) using the SE loss function
is given by

ĝSE(ϕ) = Eϕ[g(ϕ)|xr:n]. (38)

In this section, we use the Metropolis Hastings algorithm within Gibbs sampling
approach for generating random samples from the conditional densities of the parameters
and use them to get the Bayian estimates and interval (HPD credible intervals) estimates
of the unknown parameters. The unknown parameters k and α are assigned independent
gamma distributions. Then, the joint prior distribution for k and α, is given by

π(k, α) =
ba

Γ(a)
ka−1 exp[−bk] ∗ dc

Γ(c)
αc−1 exp[−dα], a, b, c, d > 0. (39)

Then, the posterior distributrion of k and α, is given by

π∗(k, α) =
Lπ(k, α)∫

α

∫
k Lπ(k, α)∂k∂α

=
αrknα(Tn−r ∏r

i=1 xi:n)
−αka−1 exp[−bk]αc−1 exp[−dα]∫

α

∫
k αrknα(Tn−r ∏r

i=1 xi:n)
−αka−1 exp[−bk]αc−1 exp[−dα]∂k∂α

. (40)

In the following algorithm, we apply Metropolis Hastings (M-H) technique with
normal proposal distribution for generainge samples from these distributions.

1. Start with initial values of the parameters (k(0), α(0)). Then, set i = 1;
2. Generate k(∗), α(∗) using the proposal distributions N(k(i−1), Var(k̂)) and N(α(i−1),

Var(α̂)), respectively, such that Var(k̂) and Var(α̂) are given in (3.21);

3. Compute the acceptance probability r = min
(

1, π∗(k(∗),α(∗))
π∗(k(i−1),α(i−1))

)
;

4. Generate U from uniform (0, 1);

5. Accept the proposal distribution and set
(

k(i), α(i)
)
=
(

k(∗), α(∗)
)

if U < r. Otherwise,

reject the proposal distribution and set
(

k(i), α(i)
)
=
(

k(i−1), α(i−1)
)

;

6. Set i = i + 1;
7. Repeat Steps 2–6, M times, and obtain k(i) and α(i) for i = 1, ..., M.

By using the generated random samples from the Gibbs sampling procedure with
N unburn units, then Bayes estimate of the parameters using the squared error loss func-
tions are
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k̂ =
1

M− N

M

∑
i=N+1

k(i), α̂ =
1

M− N

M

∑
i=N+1

α(i),

R̂(t) =
1

M− N

M

∑
i=N+1

(
k(i)

t

)α(i)

, and Ĥ(t) =
1

M− N

M

∑
i=N+1

α(i)

t
.

MCMC HPD credible interval Algorithm:

1. Arrange the values of k(∗), α(∗), R(∗) and H(∗) in increasing magnitude;
2. Find the positions of the lower bounds which is (M − N) ∗ q/2, where q is the

significance, then determine the lower bounds of k, α, R and H;
3. Find the positions of the upper bounds which is (M− N) ∗ (1− q/2), then determine

the upper bounds of k, α, R and H;
4. Repeat the above steps M times. Find the average value of the lower and upper

bounds MCMC HPD credible interval of k, α, R and H.

5. Data Analysis

In this section, we apply the proposed MLEs and the Bayesian estimates to analyze
a set of real data distributed as Pareto distribution given by Nigm and Hamdy [30] and
Wong [31]. The data represents the first 10 observations of sample size n = 15 businesses as:
1.01, 1.05, 1.08, 1.14, 1.28, 1.30, 1.33, 1.43, 1.59, 1.62.

The calculations are carried out through the steps below:

1. Assume different censoring schemes from our model C-UHCS(m, l; t1, t2).
2. Calculate the MLEs estimations of k, α, R(t) and H(t) at the termination time T.
3. Calculate the Bayesian estimations of k, α, R(t) and H(t) at the termination time T by

MCMC (with 100,000 repetitions and 20,000 burns).
4. For the Bayesian analysis, we select the values of the hyper-parameter a, b, c, and d as:

(a) Calculate the MLEs of k and α using (3.23) when n = 15, r = 10 and t =

x10:15 = 1.62 as k̂ = 0.983433 and α̂ = 3.80173.
(b) Assume k ∼ gamma(a, b) and α ∼ gamma(c, d), hence solve the two equations

(the mean and variance of gamma distribution) ab = k̂ and ab2 = 0.01 to get
a = 96 and b = 0.01

(c) Repeat step (b) for c and d to get c = 1445 and d = 0.0026.

