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Abstract: Analysing biological images coming from the microscope is challenging; not only is it
complex to acquire the images, but also the three-dimensional shapes found on them. Thus, using
automatic approaches that could learn and embrace that variance would be highly interesting for the
field. Here, we use an evolutionary algorithm to obtain the 3D cell shape of curve epithelial tissues.
Our approach is based on the application of a 3D segmentation algorithm called LimeSeg, which is a
segmentation software that uses a particle-based active contour method. This program needs the fine-
tuning of some hyperparameters that could present a long number of combinations, with the selection
of the best parametrisation being highly time-consuming. Our evolutionary algorithm automatically
selects the best possible parametrisation with which it can perform an accurate and non-supervised
segmentation of 3D curved epithelial tissues. This way, we combine the segmentation potential
of LimeSeg and optimise the parameters selection by adding automatisation. This methodology
has been applied to three datasets of confocal images from Drosophila melanogaster, where a good
convergence has been observed in the evaluation of the solutions. Our experimental results confirm
the proper performing of the algorithm, whose segmented images have been compared to those
manually obtained for the same tissues.

Keywords: microscopic cell images; 3D image segmentation; evolutionary segmentation

1. Introduction
1.1. Context

Nowadays, image processing is used in many different fields such as medical images,
object detection and face recognition. This discipline focuses on the analysis and treatment
of images to improve their quality and extract information from them [1]. An essential
technique of image analysis is segmentation, which plays an important role on many
applications from picture editors to image-based diagnostic systems.

Segmenting an image consists in dividing it into regions or objects so that it can
be analysed afterwards [2]. Thus, pixels are categorised in different connecting regions
depending on their grey scale. From a classic point of view, the grey scale of pixels can
be categorised for edge detection or object detection [3]. The methods to detect edges use
properties of the grey scale of pixels related with differences colour distinctness and texture
variation [3]. These characteristics describe objects which are in boundaries of regions.

To discover other objects, methods based on the similarity of the grey scale are used,
which are classified in three groups: region-based segmentation, watershed segmentation
and threshold segmentation [4]. The first group consists in grouping the pixels of an
image into homogeneous regions using a criterion [4]. Usually, properties such as colour,
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texture and intensity establish the characteristics of a pixel to be included in a region.
The simplest form of region-based segmentation is region growing. In this variant, the
pixels are clustered into superior regions using an existing criterion: a set of points called
seeds. These points determine the characteristics of a pixel to be included in a region. For
instance, an implementation of this variant is LimeSeg [5]. Alternatively, another form of
segmentation based on similarity grey scale is the watershed algorithm. In this case, the
image is conceived as a topographic relief where the grey scale of pixels represents the
heights of the plane, which is useful to define the contour of the background or to separate
objects [6].

Finally, there is another group based on grey scale similarity, called threshold segmen-
tation. This consists in splitting the pixels of an image depending on one or more threshold
values based on the histogram of their grey scale [7]. For instance, a single threshold uses
only one threshold to distinguish the background of an image from their objects. If it is
necessary to segment the objects in different groups, multiple threshold segmentation is
applied, but it is a costly process [8].

All these methods have been applied to analyse many different types of images such
as numbers, faces or objects with correct results. However, segmentation is still a challenge
in biological images, specifically, their difficulties lie in their acquisition conditions, such as
noise from the microscopes, low resolution and low frame rate as well as the characteristics
of the objects, for example, brightness, unclear boundaries and overlapping objects [9]. An
efficient segmentation method of biological images will have to overcome all these problems
considering that a high level of quality and accuracy is necessary for all of them [10].

Efficient segmentation methods of biological images work well on one data set of
biological images, but if they are applied to data sets with cells from different organs
and tissues, their performance can be significantly reduced [11]. Therefore, they need to
manually readjust their parameters for new images to obtain an accurate segmentation [12],
requiring constant supervision which delays research projects. Thus, each time a different
biological image is segmented, an optimisation problem appears around these values,
which are dependent on the segmentation method [13,14]. Owing to this problem, machine
learning approaches have been developed to generalise and automatise the process of
segmentation [15].

1.2. Related Works

Machine learning is defined as the development of intelligent systems that learn
to solve complex problems automatically from experience [16]. Their approaches for
segmentation classify in two groups: unsupervised and supervised.

The first approach is based on finding a reference criterion that can be used to opti-
mise the parameters of a segmentation algorithm [17]. For instance, Chakraborty et al. [18]
applied a modified version of the search algorithm of the cuckoo for segmenting bidi-
mensional microscopic images of the hippocampus in an unsupervised way. To do that,
they optimised segmentation methods based on thresholding, even though they found
unsatisfactory results for low levels of thresholds. In addition, Ayas et al. [19] applied
the search algorithm of the firefly based on swarm intelligence to segment biological im-
ages in two dimensions. To achieve that, they also optimised a threshold segmentation.
Furthermore, Zhao et al. [20] designed a novel version of mean-shift clustering algorithm
to segment bidimensional images in an unsupervised way. The algorithm proposed a
new online seed optimisation policy and early stopping as conditions to achieve a better
computational speed.

By contrast with the previous examples, supervised approaches use a training data
to learn how to segment the images [17]. The disadvantage of supervised approaches is
the creation of training data, as it requires consistency among the researchers dedicated
to sample and it requires a time-consuming methodology. For instance, Held et al. [21]
applied different optimisation algorithms, such as genetic algorithms, hill climbing and
coordinate descent to segment images in two dimensions in a supervised way, using the
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ground data as fitness function. In addition, Al-Kofahi et al. [22] designed a combination of
a deep learning algorithm and segmentation algorithms to automatically segment biological
images in 2D. The deep learning model learned to predict the locations of cells, which were
used to find a threshold to initiate the seed of the watershed algorithm.

