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Abstract: With the continuous process of urbanization, regional integration has become an inevitable
trend of future social development. Accurate prediction of passenger volume is an essential prereq-
uisite for understanding the extent of regional integration, which is one of the most fundamental
elements for the enhancement of intercity transportation systems. This study proposes a two-phase
approach in an effort to predict highway passenger volume. The datasets subsume highway pas-
senger volume and impact factors of urban attributes. In Phase I, correlation analysis is conducted
to remove highly correlated impact factors, and a random forest algorithm is employed to extract
significant impact factors based on the degree of impact on highway passenger volume. In Phase II, a
deep feedforward neural network is developed to predict highway passenger volume, which proved
to be more accurate than both the support vector machine and multiple regression methods. The
findings can provide useful information for guiding highway planning and optimizing the allocation
of transportation resources.

Keywords: intercity transportation; highway passenger volume; urban attributes; two-phase approach

1. Introduction

Recently, with the continuous process of urbanization, regional integration has become
an inevitable trend of future social development in many developing countries [1,2]. In
this situation, establishing a convenient and efficient intercity transportation system is a
prerequisite for supporting regional integration, in which accurate prediction of passenger
volume is one of the most fundamental elements required for the enhancement of intercity
transportation systems [3–6].

The primary concern of passenger volume prediction is to extract relevant impact
factors and build appropriate models. Firstly, multiple impact factors related to urban
attributes, such as gross domestic product (GDP) and population, determine the absolute
value and spatial distribution of passenger volume [7,8]. Consequently, extracting signif-
icant impact factors and further analyzing their relationship with passenger volume is
recognized as a prerequisite for accurately predicting the passenger volume. Secondly, the
prediction models attracted wide attention and the performance of different models was
evaluated in past research. Some typical models, including multiple logit models, machine
learning models, and deep learning models have been developed based on the historical
passenger volume [9,10]. Nevertheless, the predicted accuracy of the existing models was
largely affected by the dataset size of historical passenger volume [11]. Hence, the models
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with historical data cannot perform an accurate prediction if lacking sufficient data, which
is quite common for intercity transportation.

There are two key steps in the prediction of intercity passenger volume: (1) extracting
the significant impact factors, (2) developing a deep learning model to achieve the predic-
tion. Thus, it is practical to develop a two-phase approach to predicting intercity passenger
volume based on impact factors reflecting urban attributes and deep learning models. As
the highway is always an important intercity mode of transport with a high mode share,
this study took the highway as the research object. Phase I made a correlation analysis to
remove the highly correlated impact factors and developed a random forest (RF) algorithm
to extract the significant impact factors of highway passenger volume; Then, Phase II
developed a deep feedforward neural network (DFNN) to predict highway passenger
volume. To overcome the existing limitations on predicting intercity passenger volume, the
primary contributions of this study are as follows:

(1) A total of 69 impact factors of urban attributes were collected from 280 administrative
districts in China, which provides a macroscopic dataset for the prediction of highway
passenger volume and overcomes the limitations of traditional travel surveys and
questionnaires that only focus on a single city or single transportation corridor;

(2) Multiple urban attributes, including urban economy, population, industry, income and
consumption, and resource and environment, were modeled together. Furthermore,
A total of 30 significant impact factors of highway passenger volume were extracted
by the RF algorithm, which improves the traditional process based on subjective
experience and avoids the omission of significant factors;

(3) A deep learning method, DFNN, was developed to predict highway passenger vol-
ume, which proved to be more accurate than the SVM and multiple regression
methods and can provide more reliable information for optimizing traffic structure
and reducing waste of traffic resources.

The remainder of this study is organized as follows. Section 2 gives as overview of the
related literature. In Section 3, the data source is introduced, and the impact factors of urban
attributes are collected and presented. Section 4 presents the underlying principle of the
RF and DFNN algorithm. Section 5 presents the process of extracting the significant impact
factors. In Section 6, the DFNN is developed to predict highway passenger volume, which
is further compared with two benchmark methods. Finally, Section 7 draws conclusions
and gives an outlook on future research.

2. Literature Review

This section concludes the existing research on the above two phases: (1) extracting the
significant impact factors of intercity passenger volume, (2) developing models to achieve
an accurate prediction. Furthermore, the limitations of existing research are itemized at
the end.