5. The corresponding variances of the point estimates are calculated.
6. The 95% and 90% interval estimation using of the unknown parameters, as well as

the reliability and hazard function, are calculated.
7. The numerical results are displayed in Table 1.

From Table 1, we see that

(i) The estimates of Type-I and Type-II censoring are very close as both of T and Xr:n
become very closed to each other;

(ii) In the most cases, the standard deviation of the Bayesian estimate is smaller than
the MLE;

(iii) In the most cases, the interval width of the Bayesian estimate is shorter than the
MLE at the some confidence level;

(iv) In general the model C-UHCS enables us to have flexible way for selecting the
censoring schemes.
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Table 1. Estimation of the unknown parameters, reliability and hazard functions under different
censoring choices.

T Point Estimation Interval Estimation

MLE Bayes MLE Bayes

95% 90% 95% 90%

Xm=5,15 = 1.28 k 0.976 1.042 0.818 1.134 0.843 1.109 0.963 1.075 0.980 1.074
0.081 0.066 0.317 0.267 0.112 0.094

α 2.962 2.963 1.792 4.132 1.977 3.947 2.867 3.057 2.872 3.052
0.597 0.841 2.340 1.970 0.190 0.180

R(.) 0.223 0.271 0.000 0.485 0.002 0.444 0.213 0.303 0.225 0.301
0.134 0.841 0.485 0.337 0.090 0.076

H(.) 1.828 1.829 0.845 2.812 1.001 2.656 1.770 1.887 1.773 1.884
0.502 0.841 1.444 1.216 0.117 0.111

Xl=7,15 = 1.33 k 0.983 1.056 0.831 1.135 0.855 1.111 0.991 1.082 1.007 1.082
0.077 0.077 0.303 0.255 0.091 0.075

α 3.730 3.732 2.402 5.058 2.612 4.848 3.635 3.825 3.640 3.820
0.678 0.091 2.656 2.236 0.190 0.180

R(.) 0.155 0.203 0.025 0.285 0.046 0.265 0.159 0.227 0.169 0.225
0.066 0.091 0.309 0.260 0.068 0.056

H(.) 2.302 2.303 1.175 3.430 1.353 3.251 2.244 2.361 2.247 2.358
0.575 0.091 1.640 1.380 0.117 0.111

Xl=9,15 = 1.59 k 0.984 1.059 0.813 1.155 0.840 1.128 0.998 1.083 1.012 1.083
0.087 0.079 0.341 0.287 0.085 0.071

α 3.869 3.872 2.477 5.260 2.697 5.040 3.774 3.964 3.780 3.959
0.710 0.091 2.783 2.343 0.190 0.180

R(.) 0.145 0.193 0.042 0.249 0.058 0.233 0.153 0.215 0.161 0.213
0.053 0.091 0.291 0.245 0.062 0.052

H(.) 2.388 2.390 1.175 3.601 1.367 3.410 2.330 2.447 2.333 2.444
0.619 0.091 1.718 1.446 0.117 0.111

t1 = 1.3, D = 6 k 0.980 1.050 0.827 1.134 0.851 1.109 0.979 1.079 0.996 1.078
0.078 0.072 0.307 0.259 0.100 0.083

α 3.379 3.380 2.123 4.635 2.321 4.437 3.285 3.474 3.290 3.469
0.641 0.426 2.513 2.115 0.189 0.179

R(.) 0.183 0.232 0.007 0.359 0.035 0.331 0.181 0.259 0.192 0.257
0.089 0.426 0.349 0.294 0.078 0.064

H(.) 2.086 2.086 1.025 3.146 1.193 2.979 2.028 2.144 2.031 2.141
0.541 0.426 1.551 1.306 0.117 0.111

t2 = 1.4, D = 8 k 0.983 1.058 0.822 1.145 0.848 1.119 0.995 1.083 1.010 1.082
0.082 0.078 0.323 0.272 0.087 0.072