Most of the approaches to automatically segment biological images are supervised [23–28].
Frequently their applications have been limited to segmentations in two dimensions due
to the fact that three-dimensional data sets are difficult to obtain in some biological fields,
where the availability of raw images is limited or where the segmentation is particularly
difficult [29,30]. However, the necessity of studying biological tissues in a context of
three-dimensionality has been proved, for example, to unveil the presence of a novel
cellular shape necessary to pack efficiently monolayer epithelial tissues in curvature con-
ditions: the scutoids [31], or to analyse the composition of other complex tissues, such as
multilayer epithelia, where tetradecahedral cells predominate [32]. Consequently, some
three-dimensional biological studies cannot progress as fast as they expect, and they still
need to optimise the segmentation process manually or through classical approaches,
which may cause significant delays. Thus, it is vital to optimise this process automatically,
to achieve automatic segmentation, which would accelerate their science.

This article presents an implementation of an evolutionary algorithm proposed to
optimise three-dimensional segmentation in a semi-supervised way. Our implementation
uses a three-dimensional region growing segmentation algorithm called LimeSeg, whose
parameters are optimised through the measurement of segmented cells. It has been applied
to three different data sets of confocal images (each data set contains several images to rep-
resent only one sample of a tissue) taken from the model organism, Drosophila melanogaster:
salivary glands, embryos and egg chambers. Classically, all of them have been widely used
to analyse the different biological events in which epithelial cells are involved: division, mi-
gration, apoptosis, differentiation, polarity, cancer, wound healing and much more [33–37].
We consider that our present work has these novelties:

• A semi-supervised approach of machine learning to segment images in three dimen-
sions based on evolutionary algorithms.

• Segmented cells and their volumes can be a criterion to segment biological images
using region growing in a non-supervised way.

• Our tool does not require supervision of the user after it has been initiated.

The remainder of this paper is organised as follows. Section 2 summarises the image
acquisition, preprocessing and segmentation processes. It also describes our evolutionary
approach for automatic segmentation, providing details of all its features, so that it can
be fully reproducible by third parties. Next, Section 3 presents and analyses the obtained
experimental results for the aforementioned tissues of Drosophila melanogaster, including
a discussion on the obtained results, considering the current context and our starting
hypothesis. This section also briefly describes our future research directions, in relation to
this work. Finally, the main conclusions are summarised in the last section.

2. Materials and Methods

The images used in this study were obtained by confocal microscopy. This technique
is vital because it allows us to reconstruct images of two dimensions in three dimensions.
Figure 1 presents the confocal images of each of the three tissues under study.
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Figure 1. Confocal images of the used tissues (A) Salivary gland of Drosophila melanogaster. (B) Embryo of Drosophila
melanogaster. (C) Egg chamber of Drosophila melanogaster. Each color in the images represents a different channel: (A) green
(cell membranes), red (lumen), blue (nuclei); (B) red (cell membrane), blue (nuclei); (C) green (cell membranes), red (nuclei).

These images which have been manually preprocessed by a pipeline of those programs:
Photoshop (https://www.adobe.com/es/products/photoshop.html (accessed on 10 April
2021), Fiji (https://imagej.net/Fiji (accessed on 9 April 2021)) and MATLAB (https://es.
mathworks.com/products/matlab.html (accessed on 11 April 2021)). The objective of this
preprocessing phase was to prepare the images for further segmentations.

In this context, Photoshop has been used to delimit regions of the images, highlighting
their white edges and black interiors. Fiji, on the other hand, was used to correct their
brightness and contrast. In some cases, MATLAB was used to fix artefacts and to delimit
regions more accurately.

In order to segment these images, we have used a segmentation algorithm based on
region growing called LimeSeg (https://github.com/NicoKiaru/LimeSeg (accessed on 15
April 2021)), which uses a technology called “SURFEL” (SURface ELements) that considers
cells as surfaces composed of particles to be delimited. During segmentation, the surfaces
are attracted to two maximums: one local maximum which is related to the object, and
another global maximum of the image. The first maximum forms the surfaces, while the
second one causes all the surfaces to be cohesive with each other [5].

To perform a segmentation, LimeSeg needs the seeds of the cells, which can be placed
using Fiji, as well as a set of four configuration parameters:

• D_0: Number of pixels to be considered as one feature. Its value is measured in
pixels and varies between 1 and 20. The lower this parameter, the smaller objects
are detected.

https://www.adobe.com/es/products/photoshop.html
https://imagej.net/Fiji
https://es.mathworks.com/products/matlab.html
https://es.mathworks.com/products/matlab.html
https://github.com/NicoKiaru/LimeSeg
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• F_pressure: Gradient of pressure that is applied to all surfaces causing their expansion
or contraction. Its value varies from −0.03 to 0.03.

• Z_scale: Fixed value that can be calculated as physical ratio between voxel width and
voxel depth. These characteristics appear in the confocal images. For instance, if the
voxel with is 260 and the voxel depth is 100, the Z_scale value is 2.6.

• Range D_0: Space to look for a feature whose intensity level is maximum. Its value
varies from 0.5 to 10 and also depends on the D_0 parameter. For example, if the
number of pixels of a feature is 2 and its value is 2, the particles will seek for a
maximum in the range [−4,+4] pixels from the surface.