The first phase is to extract the significant impact factors. Multiple impact factors
related to urban attributes, including urban economic level, urban industrial structure,
population, etc., were widely studied to understand their relationship with intercity pas-
senger volume. Firstly, the urban economic level proved to be one of the necessary impact
factors of intercity passenger volume [12–14]. Traffic demand for business and tourism in
intercity transportation increases with the development of the urban economy. The impact
factors reflecting the urban economic level were found to be per-capita gross domestic
product (GDP), per-capita income, industrial structure, etc., and it was verified that they
had a strong correlation with intercity passenger volume [15,16]. Moreover, both popu-
lation structure and population size affect the intercity passenger volume significantly.
Limtanakool et al. [17] took population density and land use as variables and found that a
higher population density and mixed degree of land use have a positive impact on pas-
senger volume of public modes in medium- and long-distance trips. A similar conclusion
was also reached by related research [18]. Although the impact factors related to economic
level and population have been widely studied in the existing research, those related to
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the quality of residents’ lives, resources, and the environment were rarely studied because
they are hard to be quantified with one or several indicators and the corresponding dataset
is difficult to obtain [19–21]. This problem indicates that the relative research on extracting
significant impact factors of intercity passenger volume is incomplete and causes the inac-
curate prediction of intercity passenger volume, especially for some tourism-driven cities
and resource-driven cities.

The second phase is to develop a model to achieve an accurate prediction of intercity
passenger volume. In the existing studies, multiple logit models, such as the multino-
mial logit model [22,23], Box–Cox logit model [24], and nested logit model [25], were
developed to study the mode choice of intercity trips and deduce the intercity passenger
volume of various modes by calculating the intercity travel rate of surveyed samples [26,27].
Moreover, intercity passenger volume was predicted by introducing the impact factors.
Harker et al. [28] proposed a network equilibrium model with considerations of market
price and economic mechanism to predict the intercity freight volume. Li et al. [29] pre-
dicted the passenger volume of intercity railway with multiple indicators of passenger
demand, regional economy, and regional traffic infrastructure, with an average predicted
error of 3.37%. Another practical approach to predicting intercity passenger volume is
based on the historical passenger volume. Xie et al. [30] analyzed the spatiotemporal
characteristics of intercity passenger volume and predicted intercity passenger volume on
holiday, with a predicted error of 6.43%. Recently, deep learning and machine learning
algorithms, represented by various neural networks, have become remarkable at pre-
dicting intercity passenger volume by using cellular signaling data and location-based
data [4,22–32]. Numerous studies have shown that predicted accuracy can be significantly
improved by deep learning algorithms [33].

It is noted that the difficulties in obtaining the dataset of intercity passenger volume
have been widely emphasized in past studies, especially for some intercity passenger
modes of transportation that have additional requirements for an urban population, geo-
graphical location, or urban scale, such as airways, railways, and waterways. This means
that the prediction of intercity passenger volume can be only conducted in a few cities [34].
In contrast, the highway has better accessibility and connects to all kinds of cities, expand-
ing the study scope of predicting intercity passenger volume [35]. As previously stated,
intercity passenger volume is largely determined by impact factors. Thus, the process of
extracting significant impact factors at first, and then analyzing the interaction between in-
tercity passenger volume and impact factors with deep learning algorithms, is practical for
predicting intercity passenger volume but has rarely been studied in the existing research.

From the above analysis, the relationship between intercity passenger volume and
urban attributes has been widely studied, and some typical models have been developed
to predict passenger volume. Nevertheless, some limitations still exist in previous research
and need further improvement, which are listed as follows:

(1) Due to the restrictions of the research data, most existing research predicted intercity
passenger volume from a single city or transportation corridor. As a result, the current
achievements are difficult to apply to intercity transportation between all kinds of
cities.

(2) Existing research only focuses on common urban attributes such as the population
or the economy. However, more urban attributes related to the quality of residents’
lives, resources, and environment were neglected for lacking the available data and
quantitative indicators, causing the inaccurate prediction of intercity passenger vol-
ume, especially in some tourism-driven cities and resource-driven cities. Moreover,
the selection process of significant attributes also received less attention.

(3) Microcosmic datasets collected from traffic surveys have been widely used for study-
ing the choice of transportation mode in intercity trips but is not practical to predict
intercity passenger volume. In contrast, the macroscopic datasets of urban attributes
provided a novel approach to predict the intercity passenger volume, but have rarely
been used in the existing literature.
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3. Data Source

In this study, the dataset, including highway passenger volume and impact factors
of urban attributes, was obtained from China’s urban statistical yearbook. In China, the
urban statistical yearbook is regularly published online to evaluate the social and economic
levels. The statistical yearbook covers multiple aspects of urban attributes, including
society, economy, etc. People can download the statistical yearbook for academic research,
providing a novel macroscopic dataset with the prediction of highway passenger volume.