α 3.802 3.805 2.442 5.162 2.657 4.947 3.707 3.897 3.713 3.892
0.694 0.057 2.720 2.290 0.190 0.180

R(.) 0.150 0.198 0.035 0.265 0.053 0.247 0.156 0.221 0.165 0.219
0.059 0.057 0.299 0.252 0.065 0.054

H(.) 2.347 2.349 1.177 3.516 1.362 3.331 2.288 2.406 2.292 2.403
0.597 0.057 1.679 1.414 0.117 0.111

t2 = 1.7, D = 10 k 0.986 1.064 0.822 1.151 0.848 1.125 1.007 1.086 1.022 1.085
0.084 0.083 0.329 0.277 0.078 0.063

α 4.246 4.251 2.786 5.707 3.017 5.476 4.152 4.342 4.158 4.337
0.745 0.452 2.922 2.459 0.189 0.179

R(.) 0.122 0.168 0.041 0.202 0.054 0.189 0.132 0.187 0.140 0.185
0.041 0.452 0.254 0.214 0.054 0.044

H(.) 2.621 2.624 1.345 3.897 1.547 3.695 2.563 2.680 2.567 2.677
0.651 0.452 1.803 1.518 0.117 0.110

The second rows represent the standard deviation of the point estimates and width of
the interval estimates.

6. Conclusions

In this paper, MLEs and the Bayesian estimates of the unknown parameters from
Pareto distribution under C-UHCS(m, l; t1, t2) model are obtained. Some efficiency proper-
ties of the MLEs estimate are discussed, including, the unbiasedness, minimum variance
unbiased estimate and sufficiency. MCMC technique is used to carry out the Bayesian
estimates. The interval estimates are developed using the observed Fisher information
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matrix and MCMC. The theoretical findings of the paper are applied to analyze a real
dataset under different choices of the censoring. The numerical results show the efficiency
performance of the proposed model. Finally, the proposed censoring model has flexible
futures to switch between Type-I and Type-II censoring according the experiments need.
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Appendix A. Proof of Theorem 1

Proof. By using the well known relation

1 =
∫ x1

k

∫ x2

x1

· · ·
∫ ∞

xr−1

Ldx =
∫
· · ·

∫
Aαry−α

1 dx, (A1)

where

A =
n!

(n− r)!
1

∏r
i=1 xi:n

.

From (A1), we may write ∫
· · ·

∫
Ay−α

1 dx = α−r, (A2)

differentiating both sides of (A2) with respect to α, we have∫
· · ·

∫
Ay−α

1 log y1dx = rα−r−1, (A3)∫
· · ·

∫
Ay−α

1 (log y1)
2dx = r(r + 1)α−r−2. (A4)

Integrating both sides of (A2) with respect to α, we have

∫
· · ·

∫
Ay−α

1
1

log y1
dx =

α−r+1

r− 1
+ c1, r > 1, (A5)∫

· · ·
∫

Ay−α
1

1
(log y1)2 dx =

α−r+2

(r− 1)(r− 2)
+ c1α + c2, r > 2. (A6)

It is easy to show form (A5) and (A6) that

lim
α→∞

y−α
1 = lim

α→∞
α−r+1 = lim

α→∞
α−r+2 = 0, then c1 = c2 = 0.

Now, from (A3), we have∫
· · ·

∫
Aαry−α

1 log y1dx = E(log y1) =
r
α

.
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Similarly, from (A4)–(A6), we have

E(log y1)
2 =

r(r + 1)
α2 , E

(
1

log y1

)
=

α

(r− 1)
and E

(
1

(log y1)
2

)
=

α

(r− 1)(r− 2)
, (A7)

and hence Theorem 1 is proved.