Once the seeds have been manually placed and the parameters have been set, LimeSeg
grows the surfaces in three dimensions until all of them converge. At this moment, the
segmentation of each cell can be saved in a format called Polygon File Format (PLY), which
describes them as a set of points in three axes and their angles. With these properties, it
is possible to compute the volume or the gravity centre of a graphic object. Additionally,
other characteristics such as colours or directions are included.

This segmentation method must be carried out many times by an expert until the best
segmentation possible is found. The expert must decide and vary LimeSeg configuration
parameters each time a segmentation is produced, taking this whole process a great amount
of time.

2.1. Evolutionary Algorithm

In order to optimise the previous segmentation procedure, we have designed and devel-
oped an evolutionary algorithm (https://github.com/kapy95/3DAutomaticSegmentationTFM
(accessed on 16 April 2021)), which will iteratively try to find the best parameter config-
uration possible for LimeSeg. This strategy of optimisation is based on Darwin’s idea of
the survival of the fittest, which establishes that in an environment with a population of
individuals whose resources are limited, the fitter an individual is, the more chances it has
to pass its genes to the next generation.

This same idea has been adapted in evolutionary algorithms [38], where different
individuals represents a set of possible solutions to a problem, called a population. Each
solution is generated by specific values in relation to the problem domain, which are
referred to as genes. A selection process is carried out in this population based on a score
established by a fitness function, which maximises or minimises a value generated from
the genes of an individual. The selected individuals are used to generate new potential
solutions, and the process is repeated until a stopping criterion is satisfied, such as a limited
number of iterations.

Evolutionary algorithms (EA) have been previously successfully applied for two-
dimensional images segmentation (see Section 1). This fact, together with the ability of
EAs to explore large search spaces in optimisation problems has motivated us to adapt this
heuristic. The following subsections detail how the common characteristics of EAs have
been implemented in this study.

2.1.1. Individual Encoding and Initialisation

Encoding refers to the individuals inner representation in the algorithm, where each
individual describes a possible solution to the problem by its genotype (also called genome
or chromosome). In order to represent image segmentations, LimeSeg parameters have
been used within the genotype (see Section 2). As the Z_scale value is fixed at the beginning
and remains constant for each tissue, each individual genotype is therefore made up of
three real values: D_0, Range_D0 and F_pressure. From these three genes values, it is
possible to obtain the phenotype of each individual, consisting in a specific segmentation
for the input image.

The genotype of the individuals in the initial population are generated following an
initial population procedure. Depending on the adopted strategy in this step, the algorithm

https://github.com/kapy95/3DAutomaticSegmentationTFM
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may converge to different solutions. Furthermore, a suitable initial population strategy can
even speed up the convergence [39].

In our context, the first generation of the algorithm has been created randomly, where
each of the three genes of each individual has been randomly generated within its range (see
Section 2). Furthermore, in order to have more promising individuals, an initial population
of a much greater size is computed, selecting afterwards the best individuals, according to
the population size, and after performing their evaluations. This initial population size
has been set to 200 by default, although it can be input to the algorithm by an user defined
parameter.

After the generation of the individuals, and prior to their evaluation, it is necessary to
obtain their phenotypes. This implies the execution of LimeSeg per individual, which takes
approximately a minute to perform the segmentation. Thus, a generation of one-hundred
individuals would require one hour and a half, and it would take almost two weeks to
evolve two-hundred generations.

In order to overcome this situation, the segmentation time of an individual has been
delimited through a maximum time depending on its generation, as the genes of the
individuals in the first generations might contain combinations of parameters leading to
poor segmentations. The minimum value for the segmentation process has been set to 15 s
and it has been extended through generations according to the following arithmetic series:

Tn = 15 + (n− 1)× 0.8 (1)

In the previous formula, n represents the generation number, and 0.8 is the constant
which increases the segmentation time. The minimum value is set to 15 s, as the first
generation is generated randomly, which causes that many individuals are not correct.
Alternatively, the difference has been set to 0.8 s per generation to avoid spending too much
time in suboptimal solutions and reach the normal time of a representative segmentation
(approximately more than a minute) in higher numbers of generations. Thus, the algorithm
approaches the optimal solution step by step, ensuring that more promising solutions will
have greater segmentation times.

2.1.2. Fitness Function

Individual evaluation is carried out through the fitness function in order to quantify
how close an individual is to the optimal solution. This evaluation will be used to select the
individuals within the generational change process, guiding thus the algorithm towards
optimal or near-optimal solutions.

The fitness function has been designed to assign each individual a score based on
its segmentation results by LimeSeg. From the output PLY files, it is possible to obtain
information on the average cell volumes, as well as the number of the segmented cells.
From this information, the formula for computing this score is given in Equation (2):

Score = AV × NC (2)

where AV = Average volume of the segmentation and NC = Number of segmented cells.
The terms in the previous formula have been defined to select the best individuals.

First, this is achieved by maximising the volume, as sub-segmented solutions tend to have
cells whose surface is less than the real one and, thus, less volume. Second, this is also
achieved by counting the number of segmented cells and calculating the average volume
of the segmentation, as oversegmented solutions tend to have few cells whose volumes are
abnormally big. When this situation occurs, these cells occupy the surfaces of other cells,
forcing the segmentations of the other cells to disappear.

Additionally, the average volumes have been standardised as their orders were too
high and the comparison among individuals was not fair. This process of normalisation
depends on the whole generation and consists in dividing the average volume of an
individual by the sum of all average volumes of all the individuals in the same generation.
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As a consequence, the fitness of an individual depends not only on its own genotype, but
also on the overall volumes of segmentation in its generation.