Considering the possible complex-relevance between impact factors of urban at-
tributes, it is necessary to select appropriate impact factors for the convenience of data
processing. The selection principles in this study are summarized as follows: (1) The
selected impact factors can well reflect the urban attributes and have a significant impact
on intercity passenger volume. (2) The selected impact factors can be quantifiable and com-
parable. (3) The selected impact factors can be provided by the urban statistical yearbook
and easily accessible. It is noteworthy that some non-quantifiable factors can be compa-
rable by converting into different levels. Yet in this study, most non-quantifiable factors
have a high correlation with the existing quantifiable factors. Furthermore, subjective
judgment and personal preference are often included in the non-quantifiable level division,
which inevitably brings errors into the process. Accordingly, this study only focuses on the
prediction of highway passenger volume with the quantifiable impact factors.

Based on the above principles, a total of 69 impact factors of urban attributes were
selected from China’s urban statistical yearbook. To facilitate data processing, the selected
impact factors of urban attributes were divided into five categories, namely, urban economic
level, urban population size and structure, per-capita income and consumption, resource
and environment, and urban industrial structure. The selected impact factors of urban
attributes and their information are summarized in Table A1 in Appendix A.

As the data in the statistical yearbook is aggregated from the whole district or city,
the authors took the administrative district as the basic unit of data collection. As a result,
3444 samples, including the selected 69 impact factors and highway passenger volume,
from 280 administrative districts, were collected. The recorded date is from 2003 to 2014,
covering 12 years, because there is a unified statistical standard during this period and
the statistical data changed smoothly without a sharp increase or decrease. In which. The
highway passenger volume was set as the unique dependent variable, and impact factors
were set as the alternative independent variables for predicting highway passenger volume.

4. Methodology

The flow diagram of the proposed two-phase approach and associated designed
framework is shown in Figure 1. Firstly, the raw dataset, including highway passenger
volume and impact factors, was collected. Then, the two-phase approach was proposed.
Phase I extracted the significant impact factors with the RF algorithm and Phase II predicted
highway passenger volume with the DFNN. Finally, the typical machine learning algorithm,
support vector machine (SVM), was also developed for predicting highway passenger
volume and compared with the DFNN, because it has a better ability to solve machine
learning problems with a small sample size. Moreover, the traditional multiple regression,
which is widely used for discerning the relationship between dependent variables and
multiple independent variables, served as the benchmark for the prediction of highway
passenger volume. All predicted models were evaluated by calculating errors, including
mean absolute error (MAE) and root mean squared error (RMSE).
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The fundamentals of the two primary methods used in this study are briefly discussed
as follows, including the RF algorithm and the DFNN. Moreover, the evaluating indicators,
MAE and RMSE, are introduced as well.

4.1. Random Forest Algorithm

In this study, the RF algorithm was used in Phase I to extract significant impact factors.
The RF algorithm is a classifier established with multiple decision trees randomly, which
has better robustness to noise and an excellent ability to maintain accuracy even if partial
features are missing compared to other tree-based models [36,37]. Moreover, existing
research has proved that the RF algorithm can efficiently analyze the complex interaction
among features and pick out the significant features. As a result, it is widely used for
removing the variables with a high correlation or low importance degree [38].

For any impact factor in Table 1, its importance degree can be calculated with the
RF algorithm. After that, the selection of significant impact factors follows two processes:
(1) Remove the impact factors that are highly correlated with others. (2) Determine the
removed proportion and remove impact factors with a low importance degree.

The above processes of the RF algorithm, including calculating importance degree
and selecting significant impact factors, were repeatedly conducted until the number of
selected significant factors is less than the set value. Finally, the selected impact factors
were set as the independent variables for predicting highway passenger volume.

4.2. Deep Feedforward Neural Network

Recently, the neural network is widely used in the prediction of traffic volume and
proposes the development of deep learning [39–41]. The DFNN is a deep learning model
comprised of an input layer, several hidden layers, and an output layer [42–44]. The
quantity of hidden layers defines the depth of the architecture [45]. The topological
structure of the DFNN is shown in Figure 2.
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The theory of the DFNN is available in past research [44–46]. In this section, we
introduce the activation function and objective function used in the DFNN algorithm.