Appendix B. Proof of Theorem 2

Proof. Let Y = log
(

X1:n
k

)n
∼ Exponential( 1

α ), then

E(Ym) =
m!
αm , (A8)

E(log(y2)) = E[log(y1)−Y] =
r− 1

α
, (A9)

E[log(y2)]
2 = E[log(y1)]

2 + E[Y2]− 2E[Y log(y1)]

=
r(r + 1)

α2 +
2
α2 − 2E[log Y log y1], (A10)

and let

E[Y log y1] = g(α) then α−rg(α) =
∫
· · ·

∫
Ay−α

1 y log y1dx,

by integrating over α, we get

αr
∫

α−rg(α)dα = −E[Y] =
−1
α

,

differentiating with respect to α, we have

g(α) =
r + 1

α2 , (A11)

hence

E[log(y2)]
2 =

r(r− 1)
α2 , and Var(log y2)) =

r− 1
α2 . (A12)

Then

E
(

1
α̃

)
=

r− 1
rα

, Var
(

1
α̃

)
=

r− 1
r2α2 and MSE

(
1
α̃

)
=

1
rα2 . (A13)

Hence Theorem 2 is proved.

Appendix C. Proof of Theorem 3

Proof. Consider the relation∫
· · ·

∫
Aαry−α

1 yjdx = E(Y j) =
j!
αj ,

then ∫
· · ·

∫
Ay−α

1 yjdx = j!α−(r+j). (A14)

Integrating both sides of (A14) (j + 1) times over α, we get

∫
· · ·

∫
Ay−α

1
yj

(log y1)j dx =
j!α−(r−1)

(r− 1)r(r + 1) . . . (r + j− 1))
,
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then ∫
· · ·

∫
Aαry−α

1
yj

(log y1)j+1 dx = E

(
Y j

(log y1)
j+1

)
=

j!(r− 2)!α
(r + j− 1)!

= αB(j + 1, r− 1), (A15)

where B(j + 1, r− 1) is the beta function defined as B(j + 1, r− 1) =
∫ 1

0 tj(1− t)r−2dt.
Similarly, integrating both sides of (A14) (j + 2) times over α, we have

E
(

yj

(log y1)j+2

)
= B(j + 2, r− 2)

α2

j + 1
. (A16)

Now to find the mean and variance of α̃, we get

E
(

1
log y2

)
= E

(
1

log y1 −Y

)
= E

[
1

log y1

(
1− Y

log y1

)−1]
= α

∞

∑
i=0

B(j + 1, r− 1), (A17)

using the the following relation ∑∞
k=0 B(x, y + k) = B(x − 1, y), see Gradshtegn and

Ryzhik [32], we have

E
(

1
log y2

)
= αB(r− 1, 1) =

α

r− 2
, (A18)

and

E
(

1
log y2

)2
=

∞

∑
j=0

(j + 1)E
(

Y j

(log y1)j+1

)
= α2

∞

∑
j=0

B(j + 2, r + 2) =
α2

(r− 2)(r− 3)
. (A19)

Then

E(α̃) = E
(

r
log y2

)
=

rα

r− 2
,

Var(α̃) =
r2α2

(r− 3)(r− 2)2 ,

MSE(α̃) =
(r2 + 2r− 6)α2

(r− 3)(r− 2)2 .

For the unbiased estimator of α, we consider

α̂ =
r− 2

r
α̃ =

r− 2
log y2

,

then

Var(α̂) =
α2

r− 3
< V(α̃) and RE(α̃) =

r− 3
r

Appendix D. Proof of Theorem 4

Proof. To find E(X1:n log y2), we use the relation∫
· · ·

∫
Aαry−α

1 x1:ndx1:n = E(X1:n) =
nα

nα− 1
k.
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Then ∫
· · ·

∫
Ay−α

1 x1:ndx =
nαα−r

nα− 1
k. (A20)

By differentiating both sides of (A20) with respect to α, we have

∫
· · ·

∫
Ay−α

1 (log y1)x1:ndx = − d
dα

(
α−r nαk

nα− 1

)
=

nkα−r(nαr− r + 1)
(nα− 1)2 , (A21)

and∫
· · ·

∫
Aαry−α

1 (log y2 + y)x1:ndx =
nk(nαr− r + 1)

(nα− 1)2 = E(log y2x1:n) + E(Yx1:n)

= E(log y2x1:n) +
nnα2

(nα− 1)2 . (A22)

Then

E(log y2x1:n) =
n(r− 1)
nα− 1

k, (A23)

hence

E
[

x1:n

(
1− log y2

n(r− 1)

)]
= k, (A24)

his shows that x1:n

(
1− log y2

n(r−1)

)
is the unbiased estimate of k.
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