2.1.3. Generational Change

In our approach, the first step to generate new populations is applying elitism, passing
a limited number of the best individuals to the next population directly. Elitism is usually
adopted in order to ensure the convergence of the algorithm [40].

After passing the best two individuals into the next population (elitism of size 2),
two different classical selection strategies have been used to select the parent(s) of the rest
of the individuals: roulette and tournament [41]. A probability of 50% has been set for
each strategy, where in the roulette mechanism, each individual has a probability of being
selected proportional to its fitness. In the cases of tournament, a tournament of size 2 has
been used, with an 85% probability of choosing the best individual.

A predefined percentage of the remaining of the individuals (set by default to 25%) is
generated by the mutation of a previously selected individual. The rest of the individuals
to complete the population size (by default a 75%) are generated by the crossover of two
selected chromosomes.

When an individual mutates to create an offspring, a new D_0 gene is always gen-
erated, but the genes of Range D_0 and F_pressure are only mutated under a certain
probability (by default 30%). Their new values are generated randomly within intervals
depending on the previous value of each gene:

New D0 : [previous D_0− 0.5, previous D_0 + 0.5] (3)

New Range D_0 : [previous RangeD_0− 0.25, previous Range D_0 + 0.25] (4)

New F_pressure : [previous F_pressure− 0.05, previous F_pressure + 0.05] (5)

These values have been established taking into account that the new individuals must
explore new values but they also have to be compatible between them. On the other hand,
when an individual is generated by crossover, one of these three different possibilities is
chosen under the same probability (33%):

• Single or double point crossover. One-point or two-points crossover is applied with
equal probability. D_0 or F_pressure gene is interchanged between individuals in the
first case, while for the two-points crossover both Range D_0 and F_pressure genes
are interchanged.

• Single or double point crossover with mutation. Similar to the previous one, but
both parents are mutated before being recombined. These mutations are carried out
as aforementioned.

• BLX − α crossover. Consists of generating a new individual by creating ranges of
gene values from both parents [42]. To generate the intervals, two constants must be
defined α (value in [0, 1]) and I (maximum minus minimum of the genes from both
parents). These constants create the following intervals:

Lower_bound = minimum− (α× I) (3)

Upper_bound = maximum + (α× I) (4)

In our work, α has been set to 0.1 in order not to generate too low or high boundaries,
due to the high sensitivity of the parameters in LimeSeg.

After a predefined number of iterations the algorithm stops, returning thus the best
individual in the final population as the best possible solution under the experimental
configuration. By default, the number of generations has been set to 100. Algorithm 1
shows the pseudocode of the evolutionary algorithm. It starts with the initialisation of the
population in line 1, followed by an iterative process for the search of the best possible
segmentation. The whole process consist in repeatedly replace the current population with
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an evolved one, until certain criterion is met (lines 2 to 17). Each of this replacements is
called a generational change, and previously explained. Lines 18 to 20 represent the finalisa-
tion process, where the image corresponding to the best segmentation parametrisation is
obtained and returned.

Algorithm 1: Evolutionary Segmentation Algorithm.
input :I : confocal image,

S : set of seeds (.roi files)
output :BS : best segmentation image and parametrization

1 Pop← initializePopulation();
2 while stopping criterion is not met do
3 NextPop← {};
4 NextPop← NextPop ⊕ elitism(Pop,2);
5 repeat
6 parents← selectForCrossOver(Pop);
7 offspring← crossover_3_models(parents);
8 NextPop← NextPop ⊕ offspring;
9 until numCrosses is reached;

10 repeat
11 offspring← selectParentForReplicate(Pop);
12 mutate_D_0(offspring);
13 mutate_Range_F_pressure_WithProbability(offspring);
14 NextPop← NextPop ⊕ offspring;
15 until numReplicates is reached;
16 Pop← NextPop;
17 evaluatePopulation(Pop);

18 bestIndividual← best(Pop);
19 BS ← bestIndividual ⊕ obtain3DImageSegmentation(bestIndividual) ;
20 return BS ;

The next section presents the experimental results obtained by our algorithm under a
certain configuration, for three different tissues.

3. Results and Discussion

This section presents both the experimental setup and the obtained results on images
of three different Drosophila melanogaster (fruit fly) tissues. Table 1 shows the configuration
of the main parameters, which have been used in the experiments whose results are pre-
sented here. They have been established experimentally but taking into account hardware
limitations, as well as time restrictions. For each parameter, a study of several ranges of
values has been performed, showing the best test value for each of them in Table 1. All of
them have been previously mentioned in Section 2.1.3.

Table 1. EA parameters used in the experimentation.

Configuration Parameter Grip Value Selected Value

POPULATION_SIZE [20,50] 50
NUM_GENERATIONS [50,100] 100

MUTATION_RATE [0.2,0.3] 0.25
CROSSOVER_RATE [0.7,0.8] 0.75

NUM_ELIT_CHROMOSOMES [1,2] 2
TOURNAMENT_SIZE [2,3] 2

For each tissue, we have run our algorithm using the configuration in Table 1. Af-
terwards, a validation process has been carried out in order to confirm the validity of
our approach. In this process, the segmentation produced by our algorithm have been
compared to the segmentation carried out manually in the laboratory, obtained using Lime-
Seg. This validation has been carried out using the Matlab mathematical software (https:

https://github.com/kapy95/Processing3DSegmentation/tree/TFM
https://github.com/kapy95/Processing3DSegmentation/tree/TFM
https://github.com/kapy95/Processing3DSegmentation/tree/TFM
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//github.com/kapy95/Processing3DSegmentation/tree/TFM (accessed on 18 April 2021)),
and by reconstructing both segmentations as complete images using code from the research
group Complex Organization of Living Matter Laboratory at the Cell Biology Depart-
ment of Seville University (https://github.com/ComplexOrganizationOfLivingMatter/
Processing3DSegmentation (accessed on 18 April 2021)).

