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Abstract: Many home IoT devices are joining IoT networks by gaining access to some home gateway
that configures smart, multimedia, and home networks. To enable secure IoT-based home network-
ing services, (1) an IoT network should be effectively designed and configured with a IoT server,
(2) a messaging protocol is required to exchange information between the IoT server and IoT devices,
and (3) the home gateway should monitor all safety aspects in both inbound and outbound traffic
of the home network. However, not all home network users put in consideration the need for an
adequate security posture. Instead, many users still rely on the minimum home network security
by setting an easiest-to-guess password to restrict unauthorized access to their home gateway. In
this paper, we propose a network design and configuration that enables secure IoT services with
MQTT messaging protocol for home networks. With the proposed network design, a home network
is interconnected to external networks through a home gateway. To separate the IoT-subnet from
other parts of home network, the home gateway subdivides a home network into an inside-subnet
and an IoT-subnet with a private IP address using subnet masking. The IoT server, located in the
IoT-subnet can be implemented with either a general HTTP server or a security server that acts as
an MQTT broker. The secure communications among network entities are governed by a home
gateway operating a well-configured extended access control. The effectiveness of the proposed
design and configuration is verified through a simulation by showing that it does not impose any
significant performance degradation for reinforced security. We expect the proposed configuration to
help facilitate interconnection among heterogeneous network entities.

Keywords: IoT; smart home network; Message Queuing Telemetry Transport (MQTT); HTTP; IP

1. Introduction

Internet of Things (IoT) networks refers to connecting devices to the Internet [1].
Connected devices receive instructions from the IoT network and transmit data over the
network with minimal human intervention. To enable IoT services, a messaging protocol
is required to allow IoT devices to exchange information at remote locations. These
application protocols provide device accessibility to IoT networks through the transport
layer of the Internet Protocol stack. HTTP (Hypertext Transfer Protocol) [2] is the most
widely used and widely used application protocol.

The processing power of many IoT devices is often limited by limited available
resources in terms of computational power and bandwidth. The problem with HTTP is
that it requires significant control packet overhead along with the request/response model.
On the other hand, the protocols required by IoT services are the support of a small code
footprint, low power consumption, low bandwidth consumption, and high latency. For
this, we choose MQTT (Message Queuing Telemetry Transport).

MQTT is a lightweight messaging protocol designed for devices with limited com-
puting power in unreliable networks. It uses a topic-based publish/subscribe model and
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converts messages between devices. Devices of the MQTT protocol are considered clients.
The client communicates with a dedicated server called a broker. Whenever a client wants
to distribute information, it posts information to the broker under that topic. The broker
then sends the posted information to clients that have subscribed to the topic. In other
words, clients communicate indirectly about a particular topic through a broker that is
responsible for controlling the operations of data transfer between clients.

The MQTT specification recommends the use of Secure Socket Layer (SSL) or Transport
Layer Security (TLS) as a complementary protocol for security, but for simplicity, no
security protocol is built into the application layer. In addition, due to its lightweight
protocol capabilities, many researchers have made it an important priority to provide
additional security to MQTT by encrypting application data with low computational
overhead. Another option is to improve the data transfer speed and more reliable data
transfer in a timely manner, especially for processing multimedia data.

Recently, more home multimedia appliances have joined the IoT network, and many
people want to bring the power of IoT network by configuring an IoT server as part of their
smart, multimedia, home network. However, since we need to configure a server, there
exists an IP address-related technical issue in operating it in home networks. While we
agree with the IoT research community in prioritizing of the MQTT protocol, our current
work focuses on designing the home network itself and its configuration experiments
for IoT service supporting wide range of applications including real-time multimedia
applications. With our network configuration, all parts of the home network have access to
external networks while access to the IoT server either from the home network or external
networks is only granted to the authorized IoT clients. At the same time, other parts of the
home network excluding the IoT entities are strategically protected from the internal and
external access.

The rest of this paper is organized as follows. Section 2 briefly introduces the MQTT
protocol and its related works. In Section 3, we state our goals for the network design and
its configuration methodology using a packet tracer network emulator while Section 4
demonstrates the operation of the configured network with the emulator. We conclude the
paper and suggest our future work in Section 5.