Firstly, the rectified linear unit (ReLU) function was selected as the activation function
of hidden layers and the output layer, considering that the ReLU function has a higher
computing efficiency because it only activates a fraction of the neurons in each epoch.
The ReLU function has been proven to be effective at avoiding gradient vanishing and
overfitting, and serves as the preferred choice when developing a neural network to solve
multiple problems except for the binary classification [46,47]. The ReLU function is shown
in Equation (1).

f (x) =
{

0 x < 0
x x ≥ 0

(1)

Then, the objective function was built by minimizing the loss function of mean square
error, as in Equation (2).

min
1
N

N

∑
i=1

(yi − ŷi)
2 + λ · R(θ) (2)

where yi represents the actual highway passenger volume and ŷi represents the predicted
highway volume. N is the number of predicted samples. R(·) is a regularized constraint,
represented by the L2 norm of the parameter θ, which is solved by the gradient descent
method. λ is the coefficient of regularized constraint R(·).

4.3. Evaluating Indicators

To better evaluate the deviation of predicted results and assess the predicted method’s
performance, two indicators, MAE and RMSE, were calculated in this study. They are
defined by Equations (3) and (4), respectively.

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where yi and ŷi represent the actual highway passenger volume and the predicted high-
way passenger volume, respectively. N is the number of predicted samples. Both MAE
and RMSE represent the degree of deviation between the actual and predicted highway
passenger volume. The smaller the value of MAPE and RMSE, the more accurate the
predicted result.
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5. Phase I: Extraction of Significant Factors

In Phase I, the RF algorithm was used for removing the highly correlated impact
factors and extracting the significant impact factors. Specifically, impact factors with a high
importance degree were retained and those with a low importance degree were removed.
The RF algorithm has the advantage of showing the extraction of significant factors step by
step and the extracted significant impact factors are interpretable, compared with some
auto-encoder methods like neural networks. Finally, a dataset of significant impact factors
was built for predicting highway passenger volume.

Firstly, the correlation coefficients between impact factors were calculated by correla-
tion analysis, and fifteen groups of highly correlated impact factors were found based on
the calculated correlation coefficients, which are shown in Table 1.

Table 1. Groups of highly correlated impact factors.

Group Highly Correlated Impact Factors Group Highly Correlated Impact Factors

1 NSS, NSP, NSSP, TP 8 DLB, HD

2 RT, SC, DRSC, TSP
9 GIO, DGIO

10 IFA, DIFA, IRE, DIRE
3 DLA, DCAB 11 WS, WCS
4 FC, PFI, PFE, DPFI, DPFE 12 AEC, ECI, HEC
5 DB, DDB 13 NOB, PB, NT
6 HD, DHD 14 AGL, APGL, GCA
7 LB, DLB 15 NH, NBH, DNBH

Then, the importance degree of highly correlated impact factors in each group was
calculated with the RF algorithm, as shown in Figure 3. The horizontal axis represents
impact factors in each group, and the vertical axis represents the corresponding importance
degree. Only the impact factor with the largest importance degree in each group was re-
tained, and other impact factors were removed. Consequently, 28 impact factors, including
NSS, NSSP, NSP, SC, DRSC, TSP, DCAB, DPFI, DPFE, PFI, FC, DDB, DHD, DLB, LB, DGIO,
IFA, DIFA, DIRE, WS, ECI, AEC, PB, NT, GCA, AGL, DNBH, and NH, were removed and
the other 41 impact factors were retained. Then, the importance degree of the remaining
impact factors was calculated again and sorted in order, as shown in Figure 4.

In this study, the removed proportion was set at 10%. Therefore, impact factors with
importance degree rankings in the bottom 10% were removed. According to Figure 4a, the
removed impact factors included RP, CPR, VISR, and DNH, and the remaining 37 impact
factors were retained for the subsequent data processing.

Similarly, the importance degree of impact factors was calculated repeatedly and
sorted in order, and impact factors whose importance degree ranked in the bottom 10%
were removed until the importance degree of the remaining impact factors reached 0.01.
The above process was repeated twice. PCGRP, IRE, LA, and PFE, and DPD, PTPT, and
CLPGR were removed during these two processes, respectively, as seen in Figure 4b,c.
Finally, a total of 30 impact factors were retained, and are shown in Table 2. The category
of resource and environment had more retained factors than any other, indicating that this
category has a significant impact on highway passenger volume. Moreover, the importance
degrees of HD, GDP, WCS, NOB, RT, HEC, TP, and TI rank in the top 25%, meaning that
these eight factors significantly impact highway passenger volume.
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Table 2. The extraction result of significant impact factors.