The Jaccard index has been used to qualitatively compare the segmentations. It
measures the similarity between two sets following the next formula [43]:

J(A, B) =
|A ∩ B|
|A ∪ B| (5)

The process of computing Jaccard index between two images is very expensive as
it consists of comparing many matrices. Having 100 generations and 50 individuals per
experiment, the whole process of comparing 5000 segmentations would take several days.
Nevertheless, these computations have been carried out only for validation purposes, not
supposing an extra increase in the execution time of the search algorithm.

In the following, we summarise the results on Salivary glands, Embryo and Egg cham-
ber in separate sections, depicting for each tissue three different graphical representations:

• Evolution of the quality of solutions per generation. This graphic consist in the rep-
resentation of the average Jaccard indexes per generation, computed as the mean of the
Jaccard indexes between each individual in each generation and the manual segmentation.

• Evolution of the quality of the best individual solution per generation. This graphic
depicts the Jaccard indexes of the best individual per generation, computed using
only the best individual in each generation and the manual segmentation.

• Visual comparison between the manual segmentation and the one obtained by our
algorithm. This last image corresponds to the one provided by the best individual in
the last generation. The cells of the best individual have been labelled as the cells of
the manual segmentation to ease the comparison.

The computation time of the final conducted experiments varies from approximately
71 h (for Embryo tissue) to approximately 80 h (for Egg chamber tissue). Considering that
it would take almost a whole week for a manual segmentation carried out by an expert, we
consider our approach to constitute a significant advance in the current 3D segmentation
procedure. Furthermore, the 80 h of algorithm run time is unsupervised, meaning that the
expert would be making use of this period to perform other tasks.

3.1. Salivary Gland

When running our algorithm with 100 generations (50 individual each) for the images
of the salivary gland, the last best individual had a Jaccard index value of 0.93, in relation
to the manually segmented image, which also received a manual postprocessing phase to
fix some errors. This result represents a 93% accuracy over the original image.

Table 2 shows the best individual genotype, together with the parametrisation of the
manual segmentation. As it can be seen, both D_0 and F_pressure parameters present
similar values for both types of segmentations. As Range D_0 determines the search space
for particles, higher values will have negative effects on the segmentation computational
cost. In our approach, no actions have been taken to penalize this effect, while in a manual
segmentation, it is habitual to use lower values for this parameter.

Table 2. LimeSeg parametrisation for both automatic and manual segmentations of salivary gland.
Automatic parameters correspond to those obtained by the best individual of the algorithm after
100 generations of 50 individuals each.

Gene/Parameter Automatic Parametrization Manual Parametrization

D_0 5.65 5.09
Range D_0 5.91 2.0
F_pressure 0.010 0.015

https://github.com/kapy95/Processing3DSegmentation/tree/TFM
https://github.com/kapy95/Processing3DSegmentation/tree/TFM
https://github.com/ComplexOrganizationOfLivingMatter/Processing3DSegmentation
https://github.com/ComplexOrganizationOfLivingMatter/Processing3DSegmentation
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In order to analyse the evolution of the quality of solutions through generations, we
have depicted both the mean of the Jaccard indexes of all individuals in each generation
(Figure 2A) and the Jaccard indexes of the best individual in each generation (Figure 2B).

A
 B


Figure 2. (A) Evolution of the average Jaccard index by generation. (B) Evolution of the Jaccard index for the best individual
by generation, for segmented salivary gland imaging.

As it can be derived from Figure 2A,B, there exists a progressive improvement in both
the average of the Jaccard index and the Jaccard index for the best individual through gen-
erations. In both figures, a significant increase in the Jaccard index is produced in the first
generations, meaning that the algorithm is capable of rapidly evolve towards acceptable
solutions. As Figure 2A depicts the mean of the Jaccard indexes in each generation, the
improvement appears to be much greater during first generations, while the Jaccard index
for the best individual (Figure 2B) in the first generations are in a closer range. This is an
expected result because the overall quality of solutions in the population improves through
generations, with this improvement being much more significant in the first ones. On the
other hand, the best individuals in the first generations appears to be far above the mean
of the population (0.61 in the three first generations for the best individuals versus 0.09,
0.35, and 0.42 for the population average).

In Figure 2A,B, a constant evolution is observed from generations thirty-seven to
eighty-one. This situation corresponds to a local optimum, from which it has been able to
emerge after generation eighty-one, and then it continuous improving the overall solutions
until the stopping criteria has been met. Therefore, increasing the number of generations,
and, consequently, the maximum segmentation time, seem to improve the performance of
the algorithm.

As Figure 2B represents individual Jaccard indexes, it can be better appreciated than
other situations in which the algorithm has been trapped in local optima, but of shorter
length than the one previously commented. It can also be seen a loss of quality between
solutions of consecutive generations. This is due to two different facts: on the one hand,
the Jaccard index has no direct relation with the individual fitness value. On the other
hand, although elitism has been applied, the fitness value is computed for each individual
tacking into account not only its genotype, but the genotypes of all the individuals in its
generation. This may produces situations in which the same individual in two different
generations may have different fitness values.