2. Related Works

MQTT is a lightweight messaging protocol with extremely small overhead. The
lightweight feature comes with a 2-byte only packet header, publish/subscribe model,
and bidirectional capabilities to meet the demands of the control systems. The pub-
lish/subscribe model allows MQTT clients to publish their information with a particular
topic to a MQTT broker as publishers. Each MQTT client can subscribe for a specific
topic through the MQTT broker as a subscriber, i.e., MQTT clients are connected to the
MQTT broker, which then mediates communications between the MQTT clients. MQTT
has a bidirectional communication property, which means any MQTT client can publish or
subscribe for any topic handled by the MQTT broker. Therefore, there is no limitation to
who or what one can publish or subscribe for across the network, meaning a client can be a
publisher as well as a subscriber at the same time.

To implement a smart home network environment, research works were carried out to
find a proper messaging and control protocol which can be applied for IoT services. Many
candidate protocols including Constrained Application Protocol (CoAP) [3], Advanced
Message Queuing Protocol (AMQP) [4] and MQTT have been evaluated against HTTP. The
performance comparison of HTTP and MQTT when used for IoT systems is discussed in [5]
with the conclusion that MQTT is better than HTTP for IoT network. An experiment to
apply MQTT protocol in embedded networks with limited resources was conducted in [6]
with the finding that adopting a MQTT implementation with a single micro-controller
board with low hardware specification was even more suitable in embedded networks.
The performance overhead of HTTP and MQTT are compared in [7] using a case study
of public bus tracking system. A more comprehensive review of the existing messaging
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protocols is presented in [8] where they compared applicability of the protocols across
various IoT environments.

An implementation example of home automation system using the MQTT protocol to
communicate between the MQTT clients are introduced in [9] with micro-controller boards
with built-in ESP8266 shields. The micro-controllers act as MQTT clients while an online
remote server acts as a MQTT broker. A similar paradigm is also introduced in [10] by
developing an IoT-based smart library.

There was some research focused on the enhancement of data quality and reliability
using MQTT protocol. An example is performing data acquisition in real time and storing
it in the database of a MQTT broker. Additionally, in [11], mechanisms to develop a MQTT
broker equipped with capability to handle multi-protocol architecture was discussed. A
research [12] has been conducted to provide enhancement of security for a MQTT protocol
for IoT systems. A depth analysis for IoT security requirements and their countermeasures
along with software-defined security was discussed in [13]. Hardware-level security
vulnerabilities of the IoT devices themselves were summarized in [14] and its test bed
are introduced in [15]. In addition, attempts to apply machine learning [16] or deep
learning [17] methods to IoT security were introduced.

3. Network Design and Configuration

According to our investigation, unlike the traditional request/response model of HTTP,
which tends to impose unnecessary control data even in the many cases of unchanging data,
the publish/subscribe model of MQTT can use the available bandwidth more effectively.
The compactness and efficiency of MQTT makes it possible to collect, transmit, control,
monitor, and analyze significantly larger amounts of data for multimedia applications.
However, we need to mention that not all IoT devices are resource constrained, which
makes HTTP remain worthy in some IoT networks with its popularity and extendibility.
In contrast, if the low battery and bandwidth usage are first priority due to resource
constraints of the environment, MQTT is more suitable. Since application developers
need to choose between the two protocols depending on the requirements of the target
applications, in this paper, we do not discuss the effectiveness comparison of the protocols
in IoT network for multimedia applications.

Instead, our aim is designing and configuring an accessible secure home network
framework that can be applied in legacy, newly developed, or in-development IoT solu-
tions that prioritize enhanced security and improved performance for multimedia applica-
tions. We design the home network to operate IoT devices and their IoT server as shown
in Figure 1.

The IoT server can be either a HTTP server or a MQTT broker. We consider the most
general case of a home network, where the hosts are interconnected through a routing
device such as a home gateway. A typical home gateway has one public IP address
(20.20.20.1/24) assigned by its Internet Service Provider (ISP) and comes with a built-in
Dynamic Host Configuration Protocol (DHCP) server module, which distributes private
IP addresses to its local hosts within the range of its IP address pool (192.168.0.0/16). In
our design, we divide the home network into two subnets—the inside-subnet and the
IoT-subnet. We locate the IoT devices in the inside-subnet and the IoT server in IoT-subnet.
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Figure 1. Design of the home network for IoT service.