Category Included Impact Factors

Urban economic level GDP, RSC, RT, GIO
Urban population size and structure TP, NSC, WPI, WSI, WTI, PD, PLPG
Per-capita income and consumption AWW, DB, HD, WCS, HEC

Urban industrial structure PI, SI, TI

Resource and environment DLA, LC, NOB, APR, APGL, GCAP, NBH,
NTM, CPL, VDWW, VSDE

6. Phase II: Model Prediction and Evaluation
6.1. Model Prediction

With the significant impact factors selected by Phase I as input variables, Phase II
developed the DFNN to predict highway passenger volume. The primary concern of
developing DFNN is to determine the appropriate quantity of hidden layers and neurons
in each hidden layer. In this study, the grid search method was adopted, whose initial
range for the number of hidden layers was set from 1 to 10 and that for the number of
neurons was set from 1 to 140. Taking MAE as an evaluating index, the result of the grid
search method is shown in Figure 5.
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The quantity of hidden layers and neurons with the minimum MAE is selected. Finally,
the quantity of hidden layers is set to 9, and the quantity of neurons in each hidden layer
is set to 120 in the DFNN of this study. Moreover, the quantity of neurons in the input
layer and the output layer is set to 30 and 1, respectively, because there are 30 independent
variables and 1 dependent variable.

Additionally, multiple epochs are needed for improving the predicted accuracy of
the DFNN. Consequently, we continuously increased the epoch and calculated the loss of
training set and verification set. When the loss of four consecutive epochs is less than 0.0001,
it is considered that the training process has reached convergence and can be stopped. The
loss of the training process is shown in Figure 6. Finally, the epoch of the DFNN in this
study was set to 12.
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Afterward, the significant impact factors were input in the developed DFNN, and the
highway passenger volume was predicted. Then, evaluating indicators were calculated,
showing that the MAE and RMSE of predicted highway volume from the DFNN are
2066.31 persons per day and 4176.37 persons per day, respectively.

6.2. Model Evaluation

To further evaluate the performance of the DFNN, the traditional SVM and multiple
regression were used for comparison. For the SVM, the RBF kernel function whose penalty
coefficient is set as 1000, and the Gamma coefficient is set as 0.001, was selected by adopt-
ing the grid search method based on the alternative sets of the kernel function, penalty
coefficient, and gamma coefficient, as shown in Table 3.

Table 3. The alternative sets of parameters in the SVM.

Kernel Function Set of Penalty Coefficients

RBF [0.001, 0.01, 0.1, 1, 10, 100, 1000]
Linear Function [0.001, 0.01, 0.1, 1, 10, 100, 1000]

Kernel Function Set of Gamma Coefficients

RBF [0.0001, 0.001, 0.1, 1, 10, 100, 1000]
Linear Function –

The final predicted result is shown in Table 4, both MAE and RMSE of the DFNN are
less than those of the SVM and multiple regression. The DNFF reduces the MAE and RMSE
by 8.49% and 2.20%, respectively, compared with the multiple regression. The DFNN
reduces MAE and RMSE by 2.90% and 1.15%, respectively, compared with the SVM. The
result indicates that the DFNN is more accurate in predicting highway volume than the
SVM and multiple regression.

Table 4. Model comparison between MAE and RMSE.

Model MAE RMSE

Multiple regression 2258.05 4270.29
SVM algorithm 2128.03 4225.06

DFNN 2066.31 4176.37
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7. Conclusions

This study overcomes the limitations of existing research on predicting highway
passenger volume. The main work and results of this study are as follows:

(1) A two-phase approach, in which Phase I extracts the significant impact factors and
Phase II develops a deep learning model to achieve the prediction, was proposed to
predict the highway passenger volume with the dataset of multiple urban attributes;

(2) Phase I extracted a dataset with 30 significant factors reflecting urban economic level,
urban population size and structure, per-capita income and consumption, urban
industrial structure, and resource and environments with the RF algorithm and
proved that they have a significant impact on highway passenger volume.

(3) Phase II developed the deep learning method, DFNN, to predict the highway pas-
senger volume with a mean absolute error of 2066.31 persons per day, improving
the predicted accuracy by 8.49% compared to the multiple regression and 2.20%
compared to the SVM algorithm.