From the best individual genotype in Table 2, the graphical representation of its seg-
mentation has been depicted in Figure 3B, where it has been compared with the manually
obtained segmentation (Figure 3A). As it can be seen in this figure, the obtained segmented
image is almost identical to the manual segmentation with the principal difference that
the boundaries of some cells are not the same, but the compactness of both solutions is
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similar. This may be caused by the difference in the F_pressure parameter which regulates
the expansion of the cell boundaries.

B


Figure 3. (A) Representation of manual gland segmentation. (B) Representation of the segmentation of the best individual
obtained by the algorithm.

In view of the presented results, and together with the approval of the experts in
manual segmentation in the laboratory, the obtained segmentation of this type of tissue
can be considered satisfactory in order to carry out further biological analysis.

3.2. Embryo

When running our algorithm with 100 generations (50 individual each) using the
images of embryo, the last best individual had a Jaccard index value of 0.74 in relation to
the manually segmented image, which also received a manual postprocessing phase to fix
some errors. Although this result may seem quite poor, in relation to the previous tissue,
experts have confirmed that this is an image particularly difficult to segment.

Table 3 shows the best individual genotype, together with the parametrisation of
the manual segmentation. Range D_0 parameter is set to 2.0 in the manual segmentation
for all experiments as the default value. Nevertheless, our algorithm always seems to
obtain higher values for this parameter, allowing thus to explore a larger space of values.
Regarding D_0 and F_pressure parameters, they correlate to find good solutions. In the
manual approach, a lower value of D_0 together with a higher value of F_pressure have
been used, in order to find solutions locally but with higher pressure. On the other hand,
our automatic approach obtained values to find solutions globally and with less pressure.
Both approaches are complementary but equally valid.

Table 3. LimeSeg parametrisation for both automatic and manual segmentations of embryo. Au-
tomatic parameters correspond to those obtained by the best individual of the algorithm after
100 generations of 50 individuals each.

Gene/Parameter Automatic Parametrization Manual Parametrization

D_0 6.54 3.5
Range D_0 6.79 2.0
F_pressure 0.001 0.015

Figure 4 analyses the evolution of the quality of solutions through generations, where
Figure 4A depicts the mean of the Jaccard indexes of all individuals in each generation and
Figure 4B represents the Jaccard indexes of the best individual in each generation.
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Figure 4. (A) Evolution of the average Jaccard index by generation. (B) Evolution of the Jaccard index for the best individual
by generation, for segmented embryo imaging.

Similarly to the previous experiment on salivary gland, it can be observed in Figure 4A
that there exists general upward trend in both charts, being more pronounced in the first
generations. The algorithm appears to be trapped in a local optimum from generation
forty-five to generation eighty-eight. This situation is specially evident in Figure 4B, where,
after evolving from a best Jaccard index of 0.67 in generation forty-five to a Jaccard index
of 0.74 in generation ninety-six, it appears to reach another local optimum stage, until it
reaches the stopping criteria. Presumably, if the number of generations in the stopping
criteria were increased sufficiently, the algorithm would be able to find better solutions.
As it would be at the cost of increasing the execution time, it becomes a problem to find a
compromise between the quality of the obtained solution and the amount of time we are
willing to wait to get it.

During the first generations, it can also be observed a difference between the mean
and best Jaccard indexes in Figure 4A,B, respectively. While the best solution in the initial
population has a Jaccard index of 0.26, the mean of the Jaccard indexes on the same
population is 0.08. This difference diminishes as the generations evolve, being the best
individual Jaccard index close to the average in generation 18.

From the best individual genotype in Table 3, the graphical representation of its seg-
mentation has been depicted in Figure 5B, where it has been compared with the manually
obtained segmentation (Figure 5A). In this comparison, differences are much more evident
than the differences presented by the segmentation of the salivary gland in Figure 3. A lack
of compactness is especially observed in the segmentation of the algorithm. This is possibly
due to the either the parameter F_pressure , since the volumes of the cells are similar, but
they do not seem to have been sufficiently expanded. Furthermore, the height of some
cells is not the same in the best individual segmentation and in the manual segmentation,
and some cells are missing in the best individual segmentation. Both problems may be
related to the difference in the D_0 parameter, which could cause that some pixels are not
clustered correctly.

Although the obtained segmentation may not be useful as it is, nevertheless it can
be used as a starting point for a further manual postprocessing in order to increase the
quality of the segmentation. Therefore, for those images that are more difficult to segment,
our algorithm is able to produce a segmentation of sufficient quality that can be further
improved manually, thus saving a great deal of time for the laboratory expert.
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A


Figure 5. (A) Representation of manual embryo segmentation. (B) Representation of the segmentation of the best individual
obtained by the algorithm.

3.3. Egg Chamber

After running our algorithm with 100 generations (50 individual each) for the images
of the egg chamber, the last best individual had a Jaccard index value of 0.86, in relation to
the manually segmented image, which also received a manual postprocessing phase to fix
some errors. This represents an intermediate value between salivary gland and embryo,
under the same experimental configuration.

Table 4 shows the best individual genotype, together with the parametrisation of
the manual segmentation. As well as for embryo, our approach obtains a higher value
for D_0 and a lower value for F_pressure than the manual segmentation. This way, the
search is performed more globally and with less pressure, although the difference is smaller
in this case. The search space, defined by Range D_0 is also wider than in the manual
segmentation, also not as extensive as in the two previous experiments, as both D_0 and
Range D_0 have lower values.