This structural design separates the IoT server from other parts of home network,
which in turn allows the IoT server to operate as an independent host providing IoT services
to the external network. Since there are two subnets, the home gateway performs a subnet
masking with a given 192.168.0.0/16 address pool, 192.168.0.0/24 for the inside-subnet,
and 192.168.1.0/24 for the IoT-subnet. Therefore, the home gateway is configured with
three IP addresses with three interfaces. As shown in Figure 2, the home gateway has
192.168.0.1 to connect the inside-subnet, 192.168.1.1 to connect IoT-subnet, and 20.20.20.1 to
connect to the external network. The Network Address Translation (NAT) and access-group
configuration will be discussed later in this paper.

interface FastEthernet0/0
ip address 192.168.0.1 255.255.255.0
ip nat inside

interface FastEthernet0/1
ip address 192.168.1.1 255.255.255.0
ip nat inside
ip access-group 101 in

interface Serial0/0/0
ip address 20.20.20.1 255.255.255.0
ip nat outside
ip access-group 100 in

Figure 2. IP address allocation for the three interfaces.
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In the inside-subnet, the Domain Name System (DNS) server has a static IP address
192.168.0.53 and dynamic IP addresses are assigned by the home gateway. In the IoT-
subnet, we set a static IP address 192.168.1.2 for the IoT server. If we add additional hosts
to the IoT-subnet, their dynamic IP addresses will be assigned by the home gateway. To
implement these IP address configurations for the home network, we define the DHCP
pool named inside and IoT, respectively and give associated commands on the home
gateway. Finally, a routing protocol is applied to the home gateway to connect the external
network. Even though a proper selection of routing protocol is beyond the range of this
paper, among the five available routing protocols in packet tracer emulator including static
routing, Boarder Gateway Protocol (BGP), Routing Information Protocol (RIP), Enhanced
Interior Gateway Routing Protocol (EIGRP), and Open Shortest Path First (OSPF), we
adopt the OSPF protocol for the purpose of possible extension to a large-scale network.
The configuration commands for DHCP and routing protocol are shown in Figure 3.

ip dhcp pool inside
network 192.168.0.0 255.255.255.0
default-router 192.168.0.1
dns-server 192.168.0.53

ip dhcp pool IoT
network 192.168.1.0 255.255.255.0
default-router 192.168.1.1
dns-server 192.168.0.53

routerospf 1
network 20.20.20.0 0.0.0.255 area 0

Figure 3. DHCP setup on the home gateway.

With the given network design, we outline our configuration goals as follows.

(1) Allows all hosts on the home network outbound access to connect to the Internet.
(2) Allows authorized hosts on the Internet inbound access to IoT server.
(3) Does not allow any hosts on the Internet inbound access to other hosts in the

home network.
(4) Does not allow the IoT server inbound access to other hosts in the inside-subnet

except for essential hosts such as the IoT devices or the DNS server.

Since each host in the home network has a non-routable private IP address, we first
need to carry out a Network Address Translation (NAT) with a Port Address Translation
(PAT) and Access Control List (ACL) configuration on the home gateway. The NAT rule
translates the non-routable private IP address to a public IP address, which is routable
on the Internet. In our case, the home gateway translates the private IP addresses of the
hosts in the inside-subnet to the home gateway’s outside interface IP address Serial0/0/0.
Owing to the NAT rule, all hosts in the inside-subnet can initiate their communications
to the external network with a shared routable public IP address. To handle the returning
packets from the external network, the PAT rule is applied with “overload” for the home
gateway to decide a specific destination hosts on the inside-subnet.

If the same NAT/PAT rule is applied to the IoT-subnet, the IoT server on the IoT-
subnet can access the Internet. However, the communication cannot be initiated from the
external network because the NAT/PAT itself does not have a bidirectional property. It
means the authorized IoT clients located in external network cannot access to the IoT server
because they have no way to initiate a communication to the IoT server. Therefore, we
need to explicitly configure the NAT/PAT rule so that IoT clients on the Internet can reach
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the IoT server by accessing 20.20.20.1 on TCP port 80 in the case of the HTTP server and
port 1883 in the case of the MQTT broker. This is possible because the initiation request
destined to the public IP address 20.20.20.1:80 is statically translated to the private IP
address 192.168.1.2:80. Using the configuration in Figure 4, our goal (1) is achieved.

access-list 1 permit 192.168.0.0 0.0.0.255

ip nat inside source list 1 interface Serial0/0/0 overload

ip nat inside source static tcp 192.168.1.2 80 20.20.20.1 80

Figure 4. NAT/PAT configuration for the home network.