This study contributes to proposing a novel approach for predicting highway passen-
ger volume, but limitations still exist and are worth further study. Recently, deep learning
algorithms have been proposed and are expected to be utilized for further improving the
predicted accuracy of highway passenger volume as well as increasing the interpretability.
As the statistical yearbook only publishes the annual statistics, it is difficult to make a
detailed analysis of highway passenger volume in quarters or months. Moreover, it is
possible to find data mutation caused by the change of statistical caliber in the statistical
yearbook, which affects the predicted accuracy. Therefore, other new datasets can be
considered to introduce into future research for more accurate analysis.
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Appendix A

Table A1. The selected impact factors of urban attributes.

Category Impact Factors Symbol Units

Urban Economic Level

Regional Gross Domestic Product GDP yuan
Per-capita Regional Gross Domestic Product PCGDP yuan
Total Sales of Retail Commodities SC yuan
Total Retail Sales of Consumer Goods of the City RSC yuan
Total Retail Sales of Consumer Goods of the Districts DRSC yuan
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Table A1. Cont.

Category Impact Factors Symbol Units

Public Financial Income of the City PFI yuan
Public Financial Expenditure of the City PFE yuan
Public Financial Income of the Districts DPFI yuan
Public Financial Expenditure of the Districts DPFE yuan
Foreign Capital Used in the Year FC dollar
Investment in Fixed Assets of the City IFA yuan
Investment in Fixed Assets of the Districts DIFA yuan
Investment in Real Estate of the City IRE yuan
Investment in Real Estate of the Districts DIRE yuan
Revenue of Postal Business RP yuan
Revenue of Telecommunication Business RT yuan
Gross Industrial Output Value of the City GIO yuan
Gross Industrial Output Value of the Districts DGIO yuan
Electricity Consumption of Industry ECI KW·h

Urban Population Size and Structure

Total Population of the City TP –
Number of Students in the Colleges or Universities NSC –
Number of Students in the Secondary School NSS –
Number of Students in the Primary School NSP –
Number of Students in the Primary–Secondary School NSSP –
Number of Workers in the Primary Industry WPI –
Number of Workers in the Secondary Industry WSI –
Number of Workers in the Third Industry WTI –
Number of Workers in the Transportation, Storage and
Postal Services TSP –

Population Density of the City PD /Km2

Population Density of the Districts DPD /Km2

Population Using Liquefied Petroleum Gas PLPG –

Per-capita income and Consumption

Average Wage of Workers AWW yuan
Deposit Balance of Financial Institutions of the City DB yuan
Deposit Balance of Financial Institutions of
the Districts DDB yuan

Deposit Balance of Household of the City HD yuan
Deposit Balance of Household of the Districts DHD yuan
Loan Balance of Financial Institutions of the City LB yuan
Loan Balance of Financial Institutions of the Districts DLB yuan
Water Consumption of Society WCS ton
Electricity Consumption of Household HEC KWh
Consumption of Liquefied Petroleum Gas for Resident CLPGR ton
Total Water Supply WS ton
All the Electricity Consumption of the Society AEC KWh

Urban Industrial Structure
The proportion of Primary Industry PI %
The proportion of Secondary Industry SI %
The proportion of Third Industry TI %

Resource and Environment

Administrative Land Area of the City LA Km2

Administrative Land Area of the Districts DLA Km2

Construction Area of Buildings of the Districts DCAB Km2

Land Area for Construction LC Km2

Actual Urban Road Area CPR m2

Number of Operating Public Buses NOB veh
Total Passenger Volume of Public Buses in the Year PB –
Number of Operating Taxis NT veh
Number of Buses for Ten Thousand People PTPT veh
Average Per-capita Road APR m2
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Table A1. Cont.

Category Impact Factors Symbol Units

All the Green Land Area AGL Km2

All the Green Land Area of Parks APGL Km2

Green Land Area of Construction Area GCA Km2

The Proportion of Green Land of Construction Area GCAP %
Number of Hospitals of the City NH –
Number of Hospitals of the Districts DNH –
Number of Hospital Beds of the City NBH –
Number of Hospital Beds of the Districts DNBH –
Number of Theatres and Movie Theatres NTM –
Total Collection of Books in Public Libraries CPL –
Industrial Discharge of Waste Water VDWW ton
Industrial Sulfur Dioxide Emission VSDE ton
Removal Amount of Industrial Smoke and Dust VISR ton
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