Table 4. LimeSeg parametrisation for both automatic and manual segmentations of egg chamber.
Automatic parameters correspond to those obtained by the best individual of the algorithm after
100 generations of 50 individuals each.

Gene/Parameter Automatic Parametrisation Manual Parametrisation

D_0 3.39 2.8
Range D_0 3.85 2.0
F_pressure 0.0025 0.018

Similarly to previous cases, Figure 6 shows the evolution of the quality of solutions
through generations, both the mean of the Jaccard indexes of all individuals in each
generation (Figure 6A) and the Jaccard indexes of the best individual per generation
(Figure 6B).

In this figure, we can observe a clear improvement in the quality of the solutions by
generation. In general, the trend of these graphs is better than the ones for the embryo
images, under the same experiment. Although the best value is under the one obtained
of the salivary gland images, in this case it can be seen that the algorithm has not been
trapped in a local optimum for as many generations. More specifically, in Figure 6B it can
be appreciated two different local optimum stages, the first one from generations twenty-
eight to thirty-nine, and with a best Jaccard index of 0.72. The next stage corresponds to
generations forty-two to forty-six, having a best Jaccard index of 0.76. Finally, the best
individual during the last five generations also present the same index, being equal to 0.86,
the final reported value.
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A
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Figure 6. (A) Evolution of the average Jaccard index by generation. (B) Evolution of the Jaccard index for the best individual
by generation, for segmented egg chamber imaging.

Initial population presents a better Jaccard index average for this tissue, as well
as a more rapid convergence to the best Jaccard index per generation. Starting from a
0.13 average value in the initial population, it rapidly evolves to a 0.40 average value in the
second generation, as it can be seen in Figure 6A. This means that for egg chamber tissue
the algorithm is able to evolve to generations with better solutions overall.

From the best individual genotype in Table 4, the graphical representation of its seg-
mentation has been depicted in Figure 7B, where it has been compared with the manually
obtained segmentation (Figure 7A). In this comparison, it can be seen that the resemblance
is very similar and reliable, but some cell boundaries are not correct and some cells are
slightly over segmented. The differences in the cell boundaries are not so easy to notice as
the ones in the salivary gland. In the same way as the previous comparisons, the differences
of the cell boundaries may be caused because of the difference in the F_pressure parameter,
and the oversegmentations may be caused due to the differences in the D_0 parameter,
as some pixels are clustered incorrectly inside some cells. Nevertheless, in general terms
the segmentation is correct, representing thus an acceptable segmented 3D image for egg
chamber tissue. When comparing the obtained segmentation with others obtained under
different experimental parametrisation for the same tissue, it is possible to observe certain
cells which were not present in the others. This confirms both the validity of the obtained
segmentation and the experimental configuration of the algorithm.

A
 B


Figure 7. (A) Representation of manual egg chamber segmentation. (B) Representation of the segmentation of the best
individual obtained by the algorithm.
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3.4. Discussion

Image segmentation is an essential task in biological research projects, as it allows
biologists to measure properties of the cells, such as their organisation or packaging.
Specifically, it is crucial to segment images in three dimensions, in order to continue
describing complex cellular processes. The process of segmenting these images can be costly
when supervised algorithms lack of training data, meaning that it can require an expensive
manual optimisation of parameters that can take days or even weeks when carried out for
three-dimensional images. We consider our work to be pioneer in this field since biological
image segmentation has been automatically optimise mostly for 2D images. This section
has presented the experimental results for an automatic optimisation of LimeSeg 3D image
segmentation process for three different tissues of Drosophila melanogaster.

LimeSeg is an algorithm to recreate cells in three dimensions after the user has in-
troduced a set of parameters, which consists in a set of points points called seeds, and
constants of forces to be applied in the seeds. The methodology used in this work automati-
cally optimises a large part of the process of the user. Specifically, we have optimised almost
all parameters of LimeSeg through the application of an evolutionary algorithm, which
only requires the position of the cells and the images to be segmented. This algorithm uses
cellular properties to perform the optimisation.

As a result, we have obtained three-dimensional segmentations of different images of
Drosophila melanogaster, where a good convergence has been observed in the evaluation
of the solutions, for all the tissues. Best solutions have a good quality in general when
compared with the manual segmentations, where better results have been obtained with
greater numbers of generations. These facts seem to indicate that the application of
this algorithm is satisfactory for the optimisation and automation of three-dimensional
images segmentation.

The automation of the segmentation process carried out by our approach is not
complete as a set of manually determined seeds representing the nucleus of the cells
is needed as a starting point. However, the time cost of this seeds selection process is
negligible compared to the selection of the segmentation parameters carried out by the
evolutionary algorithm. Without the automation, this process must to be achieved after a
trial/error-based manual optimisation.

On the other hand, the variability in the quality of the solutions for the different
tissues indicates that the fitness function does not adjust in the same way to all of them.
Still, the evolution of the best individuals keeps increasing over time, despite fluctuations
in the average Jaccard index. This may be caused by the different quality of the images
and their membrane staining. For example, in the images of embryo, the inner membrane
is not stained. Therefore, the seeds tend to overgrow, and therefore they occupy other
cell surfaces, giving a poor Jaccard index in the embryo. To increase the quality of some
solutions, some of the configuration parameters in the algorithm may be varied, such as
the number of generations (see Table 1). However, the increase of this parameter entails
a significant increase in computational time. Additionally, an improvement in the fitness
function definition would have the most significant impact on the quality of solutions, as it
is detailed in the future work section.