Now, we set an extended ACL policy, named “access-list 100”, to be applied to
the external interface Serial0/0/0 of the home gateway to control access from external
network considering our goal (2) and (3). At first, we need to explicitly permit traffic
from the external network to the IoT-subnet provided the traffic is destined to the HTTP
server. However, other traffic destined to the inside-subnet is denied access by the home
gateway. Even though traffic from the external network is permitted by default without
access-list creation, we need to note that once the access-list on the gateway is created, it
implicitly denies any traffic except for the previously permitted traffic on the same access-
list. Therefore, to allow the returning packets as a response of the initiated packets from
the hosts on the inside-subnet to pass through the home gateway, we explicitly permit
other traffic. This ACL configuration policy is shown in Figure 5. Additionally, when
this policy is applied to the external interface of the home gateway as shown in Figure 2,
our goals (2) and (3) are achieved while still satisfying goal (1) by controlling the inbound
traffic at the home gateway.

access-list 100 permit tcp any host 20.20.20.1 eq www

access-list 100 denyip any 192.168.0.0 0.0.0.255

access-list 100 permit ip any any

Figure 5. ACL configuration on external interface of the home gateway.

For our goal (4), we need to define traffic control between the inside-subnet and
the IoT-subnet. In our configuration, we located the DNS server (192.168.0.53) and the
IoT devices on the inside-subnet, which are essential hosts to the IoT server for external
Internet access with domain name and providing IoT service to the external network. The
home gateway now allows only that specific traffic destined to the inside-subnet from the
IoT-subnet and blocks other traffic following the corresponding commands as shown in
Figure 6. All other traffic from the IoT-subnet is still able to access to the external network
through the last policy in access-list 101. The access-list is applied to the inbound interface
of IoT-subnet shown as in Figure 2.

access-list 101 permitudp any host 192.168.0.53 eq domain

access-list 101 permittcp any 192.168.0.0 0.0.0.255

access-list 101 denyip any 192.168.0.0 0.0.0.255

access-list 101 permitip any any

Figure 6. ACL configuration on the IoT-subnet interface of the home gateway.
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4. Demonstration

To demonstrate the operation of the proposed design and configuration, we further
extend the given network to include the external network with IoT clients and an external
web server. The overall design is depicted in Figure 7. Two authorized IoT clients (laptop
PC, and a smartphone device), one unauthorized host, and one external web server are
located on external network. All hosts on the external network have IP addresses assigned
with static or dynamic allocation method depending on the availability of DHCP service
on their given network. The routers on the core Internet are running the OSPF routing
protocol and interconnected through a serial connection.

0.53

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.1
0.1

0.1

0.1

0.1

0.1

0.1
0.1

Figure 7. The overall network structure for our experiment.

At first, we show that the NAT/PAT, and ACL configuration defined in the previous
section works as we intended and meeting our goals. To show how the hosts on the inside-
subnet network connect to the external network, we let the home PC on the inside-subnet
send dummy packets to the external web server (120.120.120.20) with a ping command.
Then the home PC will access the web server by sending a HTTP request then check if it
gets a HTTP response from the web server. The front page of the web server is displayed
on its browser. As shown in Figure 8, this process is successfully done.

For the first ping packet to the web server 120.120.120.20, a timeout occurs because
the Address Resolution Protocol (ARP) table was not constructed on the underlying router
of the web server at the initial phase. Once the ARP table is created, all the ping packets
will then successfully echo back to the home PC. A similar process is performed from the
IoT server to the external web server to check accessibility to the external network from
the IoT-subnet. In our ACL configuration on the IoT-subnet interface, we allow the IoT
server can access to the DNS server on the inside-subnet. To check the accessibility to
the DNS server, the IoT server now connects to the external web server with the domain
name (www.jinsukbaek.com (accessed on 27 May 2021), notes: this website exists only in
simulation. ) instead of IP address (120.120.120.20). As we can see in Figure 9, the network
connection works as we intended.

www.jinsukbaek.com
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Figure 8. Access to the external network from host on the inside-subnet.

Figure 9. Access to external network from host on the IoT-subnet.

We also require the connection to be initiated from the external network to the IoT-
subnet, i.e., IoT client (120.120.120.10) on the external network successfully connects to IoT
server. Since we configure NAT/PAT on the home gateway, the inbound packets to the IoT
server should be destined to the translated public IP address 20.20.20.1 instead of its original
private IP address 192.168.1.2. Figure 10 shows the screenshot of the corresponding process.
Of course, hosts in the external network cannot access any hosts on the inside-subnet due
to our ACL configuration on the home gateway.
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Figure 10. Access from the external network to the IoT server.