The quality of our solutions is lower than the quality of supervised segmentations, but we
do not need training data, which is the reason for that difference. Furthermore, in comparison
with classic approaches, our method generates good segmentations for three different data
sets, which is very difficult to obtain for classic approaches without modifications.

Taking everything into account, we consider our work to be a significant contribution
to the automation of 3D biological images segmentation, being able to obtain acceptable so-
lutions in a considerable time. Although the obtained segmentations cannot be considered
as final for all tissues, they certainly constitute a first approximation than can be further
manually improved.

Another conclusion derived from this work that is worth highlighting is the impor-
tance of cell volume in three-dimensional segmentation, being the property that most
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positively contributes to the fitness evaluation. Therefore, this characteristic will centre our
efforts in the future work.

Future Work

This section presents our current and future lines of work, mainly dedicated to op-
timising both time performance and the quality of the obtained results, trying to find a
comprise among them. They include, but are not limited to, the following.

• Initialisation process: As aforementioned, a set of manually determined seeds is
needed before the creation of the first generation of solutions. In this sense, we plan
to also automate the location of these seeds, so that this process is not dependent on
expert supervision. To do this, it would be necessary to add a preprocessing phase
that detects the positions of cells through image processing. Those positions would be
passed to the evolutionary algorithm to generate the seeds, where their sizes would
be optimised.

• Fitness function: In order to improve the individuals assessment within the fitness
function, it would be necessary to add more information to this function. The use of
cells volumes to avoid oversegmentations may oversimplify the information. To avoid
this situation, we intend to focus on each cell to be segmented, as in the application of
the fruit fly algorithm in [19]. An interesting approach to explore would be estimating
the volume of each cell through image processing, which could be used to more
accurately measure cells volumes.
Furthermore, due to the current costly individual evaluation, we also plan to study
and incorporate some additional procedures to speed up this process. In particular,
we plan to analyse Long-Term Memory Assistance [44] and surrogate models in
evolutionary single-objective optimisation [45].

• Individual segmentation time: Our algorithm uses a maximum segmentation time per
individual which might not be enough, explaining thus the improvement in the quality
of the solutions with increasing generations. This time limitation was introduced
to control the whole execution time to some extent. Nevertheless, we expect that a
revision of this parameter could increase the convergence of the algorithm, trying to
adjust it to each individual inner characteristics.

• Further optimisations and integration: In order to speed up the whole process, we
plan to adapt our algorithm to be executed in parallel, and also in graphics processing
units (GPUs). Additionally, even though our approach is freely available upon request,
we intend to integrate it into a cloud computing service, such as Google Colaboratory.
This way, the final user would not need to install anything on their computer, and the
computational time would not be dependent on the user’s specific hardware.

• Study of other tissues of confocal images: We plan to enhance our work by carrying out
experiments for the automatic segmentation of other tissues such as the tissues in the
training data sets (https://github.com/NicoKiaru/TestImages (accessed on 25 April
2021)) of LimeSeg [5] and the tissues in the training data sets (https://osf.io/uzq3w/
(accessed on 25 April 2021) of PlanSeg [46].

4. Conclusions

In this paper, we have presented a new evolutionary algorithm for performing auto-
matic 3D biological image segmentation. We consider it as significant progress in this field
due to the importance of image segmentation in biological research projects, together with
the current lack of automatisation of the whole process for three-dimensional images, and
the consequent experts’ time investment. Our implementation makes use of LimeSeg, a
three-dimensional region growing segmentation algorithm. LimeSeg has been integrated
into our process, where the objective is to optimise its configuration parameters throughout
generations. For this purpose, an initial set of seeds is needed as a starting point. Although
these seeds may be manually determined, the time cost of their selection is negligible
compared to the LimeSeg parameters selection.

https://github.com/NicoKiaru/TestImages
https://osf.io/uzq3w/
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Experimental results on three different tissues of confocal images from Drosophila
melanogaster confirm the validity of our approach, where the obtained segmented images
have been compared to those manually segmented, both visually and by means of the Jac-
card index. The similarities between both images are remarkable for all tissues, where better
solutions have been found when a larger number of generations have been used. However,
the increase in this parameter entails a significant increase in the computational time. We
consider that our approach constitutes a first step towards the complete automatisation of
3D image segmentation, presenting very promising results.
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44. Črepinšek, M.; Liu, S.H.; Mernik, M.; Ravber, M. Long Term Memory Assistance for Evolutionary Algorithms. Mathematics 2019,
7, 1129. [CrossRef]

45. Tong, H.; Huang, C.; Minku, L.L.; Yao, X. Surrogate models in evolutionary single-objective optimization: A new taxonomy and
experimental study. Inf. Sci. 2021, 562, 414–437. [CrossRef]

46. Wolny, A.; Cerrone, L.; Vijayan, A.; Tofanelli, R.; Barro, A.V.; Louveaux, M.; Kreshuk, A. Accurate and versatile 3D segmentation
of plant tissues at cellular resolution. eLife 2020, 9, 1–34. [CrossRef]

http://dx.doi.org/10.3390/math7111129
http://dx.doi.org/10.1016/j.ins.2021.03.002
http://dx.doi.org/10.7554/eLife.57613

	Introduction
	Context
	Related Works

	Materials and Methods
	Evolutionary Algorithm
	Individual Encoding and Initialisation
	Fitness Function
	Generational Change


	Results and Discussion
	Salivary Gland
	Embryo
	Egg Chamber
	Discussion

	Conclusions
	References