We now consider the case when the IoT server acts as a HTTP server for IoT service.
As a simple demonstration scenario, we consider the autonomous window open system
depending on the current temperature. To implement this, we require the IoT device, in
this case the thermostat, to send its sensed temperature information to the IoT server. The
IoT server continuously monitors the temperature data received. When the temperature
value is equal or greater than 25 °C, the server sends the “open window” command to
another IoT device, in this case, window which will open the window. The corresponding
setup is shown in Figure 11.

The authorized IoT client can access the IoT server and monitor the status of the
IoT devices as shown in Figure 12. We can see the window is closed since the current
temperature is 0 °C. If we artificially increase the temperature up to 25 °C, we could see the
window opens.

Figure 11. A demonstration on setting condition to control a window-opening system at the
IoT server.
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Figure 12. Monitoring the status of a IoT device from a IoT client.

Since the IoT server acts as a HTTP server, we could check the HTTP, TCP, and IoTTCP
protocols involved in the communications among the IoT entities when we capture the
traffic flow on this process as shown in Figure 13. However, it cannot directly access and
control the IoT devices because they are in the inside-subnet and access to those devices is
not allowed by the ACL configuration of the home gateway.

Figure 13. Packet capture for IoT communication with HTTP.
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Finally, we show a similar demonstration scenario in works when the IoT server acts as
a MQTT broker for IoT service. In this experiment, the home PC acts as a MQTT publisher
by checking the temperature from the IoT device while the IoT clients act as MQTT
subscribers to monitor the status of the IoT devices. For this demonstration we assume
the MQTT publisher sends current temperature information with the topic “temperature”
while the MQTT subscriber receives the same topic information, “temperature”. This
communication is mediated by the MQTT broker. Figure 14 shows the MQTT subscriber
receiving the temperature information, 12.75 °C and 11.09 °C from the MQTT broker. The
packet capture for this process is shown in Figure 15, whereas we can see the subscribed
information arrives at the authorized IoT client as a MQTT packet.

Figure 14. MQTT communication to subscribe a topic temperature.

Figure 15. Packet capture for IoT communication with MQTT.
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4.1. Performance Evaluation

In our simulation, our interest was to observe how long additional processing delay
is introduced at the home gateway when our proposed access controls are activated.
We simultaneously run two concurrent emulators to evaluate the end-to-end delay for
two different cases.

• Case 1: when the access control is activated
• Case 2: when the access control is deactivated

All simulations are performed in the same network environment in terms of packet
size, network bandwidth, transmission distance, hop counts, and the level of background
traffic. This environment does not allow various delays such as transmission delay, prop-
agation delay and queuing delay to affect the difference in end-to-end delays between
the two cases. Therefore, if there is an observed difference, it can be considered to be
an additional processing delay. We run a web browser at the IoT server to access the
web server, www.jinsukbaek.com (accessed on 27 May 2021), notes: this website exists
only in simulation, located in an external network. Our experiment was conducted over
15 different time frames. In each time frame, the IoT server attempts to connect to the web
server 5 times, and we observe the maximum and average end-to-end delay of the five
accesses to get a front web page of the web server. Since we could not find any difference
on minimum end-to-end delay, the observed maximum and average end-to-end delay over
time frames are shown in Figures 16 and 17, respectively.

Figure 16. Maximum end-to-end delay between IoT server and web server.

Although both the maximum and the average end-to-end delays between the two cases
are showing a similar pattern, we can see that the average end-to-end delay shows a more
consistent and stable performance over time frames. In both the maximum and the average
end-to-end delays, we can see that case 1 introduces more end-to-end delay than case 2
in most time frames. This is because the IoT server must pass through the access-list 102
check list to contact the DNS server to get an IP address of the web server and its outbound
HTTP request message should be checked against the access-list 102 if it is destined to the
inside-subnet. However, case 1 does not always impose the extra delay in all time frames
because the IP address of the web server can be cached in its local web browser while the
destination IP address can also be saved in the home gateway’s routing table.

www.jinsukbaek.com
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Figure 17. Average end-to-end delay between IoT server and web server.

We also evaluated the end-to-end delay from a smart phone in an external network
to IoT server for two cases. In the case 2, we only deactivated one rule from access-list
100 checking if HTTP or MQTT requests are destined to the inside-subnet. The NAT/PAT
rule translating the gateway interface 20.20.20.1 to the corresponding IoT server address
192.168.1.2 with port overload is still applied since it is required for a normal network
operation rather than security control. We could not find any meaningful difference
between the minimum, maximum, and average end-to-end delay between the two cases.
As we can see in Figure 18, one case does not outperform the other over time frames.
The effect of the excluding one rule from access-list 100 is negligible. Furthermore, its
performance depends on the underlying 4G cellular tower.

The introduced average additional processing delays over 15-time frames are 6.13 ms
in Figure 16, 2.4 ms in Figure 17, and 0.6 ms in Figure 18, respectively. When we con-
sider today’s state of the art routers’ processing capability, our proposed secure config-
uration will not impose any significant performance degradation of network to achieve
enhanced security.

4.2. Discussions

The home gateway is the most important network entity in a home network. It is
responsible for monitoring all safety aspects in both inbound and outbound traffic of the
network. It controls all the Wi-Fi enabled home devices such as smart phones, tablets,
laptops, etc. in accessing the Wi-Fi network. If some unauthorized user gains access
through the home gateway, the home network and the associated home devices can be
easily compromised. It is, therefore, essential to keep the home gateway as secure as
possible without losing its intended functionality.

Unfortunately, not all home network users assume adequate security posture in this
respect. They just rely on the bare minimum home network security provided by the Wi-Fi
Access 2 (WPA2) security with the requirement of a password to restrict access to the home
gateway. Currently, many home gateways are equipped with low-level software called
firmware which controls their operations. However, the firmware sets the security by
defining only the standard rules for home networks. In addition, users must manually
keep the firmware up to date by installing security patches, a process that varies depending
on the given home gateway. Another feature designed to make easy remote access from
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external networks to the home gateway is the Universal Plug and Play (UPnP), which
operates with a turn on/off mode. However, if it is set to the off position, the user cannot
access the home gateway even with admin-level access. Moreover, the UPnP can also be
used by a malware program to compromise security settings of the home gateway.

Figure 18. Average end-to-end delay between a smart phone and IoT server.

Even though many home gateways are now equipped with the above-mentioned
security features and reflects the importance placed on security and reliability in home
networks, there are still many important security settings that require end user intervention
and customization for their target home networks to achieve adequate security. We define
four goals for such customization and configuration and demonstrate the goals achieved
with the proposed secure configuration. Since IoT services in a home network involve
HTTP as well as MQTT with no built-in security features, our proposed configuration
supports both the HTTP server and the MQTT broker. We also claim that one of the
highest risks to a home network is that the network itself can be compromised by trusted
network entities within the home network. For example, once an attacker gains access
to a smart phone or laptop, the home network can be easily compromised through the
opened entry point of the trusted network entity. To cope with this, we logically isolate the
IoT-subnet from other networks and control access at the home gateway with NAT/PAT
and ACL configuration.

For the home network performance in terms of Quality of Service (QoS), network
latency among the network entities within a home network can be a critical metric. The
proposed secure configuration will not bother to provide seamless IoT services with latency
issue because (1) most of the IoT devices are equipped with a micro-controller with a
built-in high-speed Wi-Fi enabled module ESP8266, and (2) various delays such as trans-
mission delay, propagation delay, processing delay, and queuing delay contributing to
user-experienced latency are not significant when we consider home network environments
including improved bandwidth, physical transmission distance, processing speed and
experienced level of congestion of the home gateway.

5. Conclusions

We proposed a network design and configuration that enables a secure IoT service
for a home network. We sub-divided the home network with private IP addresses into
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the inside-subnet and the IoT-subnet with a subnet masking. The access to the external
network from the hosts in home network is enabled by the NAT/PAT configuration on
the home gateway. Access to the home network from the external network or accesses to
the inside-subnet from the IoT-subnet are controlled by ACL configuration on the home
gateway. The IoT server on home network can be used as a generic secure server to serve as
a HTTP server and MQTT broker. With the proposed configuration, the public IP address
of the home gateway is shared by all hosts on the home network with discriminated port
address translation among the hosts on the inside-subnet and the IoT-subnet. We conclude
this paper by suggesting some future work. First, even though it is fairly dependent on
individual network environment of each home network, if the public IP address of the
home gateway changes frequently due to the DHCP policy of the ISP, more consideration
such as Dynamic Domain Name System (DDNS) is required. Secondly, the communication
would be more secure if the home gateway could make a security association with the
corresponding router of the other side of communication. The security association can
be set for tunnel-based VPN communications along with the IPsec protocol. However, if
the home gateway and its corresponding router are configured with NAT, they cannot
interpret the PAT because the port number information on the packet is encrypted in IPsec
protocol. To handle this issue, we need to consider a supplement mechanism such as NAT
traversal or NAT pass through, which allows the encrypted IP datagram can arrive at the
destined hosts via the NAT/PAT configured routers.
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